

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	16КВ (16К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f564-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR	Definition	6.4. A	ADC0CF: ADC0 Configuration	58
SFR	Definition	6.5. A	ADC0H: ADC0 Data Word MSB	59
SFR	Definition	6.6. A	ADC0L: ADC0 Data Word LSB	59
SFR	Definition	6.7. A	ADC0CN: ADC0 Control	60
SFR	Definition	6.8. A	ADC0TK: ADC0 Tracking Mode Select	61
SFR	Definition	6.9. A	ADC0GTH: ADC0 Greater-Than Data High Byte	62
SFR	Definition	6.10.	ADC0GTL: ADC0 Greater-Than Data Low Byte	62
SFR	Definition	6.11.	ADC0LTH: ADC0 Less-Than Data High Byte	63
SFR	Definition	6.12.	ADC0LTL: ADC0 Less-Than Data Low Byte	63
SFR	Definition	6.13.	ADC0MX: ADC0 Channel Select	66
SFR	Definition	7.1. F	REF0CN: Reference Control	69
SFR	Definition	8.1. C	CPT0CN: Comparator0 Control	72
SFR	Definition	8.2. 0	CPT0MD: Comparator0 Mode Selection	73
SFR	Definition	8.3. C	CPT1CN: Comparator1 Control	74
SFR	Definition	8.4. C	CPT1MD: Comparator1 Mode Selection	75
SFR	Definition	8.5. C	CPT0MX: Comparator0 MUX Selection	77
SFR	Definition	8.6. C	CPT1MX: Comparator1 MUX Selection	78
SFR	Definition	9.1. F	REG0CN: Regulator Control	80
SFR	Definition	10.1.	DPL: Data Pointer Low Byte	88
SFR	Definition	10.2.	DPH: Data Pointer High Byte	88
SFR	Definition	10.3.	SP: Stack Pointer	89
SFR	Definition	10.4.	ACC: Accumulator	89
SFR	Definition	10.5.	B: B Register	89
SFR	Definition	10.6.	PSW: Program Status Word	90
SFR	Definition	10.7.	SNn: Serial Number n	91
SFR	Definition	12.1.	SFR0CN: SFR Page Control 1	02
SFR	Definition	12.2.	SFRPAGE: SFR Page 1	03
SFR	Definition	12.3.	SFRNEXT: SFR Next 1	04
SFR	Definition	12.4.	SFRLAST: SFR Last 1	05
SFR	Definition	13.1.	IE: Interrupt Enable 1	16
SFR	Definition	13.2.	IP: Interrupt Priority1	17
SFR	Definition	13.3.	EIE1: Extended Interrupt Enable 1 1	18
SFR	Definition	13.4.	EIP1: Extended Interrupt Priority 1 1	19
SFR	Definition	13.5.	EIE2: Extended Interrupt Enable 2 1	20
SFR	Definition	13.6.	EIP2: Extended Interrupt Priority Enabled 2	21
SFR	Definition	13.7.	1101CF: INTO/INT1 Configuration	23
SFR	Definition	14.1.	PSCIL: Program Store R/W Control	31
SFR	Definition	14.2.	FLKEY: Flash Lock and Key 1	32
SFR	Definition	14.3.	FLSUL: Flash Scale 1 OOLIOON: Opick of Constant 1	33
SFR	Definition	14.4.	CUHUCIN: Cache Control	34
SFR	Definition	14.5.	UNESHUT: Flash Uneshot Period1	34
SFR	Definition	15.1.	PCON: Power Control	37
SFR	Definition	16.1.	VDMUCN: VDD Monitor Control 1	41

SFR	Definition	16.2	RSTSRC: Reset Source	143
SFR	Definition	17.1	EMIOCN: External Memory Interface Control	147
SFR	Definition	17.1.	EMIOCE: External Memory Configuration	148
SFR	Definition	17.2.	EMIOTC: External Memory Timing Control	152
SFR	Definition	18.1	CLKSEL: Clock Select	158
SFR	Definition	18.2	OSCICN: Internal Oscillator Control	160
SFR	Definition	18.3	OSCICRS: Internal Oscillator Coarse Calibration	161
SER	Definition	18.0	OSCIEIN: Internal Oscillator Fine Calibration	161
SER	Definition	18.5	CLKMLII : Clock Multiplier	163
SER	Definition	18.6	OSCXCN: External Oscillator Control	165
SER	Definition	10.0.	XBR0: Port I/O Crossbar Register 0	176
SER	Definition	10.7	XBR1: Port I/O Crossbar Register 1	177
SER	Definition	10.2.	XBR2: Port I/O Crossbar Register 1	178
QED	Definition	19.5.	DOMASK: Port 0 Mask Projector	170
QED	Definition	19.4.	POMASIC POIL O Mask Register	170
QED	Definition	19.5.	PUMAT. FUT U Match Register	180
QED	Definition	10.7	PIMASK. FUILT Mask Register	180
QED	Definition	10.0	PIMAL FULL I Match Register	100
QED	Definition	10.0	P2MAT: Port 2 Match Pogistor	101
QED	Definition	10.10	D2MASK: Port 2 Mach Register	101
QED	Definition	10.11	1 D3MAT: Port 3 Match Pagister	102
QED	Definition	10.10	2 DO: Dort 0	102
QED	Definition	10.12	2. PONDIN: Port 0 Input Mode	100
QED	Definition	10.17	1. POMDOLIT: Port 0 Output Mode	104
SER	Definition	10.14	5. POSKIP: Port 0 Skip	185
QED	Definition	10.16	S. P1: Port 1	105
QED	Definition	10.17	7. P1MDIN: Port 1. Input Mode	186
QED	Definition	10.19	P P1MDOLT: Port 1 Output Mode	196
QED	Definition	10.10	D P1SKID: Port 1 Skip	197
QED	Definition	10.70) P2: Port 2	107
QED	Definition	10.20	1. P2MDIN: Port 2 Input Mode	107
QED	Definition	10.21	2 P2MDOLIT: Port 2 Output Mode	100
QED	Definition	10.22	2. P2MDOUT. FUITZ Output Mode	100
QED	Definition	10.20	1 D3: Dort 3	109
QED	Definition	10.24	5. D2MDIN: Dort 2 Input Mode	100
QED	Definition	10.20	S. P3MDOLT: Port 3 Output Mode	100
QED	Definition	10.20	7 D3SKID: Dort 3Skip	101
QED	Definition	10.20	2. P 3 SMF . F 011 3 SMP	101
QED	Definition	19.20	D. F4. F0IL4	102
QED	Definition	19.25	JINOADD: LINO Indirect Address Register	200
QED	Definition	20.1.	LINOADA: LINO Indirect Data Register	200
QED	Definition	20.2.	LINUCAT. LINU INUNEUL Data Register	200
QED	Definition	20.3.	CANOCEC: CAN Clock Configuration	201
QED	Definition	21.1.	SMROCE: SMRue Clock/Configuration	≤ 17 >⊃7
OFR	Definition	22.1.	SIVIDUCE. SIVIDUS CIUCK/CUTHIYUTALIUT	224
SLK	Deminition	ZZ.Z.		<u> 20</u>

C8051F55x/56x/57x

For example, if ADC0GNH = 0xFC, ADC0GNL = 0x00, and GAINADD = 1, GAIN = 0xFC0 = 4032, and the resulting equation is as follows:

$$GAIN = \left(\frac{4032}{4096}\right) + 1 \times \left(\frac{1}{64}\right) = 0.984 + 0.016 = 1.0$$

The table below equates values in the ADC0GNH, ADC0GNL, and ADC0GNA registers to the equivalent gain using this equation.

ADC0GNH Value	ADC0GNL Value	GAINADD Value	GAIN Value	Equivalent Gain
0xFC (default)	0x00 (default)	1 (default)	4032 + 64	1.0 (default)
0x7C	0x00	1	1984 + 64	0.5
0xBC	0x00	1	3008 + 64	0.75
0x3C	0x00	1	960 + 64	0.25
0xFF	0xF0	0	4095 + 0	~1.0
0xFF	0xF0	1	4096 + 64	1.016

For any desired gain value, the GAIN registers can be calculated by the following:

$$\mathsf{GAIN} = \left(\mathsf{gain} - \mathsf{GAINADD} \times \left(\frac{1}{64}\right)\right) \times 4096$$

Equation 6.3. Calculating the ADC0GNH and ADC0GNL Values from the Desired Gain

Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

When calculating the value of GAIN to load into the ADC0GNH and ADC0GNL registers, the GAINADD bit can be turned on or off to reach a value closer to the desired gain value.

For example, the initial example in this section requires a gain of 0.44 to convert 5 V full scale to 2.2 V full scale. Using Equation 6.3:

$$\mathsf{GAIN} = \left(0.44 - \mathsf{GAINADD} \times \left(\frac{1}{64}\right)\right) \times 4096$$

If GAINADD is set to 1, this makes the equation:

$$GAIN = \left(0.44 - 1 \times \left(\frac{1}{64}\right)\right) \times 4096 = 0.424 \times 4096 = 1738 = 0 \times 06CA$$

The actual gain from setting GAINADD to 1 and ADC0GNH and ADC0GNL to 0x6CA is 0.4399. A similar gain can be achieved if GAINADD is set to 0 with a different value for ADC0GNH and ADC0GNL.

SFR Definition 6.5. ADC0H: ADC0 Data Word MSB

Bit	7	6	5	4	3	2	1	0
Name				ADC0	H[7:0]			
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xBE; SFR Page = 0x00

Bit	Name	Function
7:0	ADC0H[7:0]	ADC0 Data Word High-Order Bits.
		For AD0LJST = 0 and AD0RPT as follows:
		00: Bits 3–0 are the upper 4 bits of the 12-bit result. Bits 7–4 are 0000b.
		01: Bits 4–0 are the upper 5 bits of the 14-bit result. Bits 7–5 are 000b.
		10: Bits 5–0 are the upper 6 bits of the 15-bit result. Bits 7–6 are 00b.
		11: Bits 7–0 are the upper 8 bits of the 16-bit result.
		For AD0LJST = 1 (AD0RPT must be 00): Bits 7–0 are the most-significant bits of the ADC0 12-bit result.

SFR Definition 6.6. ADC0L: ADC0 Data Word LSB

Bit	7	6	5	4	3	2	1	0
Name	ADC0L[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xBD; SFR Page = 0x00

Bit	Name	Function
7:0	ADC0L[7:0]	ADC0 Data Word Low-Order Bits. For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the ADC0 Accumulated Result. For AD0LJST = 1 (AD0RPT must be '00'): Bits 7–4 are the lower 4 bits of the 12-bit result. Bits 3–0 are 0000b.

11. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization is shown in Figure 11.1

Figure 11.1. C8051F55x/56x/57x Memory Map

11.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F55x/56x/57x devices implement 32 kB or 16 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x7FFF in 32 kB devices and addresses 0x0000 to 0x3FFF in 16 kB devices. The address 0x7BFF in 32 kB devices and 0x3FFF in 16 kB devices serves as the security lock byte for the device. Addresses above 0x7BFF are reserved in the 32 kB devices.

Figure 11.2. Flash Program Memory Map

11.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the C8051F55x/56x/57x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used to read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access feature provides a mechanism for the C8051F55x/56x/57x to update program code and use the program memory space for non-volatile data storage. Refer to Section "14. Flash Memory" on page 124 for further details.

11.2. Data Memory

The C8051F55x/56x/57x devices include 2304 bytes of RAM data memory. 256 bytes of this memory is mapped into the internal RAM space of the 8051. The other 2048 bytes of this memory is on-chip "external" memory. The data memory map is shown in Figure 11.1 for reference.

11.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 11.1 illustrates the data memory organization of the

Table 12.3. Special Function Registers (Continued)

Register	Address	Description				
SMB0CF	0xC1	SMBus0 Configuration	224			
SMB0CN	0xC0	SMBus0 Control	226			
SMB0DAT	0xC2	SMBus0 Data				
SMOD0	0xA9	UART0 Mode	243			
SN0	0xF9	Serial Number 0	91			
SN1	0xFA	Serial Number 1	91			
SN2	0xFB	Serial Number 2	91			
SN3	0xFC	Serial Number 3	91			
SP	0x81	Stack Pointer	89			
SPI0CFG	0xA1	SPI0 Configuration	253			
SPIOCKR	0xA2	SPI0 Clock Rate Control	255			
SPI0CN	0xF8	SPI0 Control	254			
SPI0DAT	0xA3	SPI0 Data	255			
TCON	0x88	Timer/Counter Control	265			
TH0	0x8C	Timer/Counter 0 High	268			
TH1	0x8D	Timer/Counter 1 High	268			
TL0	0x8A	Timer/Counter 0 Low	267			
TL1	0x8B	Timer/Counter 1 Low	267			
TMOD	0x89	Timer/Counter Mode	266			
TMR2CN	0xC8	Timer/Counter 2 Control	272			
TMR2H	0xCD	Timer/Counter 2 High	274			
TMR2L	0xCC	Timer/Counter 2 Low	274			
TMR2RLH	0xCB	Timer/Counter 2 Reload High	273			
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	273			
TMR3CN	0x91	Timer/Counter 3 Control	278			
TMR3H	0x95	Timer/Counter 3 High	280			
TMR3L	0x94	Timer/Counter 3 Low	280			
TMR3RLH	0x93	Timer/Counter 3 Reload High	279			
TMR3RLL	0x92	Timer/Counter 3 Reload Low	279			
VDM0CN	0xFF	V _{DD} Monitor Control	141			
XBR0	0xE1	Port I/O Crossbar Control 0	176			
XBR1	0xE2	Port I/O Crossbar Control 1	177			
XBR2	0xC7	Port I/O Crossbar Control 2	178			

SFR Definition 13.4. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	PLIN0	PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PSMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF6; SFR Page = 0x00 and 0x0F

Bit	Name	Function
7	PLIN0	LIN0 Interrupt Priority Control. This bit sets the priority of the LIN0 interrupt. 0: LIN0 interrupts set to low priority level. 1: LIN0 interrupts set to high priority level.
6	PT3	Timer 3 Interrupt Priority Control.This bit sets the priority of the Timer 3 interrupt.0: Timer 3 interrupts set to low priority level.1: Timer 3 interrupts set to high priority level.
5	PCP1	Comparator0 (CP1) Interrupt Priority Control. This bit sets the priority of the CP1 interrupt. 0: CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.
4	PCP0	Comparator0 (CP0) Interrupt Priority Control. This bit sets the priority of the CP0 interrupt. 0: CP0 interrupt set to low priority level. 1: CP0 interrupt set to high priority level.
3	PPCA0	 Programmable Counter Array (PCA0) Interrupt Priority Control. This bit sets the priority of the PCA0 interrupt. 0: PCA0 interrupt set to low priority level. 1: PCA0 interrupt set to high priority level.
2	PADC0	 ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADC0 Conversion Complete interrupt. 0: ADC0 Conversion Complete interrupt set to low priority level. 1: ADC0 Conversion Complete interrupt set to high priority level.
1	PWADC0	 ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt. 0: ADC0 Window interrupt set to low priority level. 1: ADC0 Window interrupt set to high priority level.
0	PSMB0	 SMBus (SMB0) Interrupt Priority Control. This bit sets the priority of the SMB0 interrupt. 0: SMB0 interrupt set to low priority level. 1: SMB0 interrupt set to high priority level.

Multiplexed Mode					
Signal Name	Port Pin				
RD	P1.6				
WR	P1.7				
ALE	P1.5				
D0/A0	P3.0				
D1/A1	P3.1				
D2/A2	P3.2				
D3/A3	P3.3				
D4/A4	P3.4				
D5/A5	P3.5				
D6/A6	P3.6				
D7/A7	P3.7				
A8	P2.0				
A9	P2.1				
A10	P2.2				
A11	P2.3				
A12	P2.4				
A13	P2.5				
A14	P2.6				
A15	P2.7				

Table 17.1. EMIF Pinout (C8051F568-9 and 'F570-5)

17.6.1. Multiplexed Mode 17.6.1.1. 16-bit MOVX: EMI0CF[4:2] = 001, 010, or 011

Figure 17.3. Multiplexed 16-bit MOVX Timing

Figure 18.3. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

18.4.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 18.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation, according to Equation 18.1, where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor value in k Ω .

$$f = 1.23 \times 10^3 / (R \times C)$$

Equation 18.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

f = 1.23(10³)/RC = 1.23(10³)/[246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 18.6, the required XFCN setting is 010b.

18.4.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 18.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation , where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and V_{DD} = the MCU power supply in Volts.

20. Local Interconnect Network (LIN0)

Important Note: This chapter assumes an understanding of the Local Interconnect Network (LIN) protocol. For more information about the LIN protocol, including specifications, please refer to the LIN consortium (http://www.lin-subbus.org).

LIN is an asynchronous, serial communications interface used primarily in automotive networks. The Silicon Laboratories LIN controller is compliant to the 2.1 Specification, implements a complete hardware LIN interface and includes the following features:

- Selectable Master and Slave modes.
- Automatic baud rate option in slave mode.
- The internal oscillator is accurate to within 0.5% of 24 MHz across the entire temperature range and for VDD voltages greater than or equal to the minimum output of the on-chip voltage regulator, so an external oscillator is not necessary for master mode operation for most systems.

Note: The minimum system clock (SYSCLK) required when using the LIN controller is 8 MHz.

Figure 20.1. LIN Block Diagram

The LIN controller has four main components:

- LIN Access Registers—Provide the interface between the MCU core and the LIN controller.
- LIN Data Registers—Where transmitted and received message data bytes are stored.
- LIN Control Registers—Control the functionality of the LIN interface.
- Control State Machine and Bit Streaming Logic—Contains the hardware that serializes messages and controls the bus timing of the controller.

Figure 21.3. Four segments of a CAN Bit

The length of the 4 bit segments must be adjusted so that their sum is as close as possible to the desired bit time. Since each segment must be an integer multiple of the time quantum (tq), the closest achievable bit time is 24 tq (1000.008 ns), yielding a bit rate of 0.999992 Mbit/sec. The Sync_Seg is a constant 1 tq. The Prop_Seg must be greater than or equal to the propagation delay of 400 ns and so the choice is 10 tq (416.67 ns).

The remaining time quanta (13 tq) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as shown in. Based on this equation, Phase_Seg1 = 6 tq and Phase_Seg2 = 7 tq.

Phase_Seg1 + Phase_Seg2 = Bit_Time - (Synch_Seg + Prop_Seg)

- 1. If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1. If the sum is odd, Phase_Seg2 = Phase_Seg1 + 1.
- 2. Phase_Seg2 should be at least 2 tq.

Equation 21.1. Assigning the Phase Segments

The Synchronization Jump Width (SJW) timing parameter is defined by. It is used for determining the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.

SJW = minimum (4, Phase_Seg1)

Equation 21.2. Synchronization Jump Width (SJW)

The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension register is left at its reset value of 0x0000.

BRPE = BRP - 1 = BRP Extension Register = 0x0000SJWp = SJW - 1 = minimum (4, 6) - 1 = 3

TSEG1 = Prop_Seg + Phase_Seg1 - 1 = 10 + 6 - 1 = 15

$$TSEG2 = Phase_Seg2 - 1 = 6$$

Bit Timing Register = (TSEG2 x 0x1000) + (TSEG1 x 0x0100)

Bit Timing Register = (TSEG2 x 0x1000) + (TSEG1 x 0x0100) + (SJWp x 0x0040) + BRPE = 0x6FC0

Equation 21.3. Calculating the Bit Timing Register Value

22.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 22.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 22.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

SFR Definition 22.2. SMB0CN: SMBus Control

Bit	7	6	5	4	3	2	1	0
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Туре	R	R	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; Bit-Addressable; SFR Page =0x00

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge.	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
0	SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initiate next state machine event.1: Force interrupt.

23.3. Configuration and Operation

UART0 provides standard asynchronous, full duplex communication. It can operate in a point-to-point serial communications application, or as a node on a multi-processor serial interface. To operate in a point-to-point application, where there are only two devices on the serial bus, the MCE0 bit in SMOD0 should be cleared to 0. For operation as part of a multi-processor communications bus, the MCE0 and XBE0 bits should both be set to 1. In both types of applications, data is transmitted from the microcontroller on the TX0 pin, and received on the RX0 pin. The TX0 and RX0 pins are configured using the crossbar and the Port I/O registers, as detailed in Section "19. Port Input/Output" on page 169.

In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX) input of the other device, either directly or through a bus transceiver, as shown in Figure 23.5.

Figure 23.5. Typical UART Interconnect Diagram

23.3.1. Data Transmission

Data transmission is double-buffered and begins when software writes a data byte to the SBUF0 register. Writing to SBUF0 places data in the Transmit Holding Register, and the Transmit Holding Register Empty flag (THRE0) will be cleared to 0. If the UART's shift register is empty (i.e., no transmission in progress), the data will be placed in the Transmit Holding Register until the current transmission is complete. The TI0 Transmit Interrupt Flag (SCON0.1) will be set at the end of any transmission (the beginning of the stop-bit time). If enabled, an interrupt will occur when TI0 is set.

Note: THRE0 can have a momentary glitch high when the UART Transmit Holding Register is not empty. The glitch will occur some time after SBUF0 was written with the previous byte and does not occur if THRE0 is checked in the instruction(s) immediately following the write to SBUF0. When firmware writes SBUF0 and SBUF0 is not empty, TX0 will be stuck low until the next device reset. Firmware should use or poll on TI0 rather than THRE0 for asynchronous UART writes that may have a random delay in between transactions.

If the extra bit function is enabled (XBE0 = 1) and the parity function is disabled (PE0 = '0'), the value of the TBX0 (SCON0.3) bit will be sent in the extra bit position. When the parity function is enabled (PE0 = 1), hardware will generate the parity bit according to the selected parity type (selected with S0PT[1:0]), and append it to the data field. Note: when parity is enabled, the extra bit function is not available.

23.3.2. Data Reception

Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated (OVR0 in register SCON0 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be stored in the receive FIFO. If the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and

SFR Definition 24.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1; SFR Page = 0x00

Bit	Name	Function				
7	SPIBSY	SPI Busy.				
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).				
6	MSTEN	Master Mode Enable.				
		0: Disable master mode. Operate in slave mode.				
		1: Enable master mode. Operate as a master.				
5	СКРНА	SPI0 Clock Phase.				
		0: Data centered on first edge of SCK period.*				
		1: Data centered on second edge of SCK period.				
4	CKPOL	SPI0 Clock Polarity.				
		0: SCK line low in idle state.				
		1: SCK line high in idle state.				
3	SLVSEL	Slave Selected Flag.				
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected				
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched ver-				
		sion of the pin input.				
2	NSSIN	NSS Instantaneous Pin Input.				
		This bit mimics the instantaneous value that is present on the NSS port pin at the				
		time that the register is read. This input is not de-glitched.				
1	SRMT	Shift Register Empty (valid in slave mode only).				
		This bit will be set to logic 1 when all data has been transferred in/out of the shift				
		register, and there is no new information available to read from the transmit buffer or write to the receive buffer. It returns to logic 0 when a data byte is transferred to				
		the shift register from the transmit buffer or by a transition on SCK. SRMT = 1 when				
		in Master Mode.				
0	RXBMT	Receive Buffer Empty (valid in slave mode only).				
		This bit will be set to logic 1 when the receive buffer has been read and contains no				
		new information. If there is new information available in the receive buffer that has				
	<u> </u>					
Note:	ore: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCI K before the end of each data bit to provide maximum settling time for the slave device					
	See Table 24.1 f	for timing parameters.				

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0	
Nam	e SPIF	WCOL	MODF	RXOVRN	N NSSMD[1:0] TXBMT		SPIEN		
Туре	e R/W	R/W	R/W	R/W	R/W R R		R/W		
Rese	et O	0	0	0	0	1	1	0	
SFR A	SFR Address = 0xF8; Bit-Addressable; SFR Page = 0x00								
Bit	Name		Function						
7	SPIF	SPI0 Inte This bit is enabled, s tine. This	SPI0 Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not automatically cleared by bardware. It must be cleared by soft-						
		ware.							
6	WCOL	Write Col This bit is write to the It must be	Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a write to the SPI0 data register was attempted while a data transfer was in progress. It must be cleared by software.						
5	MODF	Mode Fau	Mode Fault Flag.						
		This bit is ter mode This bit is	This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.						
4	RXOVRN	Receive (Receive Overrun Flag (valid in slave mode only).						
		This bit is receive bu current tra cleared by	This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must be cleared by software.						
3:2	NSSMD[1:0]	Slave Sel	Slave Select Mode.						
		Selects between the following NSS operation modes: (See Section 24.2 and Section 24.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.							
1	TXBMT	Transmit	Transmit Buffer Empty.						
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.							
0	SPIEN	SPI0 Ena 0: SPI dis 1: SPI ena	SPI0 Enable. 0: SPI disabled. 1: SPI enabled.						

ТЗМН	T3XCLK	TMR3H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 25.8. Timer 3 8-Bit Mode Block Diagram

25.3.3. External Oscillator Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 3 can be clocked from the system clock, or the system clock divided by 12, depending on the T3ML (CKCON.6), and T3XCLK bits. When a capture event is generated, the contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator/8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture clock to achieve an accurate reading. Timer 3 should be in 16-bit auto-reload mode when using Capture Mode.

If the SYSCLK is 24 MHz and the difference between two successive captures is 5861, then the external clock frequency is as follows:

24 MHz/(5861/8) = 0.032754 MHz or 32.754 kHz

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

C8051F55x/56x/57x

Figure 26.9. PCA 9, 10 and 11-Bit PWM Mode Diagram

26.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 26.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

 $Duty Cycle = \frac{(65536 - PCA0CPn)}{65536}$

Equation 26.4. 16-Bit PWM Duty Cycle

Using Equation 26.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

