

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), CANbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f565-iq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.2. Interrupts and SFR Paging	95
12.3. SFR Page Stack Example	97
13. Interrupts	112
13.1. MCU Interrupt Sources and Vectors	112
13.1.1. Interrupt Priorities	113
13.1.2. Interrupt Latency	113
13.2. Interrupt Register Descriptions	115
13.3. External Interrupts INTO and INT1	122
14. Flash Memory	124
14.1. Programming The Flash Memory	124
14.1.1. Flash Lock and Key Functions	124
14.1.2. Flash Erase Procedure	125
14.1.3. Flash Write Procedure	125
14.1.4. Flash Write Optimization	126
14.2. Non-volatile Data Storage	127
14.3. Security Options	127
14.4. Flash Write and Erase Guidelines	129
14.4.1. V _{חס} Maintenance and the V _{חס} monitor	129
14.4.2. PSWE Maintenance	130
14.4.3. System Clock	130
15. Power Management Modes	135
15.1. Idle Mode	135
15.2. Stop Mode	136
15.3. Suspend Mode	136
16. Reset Sources	138
16.1. Power-On Reset	139
16.2. Power-Fail Reset/VDD Monitor	139
16.3. External Reset	141
16.4. Missing Clock Detector Reset	141
16.5. Comparator0 Reset	142
16.6. PCA Watchdog Timer Reset	142
16.7. Flash Error Reset	142
16.8. Software Reset	142
17. External Data Memory Interface and On-Chip XRAM	144
17.1. Accessing XRAM	144
17.1.1. 16-Bit MOVX Example	144
17.1.2. 8-Bit MOVX Example	144
17.2. Configuring the External Memory Interface	145
17.3. Port Configuration	145
17.4. Multiplexed Mode	149
17.5. Memory Mode Selection	150
17.5.1. Internal XRAM Only	150
17.5.2. Split Mode without Bank Select	150
17.5.3. Split Mode with Bank Select	151
17.5.4. External Only	151

4. Package Specifications

4.1. QFN-40 Package Specifications

Figure 4.1. QFN-40 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Мах
A	0.80	0.85	0.90	E2	4.00	4.10	4.20
A1	0.00		0.05	L	0.35	0.40	0.45
b	0.18	0.23	0.28	L1			0.10
D	6.00 BSC			aaa			0.10
D2	4.00	4.10	4.20	bbb			0.10
е		0.50 BSC		ddd			0.05
E		6.00 BSC		eee			0.08

Table 4.1. QFN-40 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VJJD-5, except for features A, D2, and E2 which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.4. Reset Electrical Characteristics

-40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	VIO = 5 V; IOL = 70 µA			40	mV
RST Input High Voltage		0.7 x V _{IO}		—	
RST Input Low Voltage		—		0.3 x V _{IO}	
RST Input Pullup Current	RST = 0.0 V, VIO = 5 V		49	115	μA
V _{DD} RST Threshold (V _{RST-LOW})		1.65	1.75	1.80	V
V _{DD} RST Threshold (V _{RST-HIGH})		2.25	2.30	2.45	V
V _{REGIN} Ramp Time for Power On	V _{REGIN} Ramp 0–1.8 V	_	_	1	ms
	Time from last system clock rising edge to reset initiation				
Missing Clock Detector Timeout	V _{DD} = 2.1 V	200	340	600	μs
	V _{DD} = 2.5 V	200	250	600	
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	_	155	175	μs
Minimum RST Low Time to Generate a System Reset		6		_	μs
V _{DD} Monitor Turn-on Time			60	100	μs
V _{DD} Monitor Supply Current			1	2	μA

Table 5.5. Flash Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Elash Size	C8051F550-3, 'F560-3, 'F568-9, and 'F570-1	:	32768 ¹		Bytes	
	C8051F554-7, 'F564-7, and 'F572-5	16384			Dyles	
Endurance		20 k	150 k	[Erase/Write	
Retention	125 °C	10	í — '	[Years	
Erase Cycle Time	25 MHz System Clock	28	30	45	ms	
Write Cycle Time	25 MHz System Clock	79	84	125	μs	
V _{DD}	Write/Erase operations	V _{RST-HIGH} ²			V	
Temperature during	–I Devices	0		+125	°C	
tions	–A Devices	-40	'	+125	U	
 On the 32 kB Flash See Table 5.4 for the function of the function of	n devices, 1024 bytes at addresses he V _{RST-HIGH} specification.	0x7C00 to 0x7F	FFF are res	erved.		

SFR Definition 8.3. CPT1CN: Comparator1 Control

Bit	7	6	5	4	3	2	1	0
Name	CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1H	YP[1:0]	CP1H	/N[1:0]
Туре	R/W	R	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9D; SFR Page = 0x00

Bit	Name	Function
7	CP1EN	Comparator1 Enable Bit. 0: Comparator1 Disabled. 1: Comparator1 Enabled.
6	CP1OUT	Comparator1 Output State Flag. 0: Voltage on CP1+ < CP1 1: Voltage on CP1+ > CP1
5	CP1RIF	 Comparator1 Rising-Edge Flag. Must be cleared by software. 0: No Comparator1 Rising Edge has occurred since this flag was last cleared. 1: Comparator1 Rising Edge has occurred.
4	CP1FIF	 Comparator1 Falling-Edge Flag. Must be cleared by software. 0: No Comparator1 Falling-Edge has occurred since this flag was last cleared. 1: Comparator1 Falling-Edge has occurred.
3:2	CP1HYP[1:0]	Comparator1 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
1:0	CP1HYN[1:0]	Comparator1 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.

If the internal voltage regulator is not used, the VREGIN input should be tied to VDD, as shown in Figure 9.2.

Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Disabled

SFR Definition 9.1. REG0CN: Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	REGDIS	Reserved		REG0MD				DROPOUT
Туре	R/W	R/W	R	R/W	R	R	R	R
Reset	0	1	0	1	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x00

Bit	Name	Function
7	REGDIS	Voltage Regulator Disable Bit.
		0: Voltage Regulator Enabled 1: Voltage Regulator Disabled
6	Reserved	Read = 1b; Must Write 1b.
5	Unused	Read = 0b; Write = Don't Care.
4	REG0MD	Voltage Regulator Mode Select Bit.
		0: Voltage Regulator Output is 2.1 V.
		1: Voltage Regulator Output is 2.6 V.
3:1	Unused	Read = 000b. Write = Don't Care.
0	DROPOUT	Voltage Regulator Dropout Indicator.
		0: Voltage Regulator is not in dropout.
		1: Voltage Regulator is in or near dropout.

Table 10.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/(4-6)
JNC rel	Jump if Carry is not set	2	2/(4-6)*
JB bit, rel	Jump if direct bit is set	3	3/(5-7)*
JNB bit, rel	Jump if direct bit is not set	3	3/(5-7)*
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/(5-7)*
Program Branching			
ACALL addr11	Absolute subroutine call	2	4-6*
LCALL addr16	Long subroutine call	3	5-7*
RET	Return from subroutine	1	6-8*
RETI	Return from interrupt	1	6-8*
AJMP addr11	Absolute jump	2	4-6*
LJMP addr16	Long jump	3	5-7*
SJMP rel	Short jump (relative address)	2	4-6*
JMP @A+DPTR	Jump indirect relative to DPTR	1	3-5*
JZ rel	Jump if A equals zero	2	2/(4-6)*
JNZ rel	Jump if A does not equal zero	2	2/(4-6)*
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/(6-8)*
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/(6-8)*
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/(5-7)*
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/(6-8)*
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/(4-6)*
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/(5-7)*
NOP	No operation	1	1
Note: Certain instructions ta the FLRT setting (SFR	ke a variable number of clock cycles to execute depending R Definition 14.3).	on instruction a	alignment and

SFR Definition 10.1. DPL: Data Pointer Low Byte

7	6	5	4	3	2	1	0
e DPL[7:0]							
R/W							
0	0	0	0	0	0	0	0
	7 0	7 6 0 0	7 6 5 0 0 0	7 6 5 4 DPL DPL 0 0 0	7 6 5 4 3 DPL[7:0] R/W 0 0 0 0 0	7 6 5 4 3 2 DPL[7:0] R/W 0 0 0 0 0	7 6 5 4 3 2 1 DPL[7:0] R/W 0 0 0 0 0 0 0

SFR Address = 0x82; SFR Page = All Pages

Bit	Name	Function
7:0	DPL[7:0]	Data Pointer Low.
		The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indi- rectly addressed Flash memory or XRAM.

SFR Definition 10.2. DPH: Data Pointer High Byte

Bit	7	6	5	4	3	2	1	0
Name		DPH[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x83; SFR Page = All Pages

Bit	Name	Function
7:0	DPH[7:0]	Data Pointer High.
		The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indi- rectly addressed Flash memory or XRAM.

SFR Definition 13.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ELIN0	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ESMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6; SFR Page = All Pages

Bit	Name	Function
7	ELIN0	Enable LIN0 Interrupt. This bit sets the masking of the LIN0 interrupt. 0: Disable LIN0 interrupts. 1: Enable interrupt requests generated by the LIN0INT flag.
6	ET3	 Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
5	ECP1	Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
4	ECP0	Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
3	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
2	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
1	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
0	ESMB0	 Enable SMBus (SMB0) Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMB0 interrupts. 1: Enable interrupt requests generated by SMB0.

/RD

17.4. Multiplexed Mode

The External Memory Interface operates only in a Multiplexed mode. In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 17.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

A[15:8] A[15:8] ADDRESS BUS 74HC373 ALE G E ADDRESS/DATA BUS A[7:0] AD[7:0] Q D M V_{DD} 64 K X 8 SRAM (Optional) 8 F I/O[7:0] CE /WR WE

See Section "17.6.1. Multiplexed Mode" on page 153 for more information.

OE

SFR Definition 18.6. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	XTLVLD	×	(OSCMD[2:0)]			XFCN[2:0]	
Туре	R		R/W		R		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9F; SFR Page = 0x0F

Bit	Name			Function					
7	XTLVLD	Crystal	Crystal Oscillator Valid Flag.						
		(Read c	Read only when XOSCMD = 11x.)						
		0: Cryst	al Oscillator is unused of	r not yet stable.					
		1: Cryst	al Oscillator is running a	nd stable.					
6:4	XOSCMD[2:0]	Externa	al Oscillator Mode Sele	ct.					
		00x: Ex	ternal Oscillator circuit of	if.					
		010: Ex	ternal CMOS Clock Mod	e.					
		011: Ex	ternal CMOS Clock Mod	e with divide by 2 stage.					
		100: RC	COscillator Mode.						
		101: Ca	pacitor Oscillator Mode.						
		110. Cr	stal Oscillator Mode.	n divide by 2 stage					
2	linuand	Dood							
3	Unused	Read =							
2:0	XFCN[2:0]	Externa	al Oscillator Frequency	Control Bits.					
		Set acc	ording to the desired free	quency for Crystal or RC	mode.				
		Set acc	ording to the desired K F	actor for C mode.					
		XFCN	Crystal Mode	RC Mode	C Mode				
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87				
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6				
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7				
		011	011 225 kHz < f \leq 590 kHz 100 kHz < f \leq 200 kHz K Factor = 22						
		100	$00 590 ext{ kHz} < f \le 1.5 ext{ MHz} 200 ext{ kHz} < f \le 400 ext{ kHz} ext{ K Factor} = 65$						
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180				
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz < f ≤ 1.6 MHz	K Factor = 664				
		111	$10 \text{ MHz} < f \le 30 \text{ MHz}$	1.6 MHz $< f \le 3.2$ MHz	K Factor = 1590				

 $f = (KF)/(R \times V_{DD})$

Equation 18.2. C Mode Oscillator Frequency

For example: Assume V_{DD} = 2.1 V and f = 75 kHz:

 $f = KF / (C \times VDD)$

0.075 MHz = KF / (C x 2.1)

Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 18.6 (OSCXCN) as KF = 7.7:

0.075 MHz = 7.7 / (C x 2.1)

C x 2.1 = 7.7 / 0.075 MHz

C = 102.6 / 2.0 pF = 51.3 pF

Therefore, the XFCN value to use in this example is 010b.

SFR Definition 19.3. XBR2: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0
Name	WEAKPUD	XBARE		Reserved				
Туре	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC7; SFR Page = 0x0F

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode).1: Weak Pullups disabled.
6	XBARE	Crossbar Enable.
		0: Crossbar disabled.
		1: Crossbar enabled.
5:1	Reserved	Always Write to 00000b.
0	LIN0E	LIN I/O Output Enable.
		0: LIN I/O unavailable at Port pin.
		1: LIN_TX, LIN_RX routed to Port pins.

SFR Definition 20.3. LIN0CF: LIN0 Control Mode Register

Bit	7	6	5	4	3	2	1	0
Name	LINEN	MODE	ABAUD					
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x0F

Bit	Name	Function
7	LINEN	LIN Interface Enable Bit.
		0: LIN0 is disabled.
6	MODE	LIN Mode Selection Bit.
		0: LIN0 operates in slave mode.
		1: LIN0 operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection.
		This bit only has an effect when the MODE bit is configured for slave mode.
		0: Manual baud rate selection is enabled.
		1: Automatic baud rate selection is enabled.
4:0	Unused	Read = 00000b; Write = Don't Care

21. Controller Area Network (CAN0)

Important Documentation Note: The Bosch CAN Controller is integrated in the C8051F550/1/4/5, 'F560/ 1/4/5/8/9, and 'F572/3 devices. This section of the data sheet gives a description of the CAN controller as an overview and offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip Bosch CAN controller. In order to use the CAN controller, refer to Bosch's C_CAN User's Manual as an accompanying manual to the Silicon Labs' data sheet.

The C8051F550/1/4/5, 'F560/1/4/5/8/9, and 'F572/3 devices feature a Control Area Network (CAN) controller that enables serial communication using the CAN protocol. Silicon Labs CAN facilitates communication on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller consists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message handler state machine, and control registers. Silicon Labs CAN is a protocol controller and does not provide physical layer drivers (i.e., transceivers). Figure 21.1 shows an example typical configuration on a CAN bus.

Silicon Labs' CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be configured to transmit or receive data. Incoming data, message objects and their identifier masks are stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data, and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.

Figure 21.1. Typical CAN Bus Configuration

SFR Definition 21.1. CAN0CFG: CAN Clock Configuration

Bit	7	6	5	4	3	2	1	0
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSD	IV[1:0]
Туре	R	R	R	R	R	R	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x92; SFR Page = 0x0C

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits.
		The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

SFR Definition 23.5. SBRLH0: UART0 Baud Rate Generator Reload High Byte

Bit	7	6	5	4	3	2	1	0		
Name	SBRLH0[7:0]									
Туре	R/W									
Reset	0	0	0	0	0	0	0	0		

Bit	Name	Function
7:0	SBRLH0[7:0]	High Byte of Reload Value for UART0 Baud Rate Generator.
		This value is loaded into the high byte of the UART0 baud rate generator when the counter overflows from 0xFFFF to 0x0000.

SFR Definition 23.6. SBRLL0: UART0 Baud Rate Generator Reload Low Byte

Bit	7	6	5	4	3	2	1	0			
Nam	е	SBRLL0[7:0]									
Тур	9	R/W									
Reset 0 <td>0</td> <td>0</td>						0	0				
SFR /	Address = 0xA	C; SFR Page	e = 0x0F								
Bit	Name	Name Function									
7:0	SBRLL0[7:0]	L0[7:0] Low Byte of Reload Value for UART0 Baud Rate Generator.									
		This value is loaded into the low byte of the UART0 baud rate generator when the counter overflows from 0xFFFF to 0x0000.									

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0		
Nam	e SPIF	WCOL	MODF	RXOVRN	NSSM	ID[1:0]	TXBMT	SPIEN		
Туре	e R/W	R/W	R/W	R/W	R/	W	R	R/W		
Rese	et O	0	0	0	0	1	1	0		
SFR A	ddress = 0xF8	; Bit-Addres	sable; SFR	Page = 0x00)					
Bit	Name		Function							
7	SPIF	SPI0 Inte This bit is enabled, s tine. This	SPI0 Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not automatically cleared by bardware. It must be cleared by soft							
		ware.								
6	WCOL	Write Col This bit is write to the It must be	Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a write to the SPI0 data register was attempted while a data transfer was in progress. It must be cleared by software.							
5	MODF	Mode Fau	Mode Fault Flag.							
		This bit is ter mode This bit is	This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.							
4	RXOVRN	Receive (Receive Overrun Flag (valid in slave mode only).							
		This bit is receive bu current tra cleared by	This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must be cleared by software.							
3:2	NSSMD[1:0]	Slave Sel	ect Mode.							
		Selects be (See Sect 00: 3-Wire 01: 4-Wire 1x: 4-Wire device an	Selects between the following NSS operation modes: (See Section 24.2 and Section 24.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.							
1	TXBMT	Transmit	Buffer Emp	oty.						
		This bit wi When dat be set to l	This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.							
0	SPIEN	SPI0 Ena 0: SPI dis 1: SPI ena	ble. abled. abled.							

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 24.9. SPI Master Timing (CKPHA = 1)

SFR Definition 25.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit	7	6	5	4	3	2	1	0	
Name	TMR2RLL[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	
SFR Ad	dress = 0xC/	A; SFR Page	e = 0x00						
D'4	New Star								

Bit	Name	Function					
7:0	TMR2RLL[7:0]	Timer 2 Reload Register Low Byte.					
		TMR2RLL holds the low byte of the reload value for Timer 2.					

SFR Definition 25.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit	7	6	5	4	3	2	1	0			
Nam	TMR2RLH[7:0]										
Тур	e	R/W									
Rese	et 0	0	0	0	0	0	0	0			
SFR /	SFR Address = 0xCB; SFR Page = 0x00										
Bit	Name	Name Function									
7:0	TMR2RLH[7:0	IR2RLH[7:0] Timer 2 Reload Register High Byte.									
		TMR2RLH holds the high byte of the reload value for Timer 2.									

27.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 27.1.

Figure 27.1. Typical C2 Pin Sharing

The configuration in Figure 27.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

303