

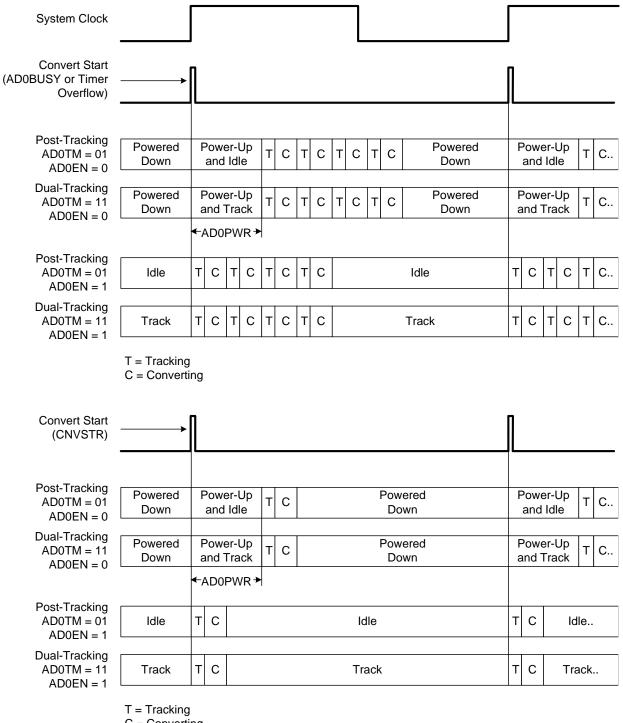
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f566-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

C = Converting

Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4

7. Voltage Reference

The Voltage reference multiplexer on the C8051F55x/56x/57x devices is configurable to use an externally connected voltage reference, the on-chip reference voltage generator routed to the VREF pin, or the V_{DD} power supply voltage (see Figure 7.1). The REFSL bit in the Reference Control register (REF0CN, SFR Definition 7.1) selects the reference source for the ADC. For an external source or the on-chip reference, REFSL should be set to 0 to select the VREF pin. To use V_{DD} as the reference source, REFSL should be set to 1.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillator. This bias is automatically enabled when any peripheral which requires it is enabled, and it does not need to be enabled manually. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN. The electrical specifications for the voltage reference circuit are given in Table 5.11.

The on-chip voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.25 V. The on-chip voltage reference can be driven on the VREF pin by setting the REFBE bit in register REF0CN to a 1. The maximum load seen by the VREF pin must be less than 200 μ A to GND. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to GND. If the on-chip reference is not used, the REFBE bit should be cleared to 0. Electrical specifications for the on-chip voltage reference are given in Table 5.11.

Important Note about the VREF Pin: When using either an external voltage reference or the on-chip reference circuitry, the VREF pin should be configured as an analog pin and skipped by the Digital Crossbar. Refer to Section "19. Port Input/Output" on page 169 for the location of the VREF pin, as well as details of how to configure the pin in analog mode and to be skipped by the crossbar. If VDD is selected as the voltage reference in the REF0CN register and the ADC is enabled in the ADC0CN register, the P0.0/VREF pin cannot operate as a general purpose I/O pin in open-drain mode. With the above settings, this pin can operate in push-pull output mode or as an analog input.

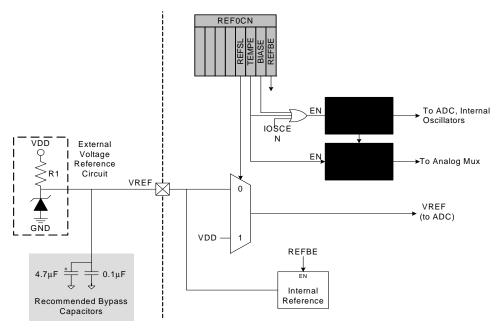


Figure 7.1. Voltage Reference Functional Block Diagram

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

SFR Definition 8.1. CPT0CN: Comparator0 Control

Bit	7	6	5	4	3	2	1	0
Name	CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0H)	/P[1:0]	CP0H	/N[1:0]
Туре	R/W	R	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9A; SFR Page = 0x00

Bit	Name	Function
7	CP0EN	Comparator0 Enable Bit.
		0: Comparator0 Disabled.
		1: Comparator0 Enabled.
6	CP0OUT	Comparator0 Output State Flag.
		0: Voltage on CP0+ < CP0–.
		1: Voltage on CP0+ > CP0
5	CP0RIF	Comparator0 Rising-Edge Flag. Must be cleared by software.
		0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
		1: Comparator0 Rising Edge has occurred.
4	CP0FIF	Comparator0 Falling-Edge Flag. Must be cleared by software.
		0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
		1: Comparator0 Falling-Edge has occurred.
3:2	CP0HYP[1:0]	Comparator0 Positive Hysteresis Control Bits.
		00: Positive Hysteresis Disabled.
		01: Positive Hysteresis = 5 mV.
		10: Positive Hysteresis = 10 mV.
		11: Positive Hysteresis = 20 mV.
1:0	CP0HYN[1:0]	Comparator0 Negative Hysteresis Control Bits.
		00: Negative Hysteresis Disabled.
		01: Negative Hysteresis = 5 mV.
		10: Negative Hysteresis = 10 mV.
		11: Negative Hysteresis = 20 mV.

C8051F55x/56x/57x

SFR Definition 8.5. CPT0MX: Comparator0 MUX Selection

Bit	7	6	5	4	3	2	1	0	
Nam	е	CMX0	N[3:0]	I	CMX0P[3:0]				
Туре	•	R/	W			R/	W		
Rese	et 0	1	1	1	0	1	1	1	
SFR A	Address = 0x9	C; SFR Page	$e = 0 \times 00$						
Bit	Name	_			Function				
7:4	CMX0N[3:0]	Comparato	r0 Negative	Input MUX	Selection.				
		0000:	P0.	1					
		0001:	P0.	3					
		0010:	P0.	5					
		0011:	P0.	7					
		0100:	P1.	1					
		0101:	P1.	3					
		0110:	P1.	5					
		0111:	P1.	7					
		1000:	P2.	1					
		1001:	P2.	3 (only avail	able on 40-p	in and 32-pi	n devices)		
		1010:	P2.	P2.5 (only available on 40-pin and 32-pin devices)					
		1011:	P2.	7 (only avail	able on 40-p	in and 32-pi	n devices)		
		1100–11111:	Nor	ne					
3:0	CMX0P[3:0]	Comparato	r0 Positive	Input MUX	Selection.				
		0000:	P0.	0					
		0001:	P0.	2					
		0010:	P0.	4					
		0011:	P0.	6					
		0100:	P1.	0					
		0101:	P1.	2					
		0110:	P1.	4					
		0111:	P1.	6					
		1000:	P2.	0					
		1001:	P2.	2 (only avail	able on 40-p	in and 32-pi	n devices)		
		1010:	P2.	4 (only avail	able on 40-p	in and 32-pi	n devices)		
		1011:	P2.	6 (only avail	able on 40-p	in and 32-pi	n devices)		
		1100–1111:	Nor	ne					

C8051F55x/56x/57x

Table 10.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles	
SETB C	Set Carry	1	1	
SETB bit	Set direct bit	2	2	
CPL C	Complement Carry	1	1	
CPL bit	Complement direct bit	2	2	
ANL C, bit	AND direct bit to Carry	2	2	
ANL C, /bit	AND complement of direct bit to Carry	2	2	
ORL C, bit	OR direct bit to carry	2	2	
ORL C, /bit	OR complement of direct bit to Carry	2	2	
MOV C, bit	Move direct bit to Carry	2	2	
MOV bit, C	Move Carry to direct bit	2	2	
JC rel	Jump if Carry is set	2	2/(4-6)	
JNC rel	Jump if Carry is not set	2	2/(4-6)*	
JB bit, rel	Jump if direct bit is set	3	3/(5-7)*	
JNB bit, rel	Jump if direct bit is not set	3	3/(5-7)*	
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/(5-7)*	
Program Branching			•	
ACALL addr11	Absolute subroutine call	2	4-6*	
LCALL addr16	Long subroutine call	3	5-7*	
RET	Return from subroutine	1	6-8*	
RETI	Return from interrupt	1	6-8*	
AJMP addr11	Absolute jump	2	4-6*	
LJMP addr16	Long jump	3	5-7*	
SJMP rel	Short jump (relative address)	2	4-6*	
JMP @A+DPTR	Jump indirect relative to DPTR	1	3-5*	
JZ rel	Jump if A equals zero	2	2/(4-6)*	
JNZ rel	Jump if A does not equal zero	2	2/(4-6)*	
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/(6-8)*	
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/(6-8)*	
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/(5-7)*	
CJNE @Ri, #data, rel			4/(6-8)*	
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/(4-6)*	
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/(5-7)*	
NOP	No operation	1	1	

SFR Definition 12.1. SFR0CN: SFR Page Control

Bit	7	6	5	4	3	2	1	0
Name								SFRPGEN
Туре	R	R	R	R	R	R	R	R/W
Reset	0	0	0	0	0	0	0	1

SFR Address = 0x84; SFR Page = 0x0F

Bit	Name	Function
7:1	Unused	Read = 0000000b; Write = Don't Care
0	SFRPGEN	SFR Automatic Page Control Enable.
		Upon interrupt, the C8051 Core will vector to the specified interrupt service routine and automatically switch the SFR page to the corresponding peripheral or function's SFR page. This bit is used to control this autopaging function.
		0: SFR Automatic Paging disabled. The C8051 core will not automatically change to the appropriate SFR page (i.e., the SFR page that contains the SFRs for the peripheral/function that was the source of the interrupt).
		1: SFR Automatic Paging enabled. Upon interrupt, the C8051 will switch the SFR page to the page that contains the SFRs for the peripheral or function that is the source of the interrupt.

Table 12.3. Special Function Registers (Continued)

Register	Address	Description	Page
IT01CF	0xE4	INT0/INT1 Configuration	123
LIN0ADR	0xD3	LIN0 Address	200
LIN0CF	0xC9	LIN0 Configuration	200
LIN0DAT	0xD2	LIN0 Data	201
OSCICN	0xA1	Internal Oscillator Control	160
OSCICRS	0xA2	Internal Oscillator Coarse Control	161
OSCIFIN	0x9E	Internal Oscillator Fine Calibration	161
OSCXCN	0x9F	External Oscillator Control	165
P0	0x80	Port 0 Latch	183
POMASK	0xF2	Port 0 Mask Configuration	179
P0MAT	0xF1	Port 0 Match Configuration	179
POMDIN	0xF1	Port 0 Input Mode Configuration	184
P0MDOUT	0xA4	Port 0 Output Mode Configuration	184
P0SKIP	0xD4	Port 0 Skip	185
P1	0x90	Port 1 Latch	185
P1MASK	0xF4	Port 1 Mask Configuration	180
P1MAT	0xF3	Port 1 Match Configuration	180
P1MDIN	0xF2	Port 1 Input Mode Configuration	186
P1MDOUT	0xA5	Port 1 Output Mode Configuration	186
P1SKIP	0xD5	Port 1 Skip	187
P2	0xA0	Port 2 Latch	187
P2MASK	0xB2	Port 2 Mask Configuration	181
P2MAT	0xB1	Port 2 Match Configuration	181
P2MDIN	0xF3	Port 2 Input Mode Configuration	188
P2MDOUT	0xA6	Port 2 Output Mode Configuration	188
P2SKIP	0xD6	Port 2 Skip	189
P3	0xB0	Port 3 Latch	189
P3MASK	0xAF	Port 3 Mask Configuration	182
P3MAT	0xAE	Port 3 Match Configuration	182
P3MDIN	0xF4	Port 3 Input Mode Configuration	190
P3MDOUT	0xAE	Port 3 Output Mode Configuration	190
P3SKIP 0xD7		Port 3 Skip	191
P4 0xB5 F		Port 4 Latch	191
P4MDOUT	0xAF	Port 4 Output Mode Configuration	192
PCA0CN	0xD8	PCA Control	294
PCA0CPH0	0xFC	PCA Capture 0 High	299

16.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 16.2. plots the power-on and V_{DD} monitor reset timing.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Note: For devices with a date code before year 2011, work week 24 (1124), if the /RST pin is held low for more than 1 second while power is applied to the device, and then /RST is released, a percentage of devices may lock up and fail to execute code. Toggling the /RST pin does not clear the condition. The condition is cleared by cycling power. Most devices that are affected will show the lock up behavior only within a narrow range of temperatures (a 5 to 10 °C window). Parts with a date code of year 2011, work week 24 (1124) or later do not have any restrictions on /RST low time. The date code of a device is a four-digit number on the bottom-most line of each device with the format YYWW, where YY is the two-digit calendar year and WW is the two digit work week.

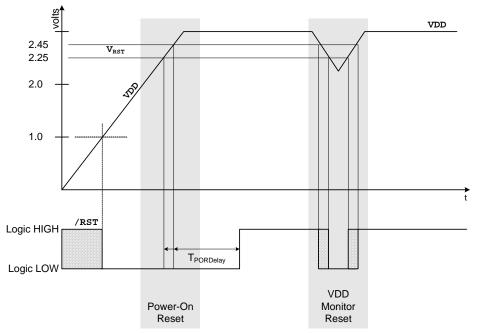


Figure 16.2. Power-On and V_{DD} Monitor Reset Timing

Multiplexed Mode					
Signal Name	Port Pin				
RD	P1.6				
WR	P1.7				
ALE	P1.5				
D0/A0	P3.0				
D1/A1	P3.1				
D2/A2	P3.2				
D3/A3	P3.3				
D4/A4	P3.4				
D5/A5	P3.5				
D6/A6	P3.6				
D7/A7	P3.7				
A8	P2.0				
A9	P2.1				
A10	P2.2				
A11	P2.3				
A12	P2.4				
A13	P2.5				
A14	P2.6				
A15	P2.7				

Table 17.1. EMIF Pinout (C8051F568-9 and 'F570-5)

SFR Definition 18.5. CLKMUL: Clock Multiplier

Bit	7	6	5	4	3	2	1	0
Name	MULEN	MULINIT	MULRDY	MULDIV[2:0]		MULSEL[1:0]		
Туре	R/W	R/W	R	R/W			R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x97; SFR Page = 0x0F

Bit	Name		Function					
7	MULEN	Clock Multiplier Enable. 0: Clock Multiplier disabled.						
			1: Clock Multiplier enabled.					
6	MULINIT	Clock Multiplie	r Initialize.					
		bit will initialize	This bit is 0 when the Clock Multiplier is enabled. Once enabled, writing a 1 to this bit will initialize the Clock Multiplier. The MULRDY bit reads 1 when the Clock Multiplier is stabilized.					
5	MULRDY	Clock Multiplie	r Ready.					
		0: Clock Multiplier is not ready. 1: Clock Multiplier is ready (PLL is locked).						
4:2	MULDIV[2:0]	Clock Multiplier Output Scaling Factor.						
			iplier Output scaled by a factor o					
			iplier Output scaled by a factor o iplier Output scaled by a factor o					
			plier Output scaled by a factor o					
			iplier Output scaled by a factor o					
			iplier Output scaled by a factor o					
			plier Output scaled by a factor o					
			plier Output scaled by a factor of					
			ck Multiplier output duty cycle is i	not 50% for these settings.				
1:0	MULSEL[1:0]	Clock Multiplie	•					
		These bits selec	ct the clock supplied to the Clock	Multiplier				
		MULSEL[1:0]	Selected Input Clock	Clock Multiplier Output for MULDIV[2:0] = 000b				
		00 Internal Oscillator Internal Oscillator x 2						
		01 External Oscillator External Oscillator x 2						
		10	10 Internal Oscillator Internal Oscillator x 4					
		11	External Oscillator	External Oscillator x 4				
Notes			IHz, and so the Clock Multiplier outp Oscillator x 2 is selected using the N	but should be scaled accordingly. MULSEL bits, MULDIV[2:0] is ignored.				

19. Port Input/Output

Digital and analog resources are available through 33 (C8051F568-9 and 'F570-5), 25 (C8051F550-7) or 18 (C8051F550-7) I/O pins. Port pins P0.0-P4.0 on the C8051F568-9 and 'F570-5, port pins P0.0-P3.0 on theC8051F560-7, and port pins P0.0-P2.1 on the C8051F550-7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 19.3. Port pin P4.0 on the C8051F568-9 and 'F570-5 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). Similarly, port pin P3.0 is shared with C2D on the C8051F560-7 and port pin P2.1 on the C8051F550-7. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 19.3 and Figure 19.4). The registers XBR0, XBR1, XBR2 are defined in SFR Definition 19.1 and SFR Definition 19.2 and are used to select internal digital functions.

The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 40.

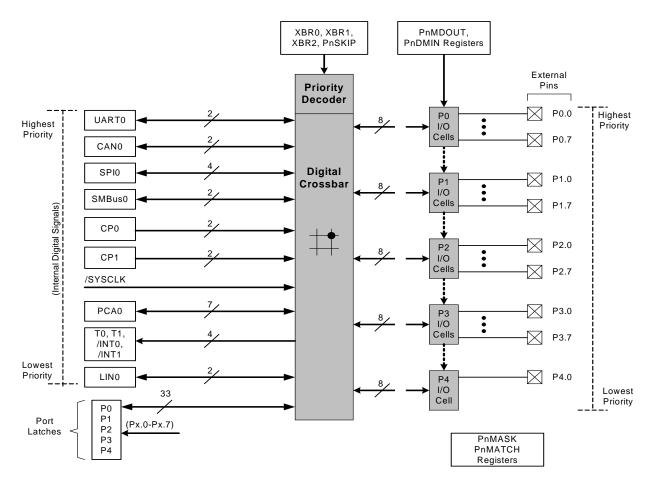


Figure 19.1. Port I/O Functional Block Diagram

- 3. The LIN controller does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LIN0CTRL.7) instead of setting the DTACK (LIN0CTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN controller stops the processing of LIN communication until the next SYNC BREAK is received.
- 4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

20.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting the SLEEP bit (LIN0CTRL.6).

If the SLEEP bit (LINOCTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LINOST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LINOCTRL.6).

Sending a wake-up signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a wake-up signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful transmission of the wake-up signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the wake-up signal but it generates an interrupt request if the master does not respond to the wake-up signal within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The application then has to decide whether or not to transmit another wake-up signal.

All LIN nodes that detect a wake-up signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the LIN slave.

20.6. Error Detection and Handling

The LIN controller generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a new message with the LIN controller selected as master or sending a Wakeup signal with the LIN controller selected as a master or slave is possible only if the ERROR bit (LIN0ST.2) is set to 0.

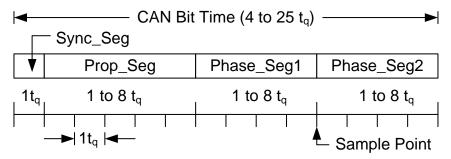


Figure 21.3. Four segments of a CAN Bit

The length of the 4 bit segments must be adjusted so that their sum is as close as possible to the desired bit time. Since each segment must be an integer multiple of the time quantum (tq), the closest achievable bit time is 24 tq (1000.008 ns), yielding a bit rate of 0.999992 Mbit/sec. The Sync_Seg is a constant 1 tq. The Prop_Seg must be greater than or equal to the propagation delay of 400 ns and so the choice is 10 tq (416.67 ns).

The remaining time quanta (13 tq) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as shown in. Based on this equation, Phase_Seg1 = 6 tq and Phase_Seg2 = 7 tq.

Phase_Seg1 + Phase_Seg2 = Bit_Time - (Synch_Seg + Prop_Seg)

- 1. If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1. If the sum is odd, Phase_Seg2 = Phase_Seg1 + 1.
- 2. Phase_Seg2 should be at least 2 tq.

Equation 21.1. Assigning the Phase Segments

The Synchronization Jump Width (SJW) timing parameter is defined by. It is used for determining the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.

SJW = minimum (4, Phase_Seg1)

Equation 21.2. Synchronization Jump Width (SJW)

The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension register is left at its reset value of 0x0000.

BRPE = BRP - 1 = BRP Extension Register = 0x0000SJWp = SJW - 1 = minimum (4, 6) - 1 = 3

TSEG1 = Prop_Seg + Phase_Seg1 - 1 = 10 + 6 - 1 = 15

$$TSEG2 = Phase_Seg2 - 1 = 6$$

Bit Timing Register = (TSEG2 x 0x1000) + (TSEG1 x 0x0100)

Bit Timing Register = (TSEG2 x 0x1000) + (TSEG1 x 0x0100) + (SJWp x 0x0040) + BRPE = 0x6FC0

Equation 21.3. Calculating the Bit Timing Register Value

SFR Definition 21.1. CAN0CFG: CAN Clock Configuration

Bit	7	6	5	4	3	2	1	0
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSD	IV[1:0]
Туре	R	R	R	R	R	R	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x92; SFR Page = 0x0C

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits.
		The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

22.4.3. Data Register

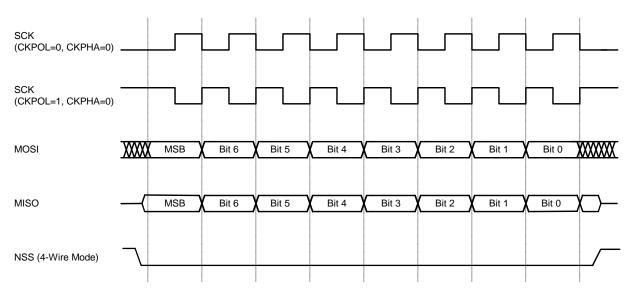
The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

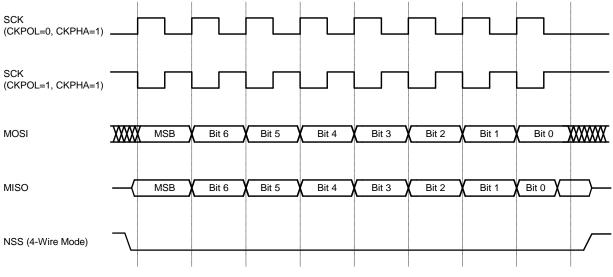
SFR Definition 22.3. SMB0DAT: SMBus Data

Bit	7	6	5	4	3	2	1	0
Name	SMB0DAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC2; SMB0DAT = 0x00


Bit	Name	Function
7:0	SMB0DAT[7:0]	SMBus Data.
		The SMB0DAT register contains a byte of data to be transmitted on the SMBus serial interface or a byte that has just been received on the SMBus serial interface. The CPU can read from or write to this register whenever the SI serial interrupt flag (SMB0CN.0) is set to logic 1. The serial data in the register remains stable as long as the SI flag is set. When the SI flag is not set, the system may be in the process of shifting data in/out and the CPU should not attempt to access this register.

22.5. SMBus Transfer Modes


The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. As a receiver, the interrupt for an ACK occurs **before** the ACK. As a transmitter, interrupts occur **after** the ACK.

C8051F55x/56x/57x

24.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0			
Name	s SPIF	WCOL	MODF	RXOVRN	NSSM	D[1:0]	TXBMT	SPIEN			
Type R/W R/W R/W R/W R			R	R/W							
Rese	t 0	0	0	0	0	1	1	0			
SFR A	ddress = 0xF8	; Bit-Addres	Bit-Addressable; SFR Page = 0x00								
Bit	Name Function										
7 SPIF		SPI0 Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not automatically cleared by hardware. It must be cleared by soft-									
6	WCOL	 ware. Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate write to the SPI0 data register was attempted while a data transfer was in progres It must be cleared by software. 									
5	MODF	Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.									
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).									
		This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must be cleared by software.									
3:2	NSSMD[1:0]	Slave Select Mode.									
		Selects between the following NSS operation modes: (See Section 24.2 and Section 24.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.									
1	TXBMT	Transmit Buffer Empty.									
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.									
0	SPIEN	SPI0 Enable. 0: SPI disabled. 1: SPI enabled.									

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

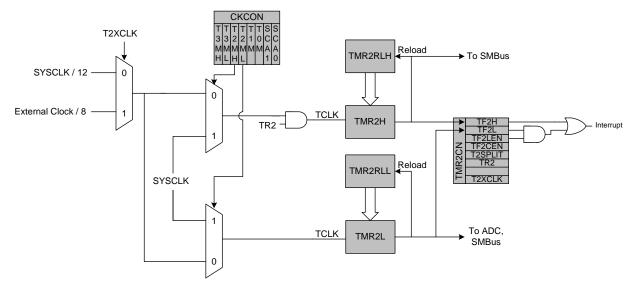


Figure 25.5. Timer 2 8-Bit Mode Block Diagram

25.2.3. External Oscillator Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4), and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator / 8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16-bit auto-reload mode when using Capture Mode.

For example, if T2ML = 1b and TF2CEN = 1b, Timer 2 will clock every SYSCLK and capture every external clock divided by 8. If the SYSCLK is 24 MHz and the difference between two successive captures is 5984, then the external clock frequency is as follows:

24 MHz/(5984/8) = 0.032086 MHz or 32.086 kHz

27.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 27.1.

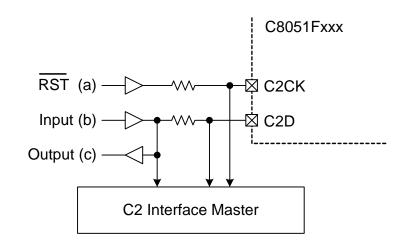


Figure 27.1. Typical C2 Pin Sharing

The configuration in Figure 27.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

303