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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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C8051F55x/56x/57x
Table 5.7. Clock Multiplier Electrical Specifications
VDD = 1.8 to 2.75 V, –40 to +125 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units
Input Frequency (Fcmin) 2 — — MHz

Output Frequency — — 50 MHz
Power Supply Current — 0.9 1.9 mA

Table 5.8. Voltage Regulator Electrical Characteristics
VDD = 1.8 to 2.75 V, –40 to +125 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units
Input Voltage Range (VREGIN) 1.8* — 5.25 V

Dropout Voltage (VDO) Maximum Current = 50 mA — 10 — mV/mA

Output Voltage (VDD)
2.1 V operation (REG0MD = 0)

2.6 V operation (REG0MD = 1)

2.0

2.5

2.1

2.6

2.25

2.75
V

Bias Current — 1 9 µA
Dropout Indicator Detection 
Threshold

With respect to VDD –0.21 — –0.02 V

Output Voltage Temperature 
Coefficient

— 0.29 — mV/°C

VREG Settling Time
50 mA load with VREGIN = 2.4 V 
and VDD load capacitor of 4.8 µF

— 450 — µs

*Note:  The minimum input voltage is 1.8 V or VDD + VDO(max load), whichever is greater
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C8051F55x/56x/57x
SFR Address = 0xBA; SFR Page = 0x00

6.4.  Programmable Window Detector
The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-pro-
grammed limits, and notifies the system when a desired condition is detected. This is especially effective in 
an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system 
response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in 
polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) 
registers hold the comparison values. The window detector flag can be programmed to indicate when mea-
sured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 
Less-Than and ADC0 Greater-Than registers.

SFR Definition 6.8. ADC0TK: ADC0 Tracking Mode Select

Bit 7 6 5 4 3 2 1 0

Name AD0PWR[3:0] AD0TM[1:0] AD0TK[1:0]

Type R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:4 AD0PWR[3:0] ADC0 Burst Power-up Time.

For BURSTEN = 0: ADC0 Power state controlled by AD0EN
For BURSTEN = 1, AD0EN = 1: ADC0 remains enabled and does not enter the 
very low power state
For BURSTEN = 1, AD0EN = 0: ADC0 enters the very low power state and is 
enabled after each convert start signal. The Power-up time is programmed accord-
ing the following equation:

 or 

3:2 AD0TM[1:0] ADC0 Tracking Mode Enable Select Bits.

00: Reserved.
01: ADC0 is configured to Post-Tracking Mode.
10: ADC0 is configured to Pre-Tracking Mode.
11: ADC0 is configured to Dual Tracking Mode.

1:0 AD0TK[1:0] ADC0 Post-Track Time.

00: Post-Tracking time is equal to 2 SAR clock cycles + 2 FCLK cycles.
01: Post-Tracking time is equal to 4 SAR clock cycles + 2 FCLK cycles.
10: Post-Tracking time is equal to 8 SAR clock cycles + 2 FCLK cycles.
11: Post-Tracking time is equal to 16 SAR clock cycles + 2 FCLK cycles.

AD0PWR
Tstartup

200ns
------------------------ 1–= Tstartup AD0PWR 1+( )200ns=
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C8051F55x/56x/57x
8.  Comparators

The C8051F55x/56x/57x devices include two on-chip programmable voltage Comparators. A block dia-
gram of the comparators is shown in Figure 8.1, where “n” is the comparator number (0 or 1). The two 
Comparators operate identically except that Comparator0 can also be used a reset source. For input 
selection details, refer to SFR Definition 8.5 and SFR Definition 8.6.

Each Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two 
outputs that are optionally available at the Port pins: a synchronous “latched” output (CP0, CP1), or an 
asynchronous “raw” output (CP0A, CP1A). The asynchronous signal is available even when the system 
clock is not active. This allows the Comparators to operate and generate an output with the device in 
STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or 
push-pull (see Section “19.4. Port I/O Initialization” on page 174). Comparator0 may also be used as a 
reset source (see Section “16.5. Comparator0 Reset” on page 142).

The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 8.5). The CMX0P1-CMX0P0 
bits select the Comparator0 positive input; the CMX0N1-CMX0N0 bits select the Comparator0 negative 
input. The Comparator1 inputs are selected in the CPT1MX register (SFR Definition 8.6). The CMX1P1-
CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1N0 bits select the Comparator1 
negative input. 

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be con-
figured as analog inputs in their associated Port configuration register, and configured to be skipped by the 
Crossbar (for details on Port configuration, see Section “19.1. Port I/O Modes of Operation” on page 170).

Figure 8.1. Comparator Functional Block Diagram
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C8051F55x/56x/57x
9.  Voltage Regulator (REG0)

C8051F55x/56x/57x devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 
at the VREGIN pin can be as high as 5.25 V. The output can be selected by software to 2.1 V or 2.6 V. When 
enabled, the output of REG0 appears on the VDD pin, powers the microcontroller core, and can be used to 
power external devices. On reset, REG0 is enabled and can be disabled by software.

The Voltage regulator can generate an interrupt (if enabled by EREG0, EIE2.0) that is triggered whenever 
the VREGIN input voltage drops below the dropout threshold voltage. This dropout interrupt has no pending 
flag and the recommended procedure to use it is as follows:

1. Wait enough time to ensure the VREGIN input voltage is stable

2. Enable the dropout interrupt (EREG0, EIE2.0) and select the proper priority (PREG0, EIP2.0)

3. If triggered, inside the interrupt disable it (clear EREG0, EIE2.0), execute all procedures necessary to 
protect your application (put it in a safe mode and leave the interrupt now disabled. 

4. In the main application, now running in the safe mode, regularly checks the DROPOUT bit 
(REG0CN.0). Once it is cleared by the regulator hardware the application can enable the interrupt 
again (EREG0, EIE1.6) and return to the normal mode operation.

The input (VREGIN) and output (VDD) of the voltage regulator should both be bypassed with a large capaci-
tor (4.7 µF + 0.1 µF) to ground as shown in Figure 9.1. This capacitor will eliminate power spikes and pro-
vide any immediate power required by the microcontroller. The settling time associated with the voltage 
regulator is shown in Table 5.8 on page 43.

Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset 
event. The output of the un-calibrated internal regulator could be below the high threshold setting of 
the VDD Monitor. If this is the case and the VDD Monitor is set to the high threshold setting and if the 
MCU receives a non-power on reset (POR), the MCU will remain in reset until a POR occurs (i.e., 
VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold 
setting which is guaranteed to be below the un-calibrated output of the internal regulator. The device 
will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly 
recommends that the VDD Monitor is always left in the low threshold setting (i.e. default value upon 
POR).

 

Figure 9.1. External Capacitors for Voltage Regulator Input/Output—
Regulator Enabled

VDDVDD

REG0

4.7 µF

4.7 µF .1 µF

.1 µF

VREGIN
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C8051F55x/56x/57x
SFR Address = 0x81; SFR Page = All Pages

SFR Address = 0xE0; SFR Page = All Pages; Bit-Addressable

SFR Address = 0xF0; SFR Page = All Pages; Bit-Addressable

SFR Definition 10.3. SP: Stack Pointer

Bit 7 6 5 4 3 2 1 0

Name SP[7:0]

Type R/W

Reset 0 0 0 0 0 1 1 1

Bit Name Function

7:0 SP[7:0] Stack Pointer.

The Stack Pointer holds the location of the top of the stack. The stack pointer is incre-
mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 10.4. ACC: Accumulator

Bit 7 6 5 4 3 2 1 0

Name ACC[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ACC[7:0] Accumulator.

This register is the accumulator for arithmetic operations.

SFR Definition 10.5. B: B Register

Bit 7 6 5 4 3 2 1 0

Name B[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 B[7:0] B Register.

This register serves as a second accumulator for certain arithmetic operations.
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C8051F55x/56x/57x
On the execution of the RETI instruction in the CAN0 ISR, the value in SFRPAGE register is overwritten 
with the contents of SFRNEXT. The CIP-51 may now access the SPI0DAT register as it did prior to the 
interrupts occurring. See Figure 12.6.

Figure 12.6. SFR Page Stack Upon Return From CAN0 Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, 
and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to 
return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to 
the SFR Page stack can be useful to enable real-time operating systems to control and manage context 
switching between multiple tasks. 

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on 
interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation 
of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic 
Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 12.1.
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C8051F55x/56x/57x
SFR Address = 0x85; SFR Page = All Pages

SFR Definition 12.3. SFRNEXT: SFR Next

Bit 7 6 5 4 3 2 1 0

Name SFRNEXT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SFRNEXT[7:0] SFR Page Bits. 

This is the value that will go to the SFR Page register upon a return from inter-
rupt.

Write: Sets the SFR Page contained in the second byte of the SFR Stack. This 
will cause the SFRPAGE SFR to have this SFR page value upon a return from 
interrupt.

Read: Returns the value of the SFR page contained in the second byte of the 
SFR stack.

SFR page context is retained upon interrupts/return from interrupts in a 3 byte 
SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and 
SFRLAST is the third entry. The SFR stack bytes may be used alter the context 
in the SFR Page Stack, and will not cause the stack to “push” or “pop”. Only 
interrupts and return from interrupts cause pushes and pops of the SFR Page 
Stack.
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C8051F55x/56x/57x
SFR Address = 0xB8; Bit-Addressable; SFR Page = All Pages

SFR Definition 13.2. IP: Interrupt Priority

Bit 7 6 5 4 3 2 1 0

Name PSPI0 PT2 PS0 PT1 PX1 PT0 PX0

Type R R/W R/W R/W R/W R/W R/W R/W

Reset 1 0 0 0 0 0 0 0

Bit Name Function

7 Unused Read = 1b, Write = Don't Care.

6 PSPI0 Serial Peripheral Interface (SPI0) Interrupt Priority Control.

This bit sets the priority of the SPI0 interrupt.
0: SPI0 interrupt set to low priority level.
1: SPI0 interrupt set to high priority level.

5 PT2 Timer 2 Interrupt Priority Control. 

This bit sets the priority of the Timer 2 interrupt.
0: Timer 2 interrupt set to low priority level.
1: Timer 2 interrupt set to high priority level.

4 PS0 UART0 Interrupt Priority Control. 

This bit sets the priority of the UART0 interrupt.
0: UART0 interrupt set to low priority level.
1: UART0 interrupt set to high priority level.

3 PT1 Timer 1 Interrupt Priority Control.

This bit sets the priority of the Timer 1 interrupt.
0: Timer 1 interrupt set to low priority level.
1: Timer 1 interrupt set to high priority level.

2 PX1 External Interrupt 1 Priority Control. 

This bit sets the priority of the External Interrupt 1 interrupt.
0: External Interrupt 1 set to low priority level.
1: External Interrupt 1 set to high priority level.

1 PT0 Timer 0 Interrupt Priority Control. 

This bit sets the priority of the Timer 0 interrupt.
0: Timer 0 interrupt set to low priority level.
1: Timer 0 interrupt set to high priority level.

0 PX0 External Interrupt 0 Priority Control. 

This bit sets the priority of the External Interrupt 0 interrupt.
0: External Interrupt 0 set to low priority level.
1: External Interrupt 0 set to high priority level.
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C8051F55x/56x/57x
16.1.  Power-On Reset
During power-up, the device is held in a reset state and the RST pin is driven low until VDD settles above 
VRST. A delay occurs before the device is released from reset; the delay decreases as the VDD ramp time 
increases (VDD ramp time is defined as how fast VDD ramps from 0 V to VRST). Figure 16.2. plots the 
power-on and VDD monitor reset timing.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is 
set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other 
resets). Since all resets cause program execution to begin at the same location (0x0000) software can 
read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data mem-
ory should be assumed to be undefined after a power-on reset. The VDD monitor is enabled following a 
power-on reset.

Note: For devices with a date code before year 2011, work week 24 (1124), if the /RST pin is held low for 
more than 1 second while power is applied to the device, and then /RST is released, a percentage 
of devices may lock up and fail to execute code. Toggling the /RST pin does not clear the condition. 
The condition is cleared by cycling power. Most devices that are affected will show the lock up 
behavior only within a narrow range of temperatures (a 5 to 10 °C window). Parts with a date code 
of year 2011, work week 24 (1124) or later do not have any restrictions on /RST low time. The date 
code of a device is a four-digit number on the bottom-most line of each device with the format 
YYWW, where YY is the two-digit calendar year and WW is the two digit work week.

Figure 16.2. Power-On and VDD Monitor Reset Timing
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20.7.2. LIN Indirect Access SFR Registers Definitions

Table 20.4 lists the 15 indirect registers used to configured and communicate with the LIN controller.

Table 20.4. LIN Registers* (Indirectly Addressable)

 Name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

LIN0DT1 0x00 DATA1[7:0]

LIN0DT2 0x01 DATA2[7:0]

LIN0DT3 0x02 DATA3[7:0]

LIN0DT4 0x03 DATA4[7:0]

LIN0DT5 0x04 DATA5[7:0]

LIN0DT6 0x05 DATA67:0]

LIN0DT7 0x06 DATA7[7:0]

LIN0DT8 0x07 DATA8[7:0]

LIN0CTRL 0x08 STOP(s) SLEEP(s) TXRX DTACK(s) RSTINT RSTERR WUPREQ STREQ(m)

LIN0ST 0x09 ACTIVE IDLTOUT ABORT(s) DTREQ(s) LININT ERROR WAKEUP DONE

LIN0ERR 0x0A SYNCH(s) PRTY(s) TOUT CHK BITERR

LIN0SIZE 0x0B ENHCHK LINSIZE[3:0]

LIN0DIV 0x0C DIVLSB[7:0]

LIN0MUL 0x0D PRESCL[1:0] LINMUL[4:0] DIV9

LIN0ID 0x0E ID5 ID4 ID3 ID2 ID1 ID0

*Note: These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in 
Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are 
accessible in both modes.
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C8051F55x/56x/57x
Indirect Address: LIN0DT1 = 0x00, LIN0DT2 = 0x01, LIN0DT3 = 0x02, LIN0DT4 = 0x03, LIN0DT5 = 0x04, 
LIN0DT6 = 0x05, LIN0DT7 = 0x06, LIN0DT8 = 0x07

LIN Register Definition 20.4. LIN0DTn: LIN0 Data Byte n

Bit 7 6 5 4 3 2 1 0

Name DATAn[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 DATAn[7:0] LIN Data Byte n. 

Serial Data Byte that is received or transmitted across the LIN interface.
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C8051F55x/56x/57x
Indirect Address = 0x0B

LIN Register Definition 20.8. LIN0SIZE: LIN0 Message Size Register

Bit 7 6 5 4 3 2 1 0

Name ENHCHK LINSIZE[3:0]

Type R/W R R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 ENHCHK Checksum Selection Bit.

0: Use the classic, specification 1.3 compliant checksum. Checksum covers the 
data bytes. 
1: Use the enhanced, specification 2.0 compliant checksum. Checksum covers data 
bytes and protected identifier.

6:4 Unused Read = 000b; Write = Don’t Care

3:0 LINSIZE[3:0] Data Field Size. 

0000: 0 data bytes
0001: 1 data byte
0010: 2 data bytes 
0011: 3 data bytes
0100: 4 data bytes
0101: 5 data bytes
0110: 6 data bytes
0111: 7 data bytes
1000: 8 data bytes
1001-1110: RESERVED
1111: Use the ID[1:0] bits (LIN0ID[5:4]) to determine the data length.
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21.  Controller Area Network (CAN0)

Important Documentation Note: The Bosch CAN Controller is integrated in the C8051F550/1/4/5, ‘F560/
1/4/5/8/9, and ‘F572/3 devices. This section of the data sheet gives a description of the CAN controller as 
an overview and offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip 
Bosch CAN controller. In order to use the CAN controller, refer to Bosch’s C_CAN User’s Manual as an 
accompanying manual to the Silicon Labs’ data sheet.

The C8051F550/1/4/5, ‘F560/1/4/5/8/9, and ‘F572/3 devices feature a Control Area Network (CAN) con-
troller that enables serial communication using the CAN protocol. Silicon Labs CAN facilitates communica-
tion on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). 
The CAN controller consists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message 
handler state machine, and control registers. Silicon Labs CAN is a protocol controller and does not pro-
vide physical layer drivers (i.e., transceivers). Figure 21.1 shows an example typical configuration on a 
CAN bus.

Silicon Labs’ CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical 
layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be 
configured to transmit or receive data. Incoming data, message objects and their identifier masks are 
stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is 
performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is 
needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data, 
and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.

Figure 21.1. Typical CAN Bus Configuration
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C8051F55x/56x/57x
0x50 IF2 Data A 2 CAN0IF2DA2H 0xFB CAN0IF2DA2L 0xFA CAN0IF2DA2 0x0000

0x52 IF2 Data B 1 CAN0IF2DB1H 0xFD CAN0IF2DB1L 0xFC CAN0IF2DB1 0x0000

0x54 IF2 Data B 2 CAN0IF2DB2H 0xFF CAN0IF2DB2L 0xFE CAN0IF2DB2 0x0000

0x80 Transmission Request 11 CAN0TR1H 0xA3 CAN0TR1L 0xA2 CAN0TR1 0x0000

0x82 Transmission Request 21 CAN0TR2H 0xA5 CAN0TR2L 0xA4 CAN0TR2 0x0000

0x90 New Data 11 CAN0ND1H 0xAB CAN0ND1L 0xAA CAN0ND1 0x0000

0x92 New Data 21 CAN0ND2H 0xAD CAN0ND2L 0xAC CAN0ND2 0x0000

0xA0 Interrupt Pending 11 CAN0IP1H 0xAF CAN0IP1L 0xAE CAN0IP1 0x0000

0xA2 Interrupt Pending 2 1 CAN0IP2H 0xB3 CAN0IP2L 0xB2 CAN0IP2 0x0000

0xB0 Message Valid 11 CAN0MV1H 0xBB CAN0MV1L 0xBA CAN0MV1 0x0000

0xB2 Message Valid 21 CAN0MV2H 0xBD CAN0MV2L 0xBC CAN0MV2 0x0000

Table 21.2. Standard CAN Registers and Reset Values

CAN

Addr.

Name SFR Name 
(High)

SFR

Addr.

SFR Name 
(Low)

SFR

Addr.

16-bit

SFR

Reset 
Value

Notes:
1. Read-only register.
2. Write-enabled by CCE.
3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.
4. Write-enabled by Test.
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C8051F55x/56x/57x
22.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will 
be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface gener-
ates the START condition and transmits the first byte containing the address of the target slave and the 
data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then 
received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more 
bytes of serial data. An interrupt is generated after each received byte. 

Software must write the ACK bit at that time to ACK or NACK the received byte. Writing a 1 to the ACK bit 
generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data 
transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a 
STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an 
active Master Receiver. Figure 22.6 shows a typical master read sequence. Two received data bytes are 
shown, though any number of bytes may be received. Notice that the ‘data byte transferred’ interrupts 
occur before the ACK cycle in this mode.

Figure 22.6. Typical Master Read Sequence

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts
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SFR Address = 0xCC; SFR Page = 0x00

SFR Address = 0xCD; SFR Page = 0x00

SFR Definition 25.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2L[7:0] Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-
bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 25.12. TMR2H Timer 2 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2H[7:0] Timer 2 High Byte.

In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-
bit mode, TMR2H contains the 8-bit high byte timer value.
274 Rev. 1.2



C8051F55x/56x/57x
26.  Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU 
intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer 
and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line 
(CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a 
programmable timebase that can select between six sources: system clock, system clock divided by four, 
system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflows, or an 
external clock signal on the ECI input pin. Each capture/compare module may be configured to operate 
independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Fre-
quency Output, 8 to 11-Bit PWM, or 16-Bit PWM (each mode is described in Section 
“26.3. Capture/Compare Modules” on page 283). The external oscillator clock option is ideal for real-time 
clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the inter-
nal oscillator drives the system clock. The PCA is configured and controlled through the system controller's 
Special Function Registers. The PCA block diagram is shown in Figure 26.1

Important Note: The PCA Module 5 may be used as a watchdog timer (WDT), and is enabled in this mode 
following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. 
See Section 26.4 for details.

Figure 26.1. PCA Block Diagram
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26.1.  PCA Counter/Timer
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte 
(MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB).   Reading PCA0L automatically latches 
the value of PCA0H into a “snapshot” register; the following PCA0H read accesses this “snapshot” register. 
Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.
Reading PCA0H or PCA0L does not disturb the counter operation. The CPS[2:0] bits in the PCA0MD reg-
ister select the timebase for the counter/timer as shown in Table 26.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is 
set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in 
PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically 
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by soft-
ware. Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the 
CPU is in Idle mode.

Figure 26.2. PCA Counter/Timer Block Diagram

Table 26.1. PCA Timebase Input Options
CPS2 CPS1 CPS0 Timebase

0 0 0 System clock divided by 12.
0 0 1 System clock divided by 4.
0 1 0 Timer 0 overflow.
0 1 1 High-to-low transitions on ECI (max rate = system clock divided 

by 4).
1 0 0 System clock.
1 0 1 External oscillator source divided by 8.*

1 1 x Reserved.
*Note:  External oscillator source divided by 8 is synchronized with the system clock.
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C2 Address: 0x02

C2 Address: 0xB4

C2 Register Definition 27.4. FPCTL: C2 Flash Programming Control

Bit 7 6 5 4 3 2 1 0

Name FPCTL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 FPCTL[7:0] Flash Programming Control Register.

This register is used to enable Flash programming via the C2 interface. To enable C2 
Flash programming, the following codes must be written in order: 0x02, 0x01. Note 
that once C2 Flash programming is enabled, a system reset must be issued to 
resume normal operation.

C2 Register Definition 27.5. FPDAT: C2 Flash Programming Data

Bit 7 6 5 4 3 2 1 0

Name FPDAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 FPDAT[7:0] C2 Flash Programming Data Register.

This register is used to pass Flash commands, addresses, and data during C2 Flash 
accesses. Valid commands are listed below.

Code Command

0x06 Flash Block Read

0x07 Flash Block Write

0x08 Flash Page Erase

0x03 Device Erase
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