
Silicon Labs - C8051F569-IM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity CANbus, EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 33

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.25V

Data Converters A/D 32x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 40-VFQFN Exposed Pad

Supplier Device Package 40-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f569-im

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f569-im-4411020
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F55x/56x/57x
17.6. Timing .. 151
17.6.1. Multiplexed Mode.. 153

18. Oscillators and Clock Selection ... 157
18.1. System Clock Selection... 157
18.2. Programmable Internal Oscillator .. 159

18.2.1. Internal Oscillator Suspend Mode... 159
18.3. Clock Multiplier .. 162
18.4. External Oscillator Drive Circuit... 164

18.4.1. External Crystal Example.. 166
18.4.2. External RC Example.. 167
18.4.3. External Capacitor Example.. 167

19. Port Input/Output ... 169
19.1. Port I/O Modes of Operation.. 170

19.1.1. Port Pins Configured for Analog I/O.. 170
19.1.2. Port Pins Configured For Digital I/O.. 170
19.1.3. Interfacing Port I/O in a Multi-Voltage System 171

19.2. Assigning Port I/O Pins to Analog and Digital Functions............................... 171
19.2.1. Assigning Port I/O Pins to Analog Functions .. 171
19.2.2. Assigning Port I/O Pins to Digital Functions.. 171
19.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions ... 172

19.3. Priority Crossbar Decoder ... 172
19.4. Port I/O Initialization .. 174
19.5. Port Match ... 179
19.6. Special Function Registers for Accessing and Configuring Port I/O 183

20. Local Interconnect Network (LIN0)... 193
20.1. Software Interface with the LIN Controller... 194
20.2. LIN Interface Setup and Operation.. 194

20.2.1. Mode Definition ... 194
20.2.2. Baud Rate Options: Manual or Autobaud ... 194
20.2.3. Baud Rate Calculations: Manual Mode... 194
20.2.4. Baud Rate Calculations—Automatic Mode... 196

20.3. LIN Master Mode Operation .. 197
20.4. LIN Slave Mode Operation .. 198
20.5. Sleep Mode and Wake-Up .. 199
20.6. Error Detection and Handling .. 199
20.7. LIN Registers... 200

20.7.1. LIN Direct Access SFR Registers Definitions 200
20.7.2. LIN Indirect Access SFR Registers Definitions 202

21. Controller Area Network (CAN0) .. 210
21.1. Bosch CAN Controller Operation... 211

21.1.1. CAN Controller Timing .. 211
21.1.2. CAN Register Access.. 212
21.1.3. Example Timing Calculation for 1 Mbit/Sec Communication 212

21.2. CAN Registers... 214
21.2.1. CAN Controller Protocol Registers.. 214
Rev. 1.2 5

C8051F55x/56x/57x
Figure 3.2. QFP-32 Pinout Diagram (Top View)

1

VREGIN

P1.2

P1.7

P1.4

P1.3

P1.5

GNDA

VIO

P2.0

P2.1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

9 10 11 12 13 14 15 16

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

P1.6

C8051F560-IQ
C8051F561-IQ
C8051F562-IQ
C8051F563-IQ
C8051F564-IQ
C8051F565-IQ
C8051F566-IQ
C8051F567-IQ

(Top View)
P0.0 / VREF

VDD

VDDA

P0.1 / CNVSTR

P
2.

6

P
2.

5

P
2.

4

P
2.

3

P
2.

2
P

1.
1

P
1.

0

P
2.

7

P
0.

6
/ C

A
N

 T
X

P
0.

5
/

U
A

R
T

0
R

X

P
0.

4
/

U
A

R
T

0
T

X

R
S

T
 /

C
2C

K

P
3.

0
/ C

2D

GND

P
0.

7
/ C

A
N

 R
X

P
0.

3
/

X
T

A
L2

P
0.

2
/

X
T

A
L1
25 Rev. 1.2

C8051F55x/56x/57x
Indirect Address = 0x08;

Gain Register Definition 6.3. ADC0GNA: ADC0 Additional Selectable Gain

Bit 7 6 5 4 3 2 1 0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved GAINADD

Type W W W W W W W W

Reset 0 0 0 0 0 0 0 1

Bit Name Function

7:1 Reserved Must Write 0000000b.

0 GAINADD ADC0 Additional Gain Bit.

Setting this bit add 1/64 (0.016) gain to the gain value in the ADC0GNH and
ADC0GNL registers.

Note: This register is accessed indirectly; See Section 6.3.2 for details for writing this register.
Rev. 1.2 57

C8051F55x/56x/57x
SFR Address = 0x9B; SFR Page = 0x00

SFR Definition 8.2. CPT0MD: Comparator0 Mode Selection

Bit 7 6 5 4 3 2 1 0

Name CP0RIE CP0FIE CP0MD[1:0]

Type R R R/W R/W R R R/W

Reset 0 0 0 0 0 0 1 0

Bit Name Function

7:6 Unused Read = 00b, Write = Don’t Care.

5 CP0RIE Comparator0 Rising-Edge Interrupt Enable.

0: Comparator0 Rising-edge interrupt disabled.
1: Comparator0 Rising-edge interrupt enabled.

4 CP0FIE Comparator0 Falling-Edge Interrupt Enable.

0: Comparator0 Falling-edge interrupt disabled.
1: Comparator0 Falling-edge interrupt enabled.

3:2 Unused Read = 00b, Write = don’t care.

1:0 CP0MD[1:0] Comparator0 Mode Select.

These bits affect the response time and power consumption for Comparator0.
00: Mode 0 (Fastest Response Time, Highest Power Consumption)
01: Mode 1
10: Mode 2
11: Mode 3 (Slowest Response Time, Lowest Power Consumption)
73 Rev. 1.2

C8051F55x/56x/57x
Figure 11.2. Flash Program Memory Map

11.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the
C8051F55x/56x/57x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but
can be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used
to read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access
feature provides a mechanism for the C8051F55x/56x/57x to update program code and use the program
memory space for non-volatile data storage. Refer to Section “14. Flash Memory” on page 124 for further
details.

11.2. Data Memory
The C8051F55x/56x/57x devices include 2304 bytes of RAM data memory. 256 bytes of this memory is
mapped into the internal RAM space of the 8051. The other 2048 bytes of this memory is on-chip “exter-
nal” memory. The data memory map is shown in Figure 11.1 for reference.

11.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The
lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either
direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00
through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight
byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or
as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the
same address space as the Special Function Registers (SFR) but is physically separate from the SFR
space. The addressing mode used by an instruction when accessing locations above 0x7F determines
whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the
upper 128 bytes of data memory. Figure 11.1 illustrates the data memory organization of the

Lock Byte

0x0000

0x3FFF

0x3FFE

F
LA

S
H

 m
em

or
y

o
rg

an
iz

ed
 in

5

12
-b

yt
e

 p
a

ge
s

0x3E00

Flash Memory Space
(16 kB Flash Device)

Lock Byte Page

Lock Byte

0x0000

0x7BFF

0x7BFE

0x7C00

0x7A00

Flash Memory Space
(32 kB Flash Device)

Lock Byte Page

0x7FFF

Reserved Area

C8051F550/1/2/3
C8051F560/1/2/3/8/9
C8051F570/1

C8051F554/5/6/7
C8051F564/5/6/7
C8051F572/3/4/5
93 Rev. 1.2

C8051F55x/56x/57x
SFR Address = 0xA7; SFR Page = All Pages

SFR Definition 12.4. SFRLAST: SFR Last

Bit 7 6 5 4 3 2 1 0

Name SFRLAST[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SFRLAST[7:0] SFR Page Stack Bits.

This is the value that will go to the SFRNEXT register upon a return from inter-
rupt.

Write: Sets the SFR Page in the last entry of the SFR Stack. This will cause the
SFRNEXT SFR to have this SFR page value upon a return from interrupt.

Read: Returns the value of the SFR page contained in the last entry of the SFR
stack.

SFR page context is retained upon interrupts/return from interrupts in a 3 byte
SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and
SFRLAST is the third entry. The SFR stack bytes may be used alter the context
in the SFR Page Stack, and will not cause the stack to “push” or “pop”. Only
interrupts and return from interrupts cause pushes and pops of the SFR Page
Stack.
Rev. 1.2 105

C8051F55x/56x/57x
PCA0CPH1 0xEA PCA Capture 1 High 299

PCA0CPH2 0xEC PCA Capture 2 High 299

PCA0CPH3 0xEE PCA Capture 3 High 299

PCA0CPH4 0xFE PCA Capture 4 High 299

PCA0CPH5 0xCF PCA Capture 5 High 299

PCA0CPL0 0xFB PCA Capture 0 Low 299

PCA0CPL1 0xE9 PCA Capture 1 Low 299

PCA0CPL2 0xEB PCA Capture 2 Low 299

PCA0CPL3 0xED PCA Capture 3 Low 299

PCA0CPL4 0xFD PCA Capture 4 Low 299

PCA0CPL5 0xCE PCA Capture 5 Low 299

PCA0CPM0 0xDA PCA Module 0 Mode Register 297

PCA0CPM1 0xDB PCA Module 1 Mode Register 297

PCA0CPM2 0xDC PCA Module 2 Mode Register 297

PCA0CPM3 0xDD PCA Module 3 Mode Register 297

PCA0CPM4 0xDE PCA Module 4 Mode Register 297

PCA0CPM5 0xDF PCA Module 5 Mode Register 297

PCA0H 0xFA PCA Counter High 298

PCA0L 0xF9 PCA Counter Low 298

PCA0MD 0xD9 PCA Mode 295

PCA0PWM 0xD9 PCA PWM Configuration 296

PCON 0x87 Power Control 137

PSCTL 0x8F Program Store R/W Control 131

PSW 0xD0 Program Status Word 90

REF0CN 0xD1 Voltage Reference Control 69

REG0CN 0xC9 Voltage Regulator Control 80

RSTSRC 0xEF Reset Source Configuration/Status 143

SBCON0 0xAB UART0 Baud Rate Generator Control 244

SBRLH0 0xAD UART0 Baud Rate Reload High Byte 245

SBRLL0 0xAC UART0 Baud Rate Reload Low Byte 245

SBUF0 0x99 UART0 Data Buffer 244

SCON0 0x98 UART0 Control 241

SFR0CN 0x84 SFR Page Control 102

SFRLAST 0x86 SFR Stack Last Page 105

SFRNEXT 0x85 SFR Stack Next Page 104

SFRPAGE 0xA7 SFR Page Select 103

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register Address Description Page
110 Rev. 1.2

C8051F55x/56x/57x
13. Interrupts

The C8051F55x/56x/57x devices include an extended interrupt system supporting a total of 18 interrupt
sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and exter-
nal inputs pins varies according to the specific version of the device. Each interrupt source has one or
more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets
a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0
disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has
two or more opcode bytes. Using EA (global interrupt enable) as an example:

// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.

; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction
which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruc-
tion, the interrupt may be taken. However, a read of the enable bit will return a 0 inside the interrupt service
routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

13.1. MCU Interrupt Sources and Vectors
The C8051F55x/56x/57x MCUs support 18 interrupt sources. Software can simulate an interrupt by setting
any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be gener-
ated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt
sources, associated vector addresses, priority order and control bits are summarized in Table 13.1. Refer
to the datasheet section associated with a particular on-chip peripheral for information regarding valid
interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).
Rev. 1.2 112

C8051F55x/56x/57x
16.5. Comparator0 Reset
Comparator0 can be configured as a reset source by writing a 1 to the C0RSEF flag (RSTSRC.5). Com-
parator0 should be enabled and allowed to settle prior to writing to C0RSEF to prevent any turn-on chatter
on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting
input voltage (on CP0+) is less than the inverting input voltage (on CP0–), the device is put into the reset
state. After a Comparator0 reset, the C0RSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the
reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

16.6. PCA Watchdog Timer Reset
The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be
used to prevent software from running out of control during a system malfunction. The PCA WDT function
can be enabled or disabled by software as described in Section “26.4. Watchdog Timer Mode” on
page 291; the WDT is enabled and clocked by SYSCLK/12 following any reset. If a system malfunction
prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is
set to 1. The state of the RST pin is unaffected by this reset.

16.7. Flash Error Reset
If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This
may occur due to any of the following:

 A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a
MOVX write operation targets an address in or above the reserved space.

 A Flash read is attempted above user code space. This occurs when a MOVC operation targets an
address in or above the reserved space.

 A Program read is attempted above user code space. This occurs when user code attempts to branch
to an address in or above the reserved space.

 A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section
“14.3. Security Options” on page 127).

 A Flash read, write, or erase is attempted when the VDD Monitor is not enabled to the high threshold
and set as a reset source.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the RST pin is unaffected by
this reset.

16.8. Software Reset
Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 fol-
lowing a software forced reset. The state of the RST pin is unaffected by this reset.
Rev. 1.2 142

C8051F55x/56x/57x
17.6.1.3. 8-bit MOVX with Bank Select: EMI0CF[4:2] = 010

Figure 17.5. Multiplexed 8-bit MOVX with Bank Select Timing

ADDR[15:8]

AD[7:0]

T
ACH

T
WDH

T
ACW

T
ACS

T
WDS

ALE

WR

RD

EMIF ADDRESS (8 MSBs) from EMI0CN

EMIF WRITE DATA
EMIF ADDRESS (8 LSBs) from

R0 or R1

T
ALEH

T
ALEL

ADDR[15:8]

AD[7:0]

T
ACH

T
ACW

T
ACS

ALE

RD

WR

EMIF ADDRESS (8 MSBs) from EMI0CN

EMIF ADDRESS (8 LSBs) from
R0 or R1

T
ALEH

T
ALEL T

RDH
T

RDS

EMIF READ DATA

Muxed 8-bit WRITE with Bank Select

Muxed 8-bit READ with Bank Select
155 Rev. 1.2

C8051F55x/56x/57x
SFR Address = 0xF3; SFR Page = 0x0F

SFR Address = 0xA6; SFR Page = 0x0F

SFR Definition 19.21. P2MDIN: Port 2 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P2MDIN[7:0] Analog Configuration Bits for P2.7–P2.0 (respectively).

Port pins configured for analog mode have their weak pull-up and digital receiver
disabled. For analog mode, the pin also needs to be configured for open-drain
mode in the P2MDOUT register.
0: Corresponding P2.n pin is configured for analog mode.
1: Corresponding P2.n pin is not configured for analog mode.

Note: P2.2-P2.7 are available on 40-pin and 32-pin packages.

SFR Definition 19.22. P2MDOUT: Port 2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P2MDOUT[7:0] Output Configuration Bits for P2.7–P2.0 (respectively).

These bits are ignored if the corresponding bit in register P2MDIN is logic 0.
0: Corresponding P2.n Output is open-drain.
1: Corresponding P2.n Output is push-pull.

Note: P2.2-P2.7 are available on 40-pin and 32-pin packages.
188 Rev. 1.2

C8051F55x/56x/57x
SFR Address = 0xAF; SFR Page = 0x0F

SFR Definition 19.29. P4MDOUT: Port 4 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P4MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P4MDOUT[7:0] Output Configuration Bits for P4.7–P4.0 (respectively).

0: Corresponding P4.n Output is open-drain.
1: Corresponding P4.n Output is push-pull.

Note: Port 4.0 is available on 40-pin packages.
192 Rev. 1.2

C8051F55x/56x/57x
Indirect Address = 0x0B

LIN Register Definition 20.8. LIN0SIZE: LIN0 Message Size Register

Bit 7 6 5 4 3 2 1 0

Name ENHCHK LINSIZE[3:0]

Type R/W R R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 ENHCHK Checksum Selection Bit.

0: Use the classic, specification 1.3 compliant checksum. Checksum covers the
data bytes.
1: Use the enhanced, specification 2.0 compliant checksum. Checksum covers data
bytes and protected identifier.

6:4 Unused Read = 000b; Write = Don’t Care

3:0 LINSIZE[3:0] Data Field Size.

0000: 0 data bytes
0001: 1 data byte
0010: 2 data bytes
0011: 3 data bytes
0100: 4 data bytes
0101: 5 data bytes
0110: 6 data bytes
0111: 7 data bytes
1000: 8 data bytes
1001-1110: RESERVED
1111: Use the ID[1:0] bits (LIN0ID[5:4]) to determine the data length.
Rev. 1.2 207

C8051F55x/56x/57x
The CAN controller clock must be less than or equal to 25 MHz. If the CIP-51 system clock is above
25 MHz, the divider in the CAN0CFG register must be set to divide the CAN controller clock down to an
appropriate speed.

21.1.2. CAN Register Access

The CAN controller clock divider selected in the CAN0CFG SFR affects how the CAN registers can be
accessed. If the divider is set to 1, then a CAN SFR can immediately be read after it is written. If the divider
is set to a value other than 1, then a read of a CAN SFR that has just been written must be delayed by a
certain number of cycles. This delay can be performed using a NOP or some other instruction that does
not attempt to read the register. This access limitation applies to read and read-modify-write instructions
that occur immediately after a write. The full list of affected instructions is ANL, ORL, MOV, XCH, and XRL.

For example, with the CAN0CFG divider set to 1, the CAN0CN SFR can be accessed as follows:

MOV CAN0CN, #041 ; Enable access to Bit Timing Register
MOV R7, CAN0CN ; Copy CAN0CN to R7

With the CAN0CFG divider set to /2, the same example code requires an additional NOP:

MOV CAN0CN, #041 ; Enable access to Bit Timing Register
NOP ; Wait for write to complete
MOV R7, CAN0CN ; Copy CAN0CN to R7
The number of delay cycles required is dependent on the divider setting. With a divider of 2, the read must
wait for 1 system clock cycle. With a divider of 4, the read must wait 3 system clock cycles, and with the
divider set to 8, the read must wait 7 system clock cycles. The delay only needs to be applied when read-
ing the same register that was written. The application can write and read other CAN SFRs without any
delay.

21.1.3. Example Timing Calculation for 1 Mbit/Sec Communication

This example shows how to configure the CAN controller timing parameters for a 1 Mbit/Sec bit rate.
Table 21.1 shows timing-related system parameters needed for the calculation.

Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and
Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit
rate). In this example, the desired bit rate is 1 Mbit/sec; therefore, the desired bit time is 1000 ns.

Table 21.1. Background System Information

Parameter Value Description

CIP-51 system clock (SYSCLK) 24 MHz Internal Oscillator Max

CAN controller clock (fsys) 24 MHz CAN0CFG divider set to 1

CAN clock period (tsys) 41.667 ns Derived from 1/fsys

CAN time quantum (tq) 41.667 ns Derived from tsys x BRP1,2

CAN bus length 10 m 5 ns/m signal delay between CAN nodes

Propogation delay time3 400 ns 2 x (transceiver loop delay + bus line delay)

Notes:
1. The CAN time quantum is the smallest unit of time recognized by the CAN controller. Bit timing parameters

are specified in integer multiples of the time quantum.
2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP

extension register has a reset value of 0x0000. The BRP has a reset value of 1.
3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.
Rev. 1.2 212

C8051F55x/56x/57x
21.2.4. CAN Register Assignment

The standard Bosch CAN registers are mapped to SFR space as shown below and their full definitions are
available in the CAN User’s Guide. The name shown in the Name column matches what is provided in the
CAN User's Guide. One additional SFR which is not a standard Bosch CAN register, CAN0CFG, is pro-
vided to configure the CAN clock. All CAN registers are located on SFR Page 0x0C.

Table 21.2. Standard CAN Registers and Reset Values

CAN

Addr.

Name SFR Name
(High)

SFR

Addr.

SFR Name
(Low)

SFR

Addr.

16-bit

SFR

Reset
Value

0x00 CAN Control Register — — CAN0CN 0xC0 — 0x01

0x02 Status Register — — CAN0STAT 0x94 — 0x00

0x04 Error Counter1 CAN0ERRH 0x97 CAN0ERRL 0x96 CAN0ERR 0x0000

0x06 Bit Timing Register2 CAN0BTH 0x9B CAN0BTL 0x9A CAN0BT 0x2301

0x08 Interrupt Register1 CAN0IIDH 0x9D CAN0IIDL 0x9C CAN0IID 0x0000

0x0A Test Register — — CAN0TST 0x9E — 0x003,4

0x0C BRP Extension Register2 — — CAN0BRPE 0xA1 — 0x00

0x10 IF1 Command Request CAN0IF1CRH 0xBF CAN0IF1CRL 0xBE CAN0IF1CR 0x0001

0x12 IF1 Command Mask CAN0IF1CMH 0xC3 CAN0IF1CML 0xC2 CAN0IF1CM 0x0000

0x14 IF1 Mask 1 CAN0IF1M1H 0xC5 CAN0IF1M1L 0xC4 CAN0IF1M1 0xFFFF

0x16 IF1 Mask 2 CAN0IF1M2H 0xC7 CAN0IF1M2L 0xC6 CAN0IF1M2 0xFFFF

0x18 IF1 Arbitration 1 CAN0IF1A1H 0xCB CAN0IF1A1L 0xCA CAN0IF1A1 0x0000

0x1A IF1 Arbitration 2 CAN0IF1A2H 0xCD CAN0IF1A2L 0xCC CAN0IF1A2 0x0000

0x1C IF1 Message Control CAN0IF1MCH 0xD3 CAN0IF1MCL 0xD2 CAN0IF1MC 0x0000

0x1E IF1 Data A 1 CAN0IF1DA1H 0xD5 CAN0IF1DA1L 0xD4 CAN0IF1DA1 0x0000

0x20 IF1 Data A 2 CAN0IF1DA2H 0xD7 CAN0IF1DA2L 0xD6 CAN0IF1DA2 0x0000

0x22 IF1 Data B 1 CAN0IF1DB1H 0xDB CAN0IF1DB1L 0xDA CAN0IF1DB1 0x0000

0x24 IF1 Data B 2 CAN0IF1DB2H 0xDD CAN0IF1DB2L 0xDC CAN0IF1DB2 0x0000

0x40 IF2 Command Request CAN0IF2CRH 0xDF CAN0IF2CRL 0xDE CAN0IF2CR 0x0001

0x42 IF2 Command Mask CAN0IF2CMH 0xE3 CAN0IF2CML 0xE2 CAN0IF2CM 0x0000

0x44 IF2 Mask 1 CAN0IF2M1H 0xEB CAN0IF2M1L 0xEA CAN0IF2M1 0xFFFF

0x46 IF2 Mask 2 CAN0IF2M2H 0xED CAN0IF2M2L 0xEC CAN0IF2M2 0xFFFF

0x48 IF2 Arbitration 1 CAN0IF2A1H 0xEF CAN0IF2A1L 0xEE CAN0IF2A1 0x0000

0x4A IF2 Arbitration 2 CAN0IF2A2H 0xF3 CAN0IF2A2L 0xF2 CAN0IF2A2 0x0000

0x4C IF2 Message Control CAN0IF2MCH 0xCF CAN0IF2MCL 0xCE CAN0IF2MC 0x0000

0x4E IF2 Data A 1 CAN0IF2DA1H 0xF7 CAN0IF2DA1L 0xF6 CAN0IF2DA1 0x0000

Notes:
1. Read-only register.
2. Write-enabled by CCE.
3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.
4. Write-enabled by Test.
215 Rev. 1.2

C8051F55x/56x/57x
22.4.3. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been
received. Software may safely read or write to the data register when the SI flag is set. Software should not
attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0,
as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received
data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously
being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbi-
tration, the transition from master transmitter to slave receiver is made with the correct data or address in
SMB0DAT.

SFR Address = 0xC2; SMB0DAT = 0x00

22.5. SMBus Transfer Modes
The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be
operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or
Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in
Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end
of all SMBus byte frames. As a receiver, the interrupt for an ACK occurs before the ACK. As a transmitter,
interrupts occur after the ACK.

SFR Definition 22.3. SMB0DAT: SMBus Data

Bit 7 6 5 4 3 2 1 0

Name SMB0DAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SMB0DAT[7:0] SMBus Data.

The SMB0DAT register contains a byte of data to be transmitted on the SMBus
serial interface or a byte that has just been received on the SMBus serial interface.
The CPU can read from or write to this register whenever the SI serial interrupt flag
(SMB0CN.0) is set to logic 1. The serial data in the register remains stable as long
as the SI flag is set. When the SI flag is not set, the system may be in the process
of shifting data in/out and the CPU should not attempt to access this register.
Rev. 1.2 228

C8051F55x/56x/57x

S

la
ve

 T
ra

n
sm

itt
er

0100 0 0 0 A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X 0001

0 0 1 A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data
byte to transmit.

0 0 X 0100

0 1 X A Slave byte was transmitted;
error detected.

No action required (expecting
Master to end transfer).

0 0 X 0001

0101 0 X X An illegal STOP or bus error
was detected while a Slave
Transmission was in progress.

Clear STO. 0 0 X —

S
la

ve
 R

e
ce

iv
e

r

0010 1 0 X A slave address + R/W was
received; ACK requested.

If Write, Acknowledge received
address

0 0 1 0000

If Read, Load SMB0DAT with
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

1 1 X Lost arbitration as master;
slave address + R/W received;
ACK requested.

If Write, Acknowledge received
address

0 0 1 0000

If Read, Load SMB0DAT with
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

Reschedule failed transfer;
NACK received address.

1 0 0 1110

0001 0 0 X A STOP was detected while
addressed as a Slave Trans-
mitter or Slave Receiver.

Clear STO. 0 0 X —

1 1 X Lost arbitration while attempt-
ing a STOP.

No action required (transfer
complete/aborted).

0 0 0 —

0000 1 0 X A slave byte was received;
ACK requested.

Acknowledge received byte;
Read SMB0DAT.

0 0 1 0000

NACK received byte. 0 0 0 —

B
us

 E
rr

or
 C

on
di

tio
n 0010 0 1 X Lost arbitration while attempt-

ing a repeated START.
Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X Lost arbitration due to a
detected STOP.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 1 1 X Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0 —

Reschedule failed transfer. 1 0 0 1110

Table 22.4. SMBus Status Decoding (Continued)

M
o

d
e

Values Read Current SMbus State Typical Response Options Values to
Write

N
ex

t
S

ta
tu

s

V
e

c
to

r
E

x
p

ec
te

d

S
ta

tu
s

V
e

c
to

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

Rev. 1.2 234

C8051F55x/56x/57x
24.3. SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit
buffer will immediately be transferred into the shift register. When the shift register already contains data,
the SPI will load the shift register with the transmit buffer’s contents after the last SCK edge of the next (or
current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.
Figure 24.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master
device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not
used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of
uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the
bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter
that determines when a full byte has been received. The bit counter can only be reset by disabling and re-
enabling SPI0 with the SPIEN bit. Figure 24.3 shows a connection diagram between a slave device in 3-
wire slave mode and a master device.

24.4. SPI0 Interrupt Sources
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to
logic 1:

All of the following bits must be cleared by software.

1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can
occur in all SPI0 modes.

2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when
the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to
SPI0DAT will be ignored, and the transmit buffer will not be written.This flag can occur in all SPI0
modes.

3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for
multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN
bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.

4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a
transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new
byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The
data byte which caused the overrun is lost.
Rev. 1.2 250

C8051F55x/56x/57x
24.5. Serial Clock Phase and Polarity
Four combinations of serial clock phase and polarity can be selected using the clock control bits in the
SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases
(edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low
clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0
should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The
clock and data line relationships for master mode are shown in Figure 24.5. For slave mode, the clock and
data relationships are shown in Figure 24.6 and Figure 24.7. CKPHA must be set to 0 on both the master
and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x,
C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 24.3 controls the master mode
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz,
whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for
full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-
wire slave mode), and the serial input data synchronously with the slave’s system clock. If the master
issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec)
must be less than 1/10 the system clock frequency. In the special case where the master only wants to
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the
SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency.
This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s
system clock.

Figure 24.5. Master Mode Data/Clock Timing

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=0, CKPHA=1)

SCK
(CKPOL=1, CKPHA=0)

SCK
(CKPOL=1, CKPHA=1)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO/MOSI

NSS (Must Remain High
in Multi-Master Mode)
251 Rev. 1.2

C8051F55x/56x/57x
Figure 25.9. Timer 3 External Oscillator Capture Mode Block Diagram

External Clock / 8

SYSCLK / 12

SYSCLK

0

1

0

1

T3XCLK

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

TMR3L TMR3H
TCLKTR3

TMR3RLL TMR3RLH

Capture

External Clock / 8

T
M

R
3C

N

T3SPLIT
TF3CEN

TF3L
TF3H

T3XCLK

TR3

TF3LEN

TF3CEN
Interrupt
Rev. 1.2 277

