E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	2.25К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f570-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 22.3. SMB0DAT: SMBus Data	28
SFR Definition 23.1. SCON0: Serial Port 0 Control 24	41
SFR Definition 23.2. SMOD0: Serial Port 0 Control 24	43
SFR Definition 23.3. SBUF0: Serial (UART0) Port Data Buffer 24	44
SFR Definition 23.4. SBCON0: UART0 Baud Rate Generator Control 24	44
SFR Definition 23.6. SBRLL0: UART0 Baud Rate Generator Reload Low Byte 24	45
SFR Definition 23.5. SBRLH0: UART0 Baud Rate Generator Reload High Byte 24	45
SFR Definition 24.1. SPI0CFG: SPI0 Configuration	53
SFR Definition 24.2. SPI0CN: SPI0 Control	54
SFR Definition 24.3. SPI0CKR: SPI0 Clock Rate 25	55
SFR Definition 24.4. SPI0DAT: SPI0 Data 25	55
SFR Definition 25.1. CKCON: Clock Control 26	60
SFR Definition 25.2. TCON: Timer Control 26	65
SFR Definition 25.3. TMOD: Timer Mode 26	66
SFR Definition 25.4. TL0: Timer 0 Low Byte 26	67
SFR Definition 25.5. TL1: Timer 1 Low Byte 26	67
SFR Definition 25.6. TH0: Timer 0 High Byte 26	68
SFR Definition 25.7. TH1: Timer 1 High Byte 26	68
SFR Definition 25.8. TMR2CN: Timer 2 Control 27	72
SFR Definition 25.9. TMR2RLL: Timer 2 Reload Register Low Byte 27	73
SFR Definition 25.10. TMR2RLH: Timer 2 Reload Register High Byte 27	73
SFR Definition 25.11. TMR2L: Timer 2 Low Byte 27	74
SFR Definition 25.12. TMR2H Timer 2 High Byte 27	74
SFR Definition 25.13. TMR3CN: Timer 3 Control 27	78
SFR Definition 25.14. TMR3RLL: Timer 3 Reload Register Low Byte 27	79
SFR Definition 25.15. TMR3RLH: Timer 3 Reload Register High Byte 27	79
SFR Definition 25.16. TMR3L: Timer 3 Low Byte 28	30
SFR Definition 25.17. TMR3H Timer 3 High Byte 28	30
SFR Definition 26.1. PCA0CN: PCA Control 29	94
SFR Definition 26.2. PCA0MD: PCA Mode 29	95
SFR Definition 26.3. PCA0PWM: PCA PWM Configuration	96
SFR Definition 26.4. PCA0CPMn: PCA Capture/Compare Mode 29	97
SFR Definition 26.5. PCA0L: PCA Counter/Timer Low Byte 29	98
SFR Definition 26.6. PCA0H: PCA Counter/Timer High Byte 29	98
SFR Definition 26.7. PCA0CPLn: PCA Capture Module Low Byte 29	99
SFR Definition 26.8. PCA0CPHn: PCA Capture Module High Byte 29	99

10.2. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

10.2.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 10.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

On the execution of the RETI instruction in the CAN0 ISR, the value in SFRPAGE register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the SPI0DAT register as it did prior to the interrupts occurring. See Figure 12.6.

Figure 12.6. SFR Page Stack Upon Return From CAN0 Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 12.1.

ddress	Pade	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
Ā Fo	_			DCAOLI					
Fδ	0 F	SPIUCIN	SN0	SN1	SN2	SN3	PCACPL4	PCACPH4	VDIVIOCIN
F0	0	В	POMAT	POMASK	P1MAT	PIMASK		FIP1	FIP2
10	F	(All Pages)	POMDIN	P1MDIN	P2MDIN	P3MDIN		EIP1	EIP2
F8	0	ADC0CN	PCA0CPI 1	PCA0CPH1	PCA0CPI 2	PCA0CPH2	PCA0CPL3	PCA0CPL3	RSTSRC
	F								
E0	0	ACC						EIE1	EIE2
	F	(All Pages)	XBR0	XBR1	CCH0CN	IT01CF		(All Pages)	(All Pages)
D8	0	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	PCA0CPM3	PCA0CPM4	PCA0CPM5
	F		PCA0PWM						
D0	0	PSW	REF0CN	LIN0DATA	LIN0ADDR				
	F	(All Pages)				P0SKIP	P1SKIP	P2SKIP	P3SKIP
C8	0	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H	PCA0CPL5	PCA0CPH5
	F		LIN0CF						
C0	0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	
	F								XBR2
B8	0	IP		ADC0TK	ADC0MX	ADC0CF	ADC0L	ADC0H	
	F	(All Pages)							
B0	0	P3	P2MAT	P2MASK			P4	FLSCL	FLKEY
	F	(All Pages)		EMI0CF			(All Pages)	(All Pages)	(All Pages)
A8	0	IE	SMOD0	EMI0CN				P3MAT	P3MASK
	F	(All Pages)		EMI0TC	SBCON0	SBRLL0	SBRLH0	P3MDOUT	P4MDOUT
A0	0	P2	SPI0CFG	SPI0CKR	SPI0DAT				SFRPAGE
	F	(All Pages)	OSCICN	OSCICRS		POMDOUT	P1MDOUT	P2MDOUT	(All Pages)
98	0	SCON0	SBUF0	CPT0CN	CPT0MD	CPT0MX	CPT1CN	CPT1MD	CPT1MX
	F							OSCIFIN	OSCXCN
90	0	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H		
	F	(All Pages)							CLKMUL
88	0	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
	F	(All Pages)	(All Pages)	(All Pages)	(All Pages)	(All Pages)	(All Pages)	(All Pages)	CLKSEL
80	0	P0	SP	DPL	DPH		SFRNEXT	SFRLAST	PCON
	F	(All Pages)	(All Pages)	(All Pages)	(All Pages)	SFR0CN	(All Pages)	(All Pages)	(All Pages)
		0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
	(bit addressable)								

Table 12.1. Special Function Register (SFR) Memory Map for Pages 0x00 and 0x0F

SFR Definition 13.2. IP: Interrupt Priority

Bit	7	6 5 4 3 2 1 0							
Nam	e	PSPI0 PT2 PS0 PT1 PX1 PT0 PX0							
Туре	/pe R R/W R/W R/W R/W R/W R/W						R/W		
Rese	e t 1	0	0	0	0	0	0	0	
SFR A	ddress = 0	xB8; Bit-Addres	sable; SFR	Page = All F	Pages				
Bit	Name				Function				
7	Unused	Read = 1b, W	rite = Don't (Care.					
6	PSPI0	Serial Peripho This bit sets th	eral Interfaction	ce (SPI0) Int the SPI0 int	errupt Prior errupt.	ity Control.			
		0: SPI0 interru 1: SPI0 interru	pt set to low	r priority leve h priority lev	el.				
5	PT2	Timer 2 Interi	upt Priority	Control.					
		This bit sets th	ne priority of	the Timer 2	interrupt.				
		1: Timer 2 inte	errupt set to	hiah priority i	evel. level.				
4	PS0	UART0 Interr	unt Priority	Control					
		This bit sets th	ne priority of	the UART0	interrupt.				
		0: UART0 inte	rrupt set to I	ow priority le	evel.				
		1: UART0 inte	rrupt set to h	high priority	evel.				
3	PT1	Timer 1 Interi	upt Priority	Control.	interrupt				
		0: Timer 1 inte	errupt set to	low priority le	interrupt. evel.				
		1: Timer 1 inte	errupt set to	high priority	level.				
2	PX1	External Inter	rupt 1 Prio	rity Control					
		This bit sets th	ne priority of	the External	Interrupt 1 i	nterrupt.			
		0: External Int	errupt 1 set	to low priorit to high priori	y level. ity level				
1	PT0	Timer 0 Inter	unt Priority						
	This bit sets the priority of the Timer 0 interrupt.								
0: Timer 0 interrupt set to		o low priority level.							
		1: Timer 0 inte	errupt set to	high priority	level.				
0	PX0	External Inter	rupt 0 Prio	the Externel	Interrupt 0 i	ntorrunt			
		0: External Int	errupt 0 set	to low priorit	y level.	menupi.			
		1: External Int	errupt 0 set	to high prior	ty level.				

SFR Definition 13.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name						EMAT	ECAN0	EREG0
Туре	R	R	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7; SFR Page = All Pages

Bit	Name	Function
7:3	Unused	Read = 00000b; Write = Don't Care.
2	EMAT	Enable Port Match Interrupt.
		This bit sets the masking of the Port Match interrupt.
		0: Disable all Port Match interrupts.
		1: Enable interrupt requests generated by a Port Match
1	ECAN0	Enable CAN0 Interrupts.
		This bit sets the masking of the CAN0 interrupt.
		0: Disable all CAN0 interrupts.
		1: Enable interrupt requests generated by CAN0.
0	EREG0	Enable Voltage Regulator Dropout Interrupt.
		This bit sets the masking of the Voltage Regulator Dropout interrupt.
		0: Disable the Voltage Regulator Dropout interrupt.
		1: Enable the Voltage Regulator Dropout interrupt.

SFR Definition 14.1. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8F; SFR Page = 0x00

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	Program Store Erase Enable.
		 Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	Program Store Write Enable.
		 Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

16.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 16.2. plots the power-on and V_{DD} monitor reset timing.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Note: For devices with a date code before year 2011, work week 24 (1124), if the /RST pin is held low for more than 1 second while power is applied to the device, and then /RST is released, a percentage of devices may lock up and fail to execute code. Toggling the /RST pin does not clear the condition. The condition is cleared by cycling power. Most devices that are affected will show the lock up behavior only within a narrow range of temperatures (a 5 to 10 °C window). Parts with a date code of year 2011, work week 24 (1124) or later do not have any restrictions on /RST low time. The date code of a device is a four-digit number on the bottom-most line of each device with the format YYWW, where YY is the two-digit calendar year and WW is the two digit work week.

Figure 16.2. Power-On and V_{DD} Monitor Reset Timing

SFR Definition 17.1. EMI0CN: External Memory Interface Control

Bit	7	6	5	4	3	2	1	0
Name	PGSEL[7:0]							
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAA; SFR Page = 0x00

Bit	Name	Function
7:0	PGSEL[7:0]	XRAM Page Select Bits.
		The XRAM Page Select Bits provide the high byte of the 16-bit external data memory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM
		0x00: 0x0000 to 0x00FF 0x01: 0x0100 to 0x01FF
		 0xFE: 0xFE00 to 0xFEFF 0xFF: 0xFF00 to 0xFFFF

17.6.1.3. 8-bit MOVX with Bank Select: EMI0CF[4:2] = 010

Figure 17.5. Multiplexed 8-bit MOVX with Bank Select Timing

19. Port Input/Output

Digital and analog resources are available through 33 (C8051F568-9 and 'F570-5), 25 (C8051F550-7) or 18 (C8051F550-7) I/O pins. Port pins P0.0-P4.0 on the C8051F568-9 and 'F570-5, port pins P0.0-P3.0 on theC8051F560-7, and port pins P0.0-P2.1 on the C8051F550-7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 19.3. Port pin P4.0 on the C8051F568-9 and 'F570-5 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). Similarly, port pin P3.0 is shared with C2D on the C8051F560-7 and port pin P2.1 on the C8051F550-7. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 19.3 and Figure 19.4). The registers XBR0, XBR1, XBR2 are defined in SFR Definition 19.1 and SFR Definition 19.2 and are used to select internal digital functions.

The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 40.

Figure 19.1. Port I/O Functional Block Diagram

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR2 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBR0, XBR1, and XBR2 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

SFR Definition 19.25. P3MDIN: Port 3 Input Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDIN[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF4; SFR Page = 0x0F

Bit	Name	Function
7:0	P3MDIN[7:0]	Analog Configuration Bits for P3.7–P3.0 (respectively).
		 Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P3MDOUT register. 0: Corresponding P3.n pin is configured for analog mode. 1: Corresponding P3.n pin is not configured for analog mode.
Note:	P3.0 is available of	on 40-pin and 32-pin packages. P3.1-P3.7 are available on 40-pin packages

SFR Definition 19.26. P3MDOUT: Port 3 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDOUT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAE; SFR Page = 0x0F

Bit	Name	Function				
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7–P3.0 (respectively).				
		These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.				
Note:	ote: P3.0 is available on 40-pin and 32-pin packages. P3.1-P3.7 are available on 40-pin packages					

20.1. Software Interface with the LIN Controller

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LIN0 Control Mode (LIN0CF) register. The other LIN registers are accessed indirectly through the two SFRs LIN0 Address (LIN0ADR) and LIN0 Data (LIN0DAT). The LIN0ADR register selects which LIN register is targeted by reads/writes of the LIN0DAT register. The full list of indirectly-accessible LIN registers is given in Table 20.4 on page 202.

20.2. LIN Interface Setup and Operation

The hardware based LIN controller allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the controller is to define the basic characteristics of the node:

Mode—Master or Slave

Baud Rate—Either defined manually or using the autobaud feature (slave mode only)

Checksum Type—Select between classic or enhanced checksum, both of which are implemented in hardware.

20.2.1. Mode Definition

Following the LIN specification, the controller implements in hardware both the Slave and Master operating modes. The mode is configured using the MODE bit (LIN0CF.6).

20.2.2. Baud Rate Options: Manual or Autobaud

The LIN controller can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LIN0CF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

20.2.3. Baud Rate Calculations: Manual Mode

The baud rate used by the LIN controller is a function of the System Clock (SYSCLK) and the LIN timing registers according to the following equation:

baud_rate = $\frac{SYSCLK}{2^{(prescaler + 1)} \times divider \times (multiplier + 1)}}$

The prescaler, divider and multiplier factors are part of the LIN0DIV and LIN0MUL registers and can assume values in the following range:

Factor	Range		
prescaler	03		
multiplier	031		
divider	200511		

Table 20.1. Baud Rate Calculation Variable Ranges

Important Note: The minimum system clock (SYSCLK) to operate the LIN controller is 8 MHz.

Use the following equations to calculate the values for the variables for the baud-rate equation:

194

21.2.4. CAN Register Assignment

The standard Bosch CAN registers are mapped to SFR space as shown below and their full definitions are available in the CAN User's Guide. The name shown in the Name column matches what is provided in the CAN User's Guide. One additional SFR which is not a standard Bosch CAN register, CAN0CFG, is provided to configure the CAN clock. All CAN registers are located on SFR Page 0x0C.

CAN	Name	SFR Name	SFR	SFR Name	SFR	16-bit	Reset
Addr.		(High)	Addr.	(Low)	Addr.	SFR	Value
0x00	CAN Control Register	_	—	CAN0CN	0xC0		0x01
0x02	Status Register	_	—	CAN0STAT	0x94	—	0x00
0x04	Error Counter ¹	CAN0ERRH	0x97	CAN0ERRL	0x96	CAN0ERR	0x0000
0x06	Bit Timing Register ²	CAN0BTH	0x9B	CAN0BTL	0x9A	CAN0BT	0x2301
0x08	Interrupt Register ¹	CANOIIDH	0x9D	CAN0IIDL	0x9C	CAN0IID	0x0000
0x0A	Test Register	_	—	CAN0TST	0x9E		0x00 ^{3,4}
0x0C	BRP Extension Register ²	_	—	CAN0BRPE	0xA1		0x00
0x10	IF1 Command Request	CAN0IF1CRH	0xBF	CAN0IF1CRL	0xBE	CAN0IF1CR	0x0001
0x12	IF1 Command Mask	CAN0IF1CMH	0xC3	CAN0IF1CML	0xC2	CAN0IF1CM	0x0000
0x14	IF1 Mask 1	CAN0IF1M1H	0xC5	CAN0IF1M1L	0xC4	CAN0IF1M1	0xFFFF
0x16	IF1 Mask 2	CAN0IF1M2H	0xC7	CAN0IF1M2L	0xC6	CAN0IF1M2	0xFFFF
0x18	IF1 Arbitration 1	CAN0IF1A1H	0xCB	CAN0IF1A1L	0xCA	CAN0IF1A1	0x0000
0x1A	IF1 Arbitration 2	CAN0IF1A2H	0xCD	CAN0IF1A2L	0xCC	CAN0IF1A2	0x0000
0x1C	IF1 Message Control	CAN0IF1MCH	0xD3	CAN0IF1MCL	0xD2	CAN0IF1MC	0x0000
0x1E	IF1 Data A 1	CAN0IF1DA1H	0xD5	CAN0IF1DA1L	0xD4	CAN0IF1DA1	0x0000
0x20	IF1 Data A 2	CAN0IF1DA2H	0xD7	CAN0IF1DA2L	0xD6	CAN0IF1DA2	0x0000
0x22	IF1 Data B 1	CAN0IF1DB1H	0xDB	CAN0IF1DB1L	0xDA	CAN0IF1DB1	0x0000
0x24	IF1 Data B 2	CAN0IF1DB2H	0xDD	CAN0IF1DB2L	0xDC	CAN0IF1DB2	0x0000
0x40	IF2 Command Request	CAN0IF2CRH	0xDF	CAN0IF2CRL	0xDE	CAN0IF2CR	0x0001
0x42	IF2 Command Mask	CAN0IF2CMH	0xE3	CAN0IF2CML	0xE2	CAN0IF2CM	0x0000
0x44	IF2 Mask 1	CAN0IF2M1H	0xEB	CAN0IF2M1L	0xEA	CAN0IF2M1	0xFFFF
0x46	IF2 Mask 2	CAN0IF2M2H	0xED	CAN0IF2M2L	0xEC	CAN0IF2M2	0xFFFF
0x48	IF2 Arbitration 1	CAN0IF2A1H	0xEF	CAN0IF2A1L	0xEE	CAN0IF2A1	0x0000
0x4A	IF2 Arbitration 2	CAN0IF2A2H	0xF3	CAN0IF2A2L	0xF2	CAN0IF2A2	0x0000
0x4C	IF2 Message Control	CAN0IF2MCH	0xCF	CAN0IF2MCL	0xCE	CAN0IF2MC	0x0000
0x4E	IF2 Data A 1 CAN0IF2DA1		0xF7	CAN0IF2DA1L	0xF6	CAN0IF2DA1	0x0000

Notes:

1. Read-only register.

2. Write-enabled by CCE.

3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.

4. Write-enabled by Test.

SFR Definition 21.1. CAN0CFG: CAN Clock Configuration

Bit	7	6	5	4	3	2	1	0
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSD	IV[1:0]
Туре	R	R	R	R	R	R	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x92; SFR Page = 0x0C

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits.
		The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

23. UART0

UART0 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates (details in Section "23.1. Baud Rate Generator" on page 235). A received data FIFO allows UART0 to receive up to three data bytes before data is lost and an overflow occurs.

UART0 has six associated SFRs. Three are used for the Baud Rate Generator (SBCON0, SBRLH0, and SBRLL0), two are used for data formatting, control, and status functions (SCON0, SMOD0), and one is used to send and receive data (SBUF0). The single SBUF0 location provides access to both the transmit holding register and the receive FIFO. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the first byte of the Receive FIFO; it is not possible to read data from the Transmit Holding Register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete). If additional bytes are available in the Receive FIFO, the RI0 bit cannot be cleared by software.

Figure 23.1. UART0 Block Diagram

23.1. Baud Rate Generator

The UART0 baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK) and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many clock frequencies.

The baud rate generator is configured using three registers: SBCON0, SBRLH0, and SBRLL0. The UART0 Baud Rate Generator Control Register (SBCON0, SFR Definition 23.4) enables or disables the baud rate generator and selects the prescaler value for the timer. The baud rate generator must be enabled for UART0 to function. Registers SBRLH0 and SBRLL0 contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows (0xFFFF to 0x0000), the timer is reloaded. The baud rate for UART0 is defined in Equation 23.1, where "BRG Clock" is the baud rate generator's selected clock source. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16.

23.2. Data Format

UART0 has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between 1 and 2 bit times, and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMOD0 register, shown in SFR Definition 23.2. Figure 23.2 shows the timing for a UART0 transaction without parity or an extra bit enabled. Figure 23.3 shows the timing for a UART0 transaction with parity enabled (PE0 = 1). Figure 23.4 is an example of a UART0 transaction when the extra bit is enabled (XBE0 = 1). Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6, 7, or 8 bits.

Figure 23.3. UART0 Timing With Parity

Figure 23.4. UART0 Timing With Extra Bit

Figure 26.5. PCA Software Timer Mode Diagram

26.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

286

Figure 26.10. PCA 16-Bit PWM Mode

26.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 5. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH5) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 5 operates as a watchdog timer (WDT). The Module 5 high byte is compared to the PCA counter high byte; the Module 5 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

26.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS[2:0]) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 5 is forced into software timer mode.
- Writes to the Module 5 mode register (PCA0CPM5) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH5 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH5. Upon a PCA0CPH5 write, PCA0H plus the offset held in PCA0CPL5 is loaded into PCA0CPH5 (See Figure 26.11).

