
Silicon Labs - <u>C8051F571-IM Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

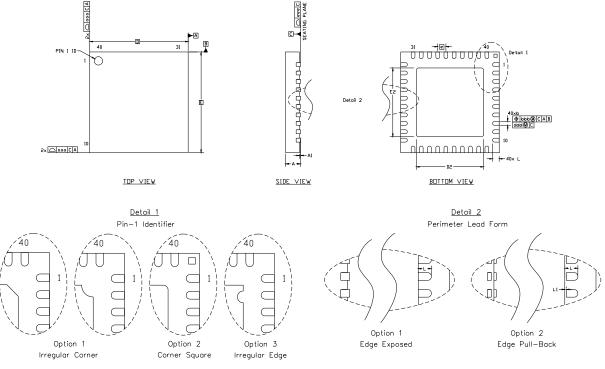
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f571-im

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 22.3. SMB0DAT: SMBus Data	. 228
SFR Definition 23.1. SCON0: Serial Port 0 Control	. 241
SFR Definition 23.2. SMOD0: Serial Port 0 Control	. 243
SFR Definition 23.3. SBUF0: Serial (UART0) Port Data Buffer	
SFR Definition 23.4. SBCON0: UARTO Baud Rate Generator Control	. 244
SFR Definition 23.6. SBRLL0: UART0 Baud Rate Generator Reload Low Byte	
SFR Definition 23.5. SBRLH0: UART0 Baud Rate Generator Reload High Byte	. 245
SFR Definition 24.1. SPI0CFG: SPI0 Configuration	. 253
SFR Definition 24.2. SPI0CN: SPI0 Control	. 254
SFR Definition 24.3. SPI0CKR: SPI0 Clock Rate	. 255
SFR Definition 24.4. SPI0DAT: SPI0 Data	. 255
SFR Definition 25.1. CKCON: Clock Control	. 260
SFR Definition 25.2. TCON: Timer Control	. 265
SFR Definition 25.3. TMOD: Timer Mode	. 266
SFR Definition 25.4. TL0: Timer 0 Low Byte	
SFR Definition 25.5. TL1: Timer 1 Low Byte	
SFR Definition 25.6. TH0: Timer 0 High Byte	
SFR Definition 25.7. TH1: Timer 1 High Byte	
SFR Definition 25.8. TMR2CN: Timer 2 Control	
SFR Definition 25.9. TMR2RLL: Timer 2 Reload Register Low Byte	
SFR Definition 25.10. TMR2RLH: Timer 2 Reload Register High Byte	
SFR Definition 25.11. TMR2L: Timer 2 Low Byte	
SFR Definition 25.12. TMR2H Timer 2 High Byte	
SFR Definition 25.13. TMR3CN: Timer 3 Control	
SFR Definition 25.14. TMR3RLL: Timer 3 Reload Register Low Byte	
SFR Definition 25.15. TMR3RLH: Timer 3 Reload Register High Byte	
SFR Definition 25.16. TMR3L: Timer 3 Low Byte	
SFR Definition 25.17. TMR3H Timer 3 High Byte	
SFR Definition 26.1. PCA0CN: PCA Control	
SFR Definition 26.2. PCA0MD: PCA Mode	
SFR Definition 26.3. PCA0PWM: PCA PWM Configuration	
SFR Definition 26.4. PCA0CPMn: PCA Capture/Compare Mode	
SFR Definition 26.5. PCA0L: PCA Counter/Timer Low Byte	
SFR Definition 26.6. PCA0H: PCA Counter/Timer High Byte	
SFR Definition 26.7. PCA0CPLn: PCA Capture Module Low Byte	
SFR Definition 26.8. PCA0CPHn: PCA Capture Module High Byte	. 299

4. Package Specifications

4.1. QFN-40 Package Specifications

Figure 4.1. QFN-40 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.85	0.90	E2	4.00	4.10	4.20
A1	0.00		0.05	L	0.35	0.40	0.45
b	0.18	0.23	0.28	L1			0.10
D		6.00 BSC		aaa			0.10
D2	4.00	4.10	4.20	bbb			0.10
е	0.50 BSC			ddd			0.05
E		6.00 BSC		eee			0.08

Table 4.1. QFN-40 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VJJD-5, except for features A, D2, and E2 which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.7. Clock Multiplier Electrical Specifications

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Frequency (Fcm _{in})		2	—	—	MHz
Output Frequency				50	MHz
Power Supply Current		—	0.9	1.9	mA

Table 5.8. Voltage Regulator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range (V _{REGIN})		1.8*	_	5.25	V
Dropout Voltage (V _{DO})	Maximum Current = 50 mA	—	10		mV/mA
Output Voltage (V _{DD})	2.1 V operation (REG0MD = 0)	2.0	2.1	2.25	V
	2.6 V operation (REG0MD = 1)	2.5	2.6	2.75	v
Bias Current			1	9	μA
Dropout Indicator Detection Threshold	With respect to VDD	-0.21	_	-0.02	V
Output Voltage Temperature Coefficient		_	0.29	—	mV/°C
VREG Settling Time	50 mA load with V_{REGIN} = 2.4 V and V_{DD} load capacitor of 4.8 µF	_	450	_	μs
*Note: The minimum input voltage	e is 1.8 V or V_{DD} + V_{DO} (max load), whi	chever is g	greater	•	•

SFR Definition 6.11. ADC0LTH: ADC0 Less-Than Data High Byte

Bit	7	6	5	4	3	2	1	0
Nam	ame ADC0LTH[7:0]							
Туре	•	R/W						
Rese	et 0	0	0	0	0	0	0	0
SFR A	Address = 0xC6	; SFR Page	e = 0x00					
Bit	Name		Function					
7:0	ADC0LTH[7:0]	ADC0 Less-Than Data Word High-Order Bits.						

SFR Definition 6.12. ADC0LTL: ADC0 Less-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0
Name	ADC0LTL[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Address = 0xC5; SFR Page = 0x00								

Bit	Name	Function
7:0	ADC0LTL[7:0]	ADC0 Less-Than Data Word Low-Order Bits.

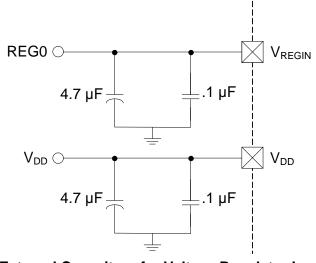
6.4.1. Window Detector In Single-Ended Mode

Figure 6.6 example shows two window comparisons for right-justified data with ADC0LTH:ADC0LTL = 0x0200 (512d) and ADC0GTH:ADC0GTL = 0x0100 (256d). The input voltage can range from 0 to V_{REF} x (4095/4096) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0100 < ADC0H:ADC0L < 0x0200). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0100 or ADC0H:ADC0L > 0x0200). Figure 6.7 shows an example using left-justified data with the same comparison values.

SFR Definition 8.6. CPT1MX: Comparator1 MUX Selection

Bit	7	6	5	4	3	2	1	0	
Nam	е	CMX1	N[3:0]	1		CMX1	P[3:0]		
Туре	•	R/	W		R/W				
Rese	_	1	1	1	0	1	1	1	
SFR A	Address = 0x9	F [.] SER Page	$= 0 \times 0 0$						
Bit	Name								
7:4	CMX1N[3:0]	Comparato	r1 Negative	Input MUX	Selection.				
		0000:	P0.	1					
		0001:	P0.	3					
		0010:	P0.	5					
		0011:	P0.	7					
		0100:	P1.	1					
		0101:	P1.	3					
		0110:	P1.	5					
		0111:	P1.	7					
		1000:	P2.	1					
		1001:	P2.	3 (only avai	lable on 40-p	oin and 32-pi	n devices)		
		1010:	P2.	P2.5 (only available on 40-pin and 32-pin devices)					
		1011:	P2.	7 (only avai	lable on 40-p	oin and 32-pi	n devices)		
		1100–1111:	Nor	ne					
3:0	CMX1P[3:0]	Comparato	r1 Positive	Input MUX	Selection.				
		0000:	P0.	0					
		0001:	P0.	2					
		0010:	P0.	4					
		0011:	P0.	6					
		0100:	P1.	0					
		0101:	P1.	2					
		0110:	P1.	4					
		0111:	P1.	6					
		1000:	P2.	0					
		1001:	P2.	2 (only avai	lable on 40-p	pin and 32-pi	n devices)		
		1010:	P2.	4 (only avai	lable on 40-p	oin and 32-pi	n devices)		
		1011:	P2.	6 (only avai	lable on 40-p	oin and 32-pi	n devices)		
		1100–1111:	Nor	ne					

9. Voltage Regulator (REG0)


C8051F55x/56x/57x devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the V_{REGIN} pin can be as high as 5.25 V. The output can be selected by software to 2.1 V or 2.6 V. When enabled, the output of REG0 appears on the V_{DD} pin, powers the microcontroller core, and can be used to power external devices. On reset, REG0 is enabled and can be disabled by software.

The Voltage regulator can generate an interrupt (if enabled by EREG0, EIE2.0) that is triggered whenever the V_{REGIN} input voltage drops below the dropout threshold voltage. This dropout interrupt has no pending flag and the recommended procedure to use it is as follows:

- 1. Wait enough time to ensure the V_{REGIN} input voltage is stable
- 2. Enable the dropout interrupt (EREG0, EIE2.0) and select the proper priority (PREG0, EIP2.0)
- 3. If triggered, inside the interrupt disable it (clear EREG0, EIE2.0), execute all procedures necessary to protect your application (put it in a safe mode and leave the interrupt now disabled.
- 4. In the main application, now running in the safe mode, regularly checks the DROPOUT bit (REG0CN.0). Once it is cleared by the regulator hardware the application can enable the interrupt again (EREG0, EIE1.6) and return to the normal mode operation.

The input (V_{REGIN}) and output (V_{DD}) of the voltage regulator should both be bypassed with a large capacitor (4.7 μ F + 0.1 μ F) to ground as shown in Figure 9.1. This capacitor will eliminate power spikes and provide any immediate power required by the microcontroller. The settling time associated with the voltage regulator is shown in Table 5.8 on page 43.

Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset event. The output of the un-calibrated internal regulator could be below the high threshold setting of the V_{DD} Monitor. If this is the case *and* the V_{DD} Monitor is set to the high threshold setting *and* if the MCU receives a non-power on reset (POR), the MCU will remain in reset until a POR occurs (i.e., V_{DD} Monitor will keep the device in reset). A POR will force the V_{DD} Monitor to the low threshold setting which is guaranteed to be below the un-calibrated output of the internal regulator. The device will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly recommends that the V_{DD} Monitor is always left in the low threshold setting (i.e. default value upon POR).

Table 10.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations		I	
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations		I	
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2

While CIP-51 executes in-line code (writing values to SPI0DAT in this example), the CAN0 Interrupt occurs. The CIP-51 vectors to the CAN0 ISR and pushes the current SFR Page value (SFR Page 0x00) into SFRNEXT in the SFR Page Stack. The SFR page needed to access CAN's SFRs is then automatically placed in the SFRPAGE register (SFR Page 0x0C). SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the CAN0 SFRs. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the CAN0 ISR to access SFRs that are not on SFR Page 0x0C. See Figure 12.3.

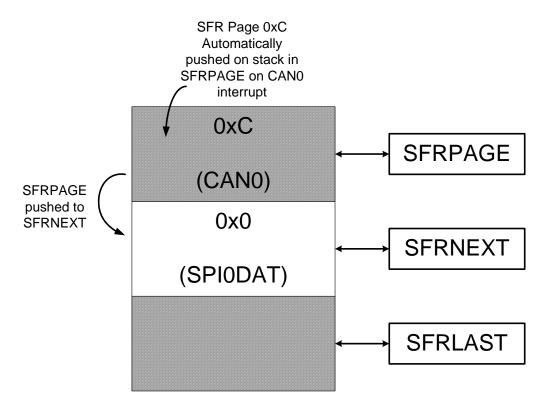


Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs

Table 12.3. Special Function Registers (Continued)

SERs are listed in alphabetical order	All undefined SFR locations are reserved
SERS are listed in alphabetical order.	All undernied SFR locations are reserved

Register	Address	Description	Page
SMB0CF	0xC1	SMBus0 Configuration	224
SMB0CN	0xC0	SMBus0 Control	226
SMB0DAT	0xC2	SMBus0 Data	228
SMOD0	0xA9	UART0 Mode	243
SN0	0xF9	Serial Number 0	91
SN1	0xFA	Serial Number 1	91
SN2	0xFB	Serial Number 2	91
SN3	0xFC	Serial Number 3	91
SP	0x81	Stack Pointer	89
SPI0CFG	0xA1	SPI0 Configuration	253
SPI0CKR	0xA2	SPI0 Clock Rate Control	255
SPIOCN	0xF8	SPI0 Control	254
SPIODAT	0xA3	SPI0 Data	255
TCON	0x88	Timer/Counter Control	265
TH0	0x8C	Timer/Counter 0 High	268
TH1	0x8D	Timer/Counter 1 High	268
TL0	0x8A	Timer/Counter 0 Low	267
TL1	0x8B	Timer/Counter 1 Low	267
TMOD	0x89	Timer/Counter Mode	266
TMR2CN	0xC8	Timer/Counter 2 Control	272
TMR2H	0xCD	Timer/Counter 2 High	274
TMR2L	0xCC	Timer/Counter 2 Low	274
TMR2RLH	0xCB	Timer/Counter 2 Reload High	273
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	273
TMR3CN	0x91	Timer/Counter 3 Control	278
TMR3H	0x95	Timer/Counter 3 High	280
TMR3L	0x94	Timer/Counter 3 Low	280
TMR3RLH	0x93	Timer/Counter 3 Reload High	279
TMR3RLL	0x92	Timer/Counter 3 Reload Low	279
VDM0CN	0xFF	V _{DD} Monitor Control	141
XBR0	0xE1	Port I/O Crossbar Control 0	176
XBR1	0xE2	Port I/O Crossbar Control 1	177
XBR2	0xC7	Port I/O Crossbar Control 2	178

SFR Definition 13.1. IE: Interrupt Enable

Bit	7	6	5	4	3	2	1	0
Name	EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA8; Bit-Addressable; SFR Page = All Pages

Bit	Name	Function
7	EA	 Enable All Interrupts. Globally enables/disables all interrupts. It overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	ESPI0	 Enable Serial Peripheral Interface (SPI0) Interrupt. This bit sets the masking of the SPI0 interrupts. 0: Disable all SPI0 interrupts. 1: Enable interrupt requests generated by SPI0.
5	ET2	 Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt. 1: Enable UART0 interrupt.
3	ET1	 Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	 Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the INT1 input.
1	ET0	 Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TF0 flag.
0	EX0	 Enable External Interrupt 0. This bit sets the masking of External Interrupt 0. 0: Disable external interrupt 0. 1: Enable interrupt requests generated by the INTO input.

SFR Definition 13.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ELIN0	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ESMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6; SFR Page = All Pages

Bit	Name	Function
7	ELIN0	Enable LIN0 Interrupt. This bit sets the masking of the LIN0 interrupt. 0: Disable LIN0 interrupts. 1: Enable interrupt requests generated by the LIN0INT flag.
6	ET3	 Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
5	ECP1	Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
4	ECP0	 Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
3	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
2	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
1	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
0	ESMB0	Enable SMBus (SMB0) Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMB0 interrupts. 1: Enable interrupt requests generated by SMB0.

SFR Definition 13.7. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Name	IN1PL		IN1SL[2:0]			IN0SL[2:0]		
Туре	R/W	R/W		R/W	R/W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE4; SFR Page = 0x0F

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0: INT1 input is active low. 1: INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to INT1. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7
3	IN0PL	INTO Polarity. 0: INTO input is active low. 1: INTO input is active high.
2:0	IN0SL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to INTO. Note that this pin assignment is independent of the Crossbar; INTO will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7

16.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0–), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

16.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "26.4. Watchdog Timer Mode" on page 291; the WDT is enabled and clocked by SYSCLK/12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1. The state of the RST pin is unaffected by this reset.

16.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a MOVX write operation targets an address in or above the reserved space.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address in or above the reserved space.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address in or above the reserved space.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "14.3. Security Options" on page 127).
- A Flash read, write, or erase is attempted when the VDD Monitor is not enabled to the high threshold and set as a reset source.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

16.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.

17.5.3. Split Mode with Bank Select

When EMI0CF[3:2] are set to 10, the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower 8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.5.4. External Only

When EMI0CF[3:2] are set to 11, all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the internal XRAM size boundary.

- 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 17.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for /ALE + 1 for RD or WR + 4). The programmable setup and hold times default to the maximum delay settings after a reset. Table 17.2 lists the ac parameters for the External Memory Interface, and Figure 17.3 through Figure 17.5 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

SFR Definition 18.6. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	XTLVLD	×	XOSCMD[2:0]			XFCN[2:0]		
Туре	R	R/W			R		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9F; SFR Page = 0x0F

Bit	Name		-	Function						
7	XTLVLD	Crystal	Crystal Oscillator Valid Flag.							
		•	(Read only when XOSCMD = 11x.)							
		-	al Oscillator is unused of							
		-	al Oscillator is running a							
6:4	XOSCMD[2:0]		I Oscillator Mode Sele							
			ternal Oscillator circuit of							
			ternal CMOS Clock Mod ernal CMOS Clock Mod							
			Coscillator Mode.	e with divide by 2 stage.						
			pacitor Oscillator Mode.							
		110: Cry	stal Oscillator Mode.							
		111: Cry	111: Crystal Oscillator Mode with divide by 2 stage.							
3	Unused	Read =	Read = 0b; Write =0b							
2:0	XFCN[2:0]	Externa	External Oscillator Frequency Control Bits.							
			•	quency for Crystal or RC	mode.					
		Set acc	ording to the desired K F	actor for C mode.						
		XFCN	Crystal Mode	RC Mode	C Mode					
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87					
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6					
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7					
		011	225 kHz < f \le 590 kHz 100 kHz < f \le 200 kHz K Factor = 22							
		100	590 kHz < f \leq 1.5 MHz 200 kHz < f \leq 400 kHz K Factor = 6							
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180					
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz < f ≤ 1.6 MHz	K Factor = 664					
		111	$10 \text{ MHz} < f \le 30 \text{ MHz}$	$1.6 \text{ MHz} < f \le 3.2 \text{ MHz}$	K Factor = 1590					

20.7.2. LIN Indirect Access SFR Registers Definitions

Table 20.4 lists the 15 indirect registers used to configured and communicate with the LIN controller.

Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LIN0DT1	0x00		DATA1[7:0]							
LIN0DT2	0x01		DATA2[7:0]							
LIN0DT3	0x02				DATA	3[7:0]				
LIN0DT4	0x03				DATA	4[7:0]				
LIN0DT5	0x04				DATAS	5[7:0]				
LIN0DT6	0x05				DATA	67:0]				
LIN0DT7	0x06				DATA	7[7:0]				
LIN0DT8	0x07				DATA	3[7:0]				
LIN0CTRL	0x08	STOP(s)	SLEEP(s)	TXRX	DTACK(s)	RSTINT	RSTERR	WUPREQ	STREQ(m)	
LIN0ST	0x09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE	
LIN0ERR	0x0A				SYNCH(s)	PRTY(s)	TOUT	СНК	BITERR	
LIN0SIZE	0x0B	ENHCHK					LINS	SIZE[3:0]		
LIN0DIV	0x0C				DIVLS	B[7:0]				
LIN0MUL	0x0D	PRESCL[1:0] LINMUL[4:0] DIV9						DIV9		
LIN0ID	0x0E			ID5	ID4	ID3	ID2	ID1	ID0	
Mast	*Note: These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.									

Table 20.4. LIN Registers* (Indirectly Addressable)

23.3.3. Multiprocessor Communications

UART0 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE0 bit (SMOD0.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX0 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) bits of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

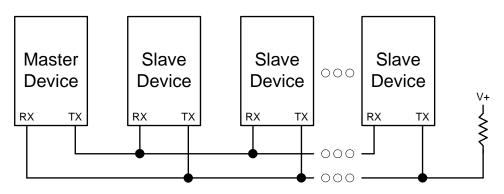


Figure 23.6. UART Multi-Processor Mode Interconnect Diagram

System Clock (Hz)	PCA0CPL5	Timeout Interval (ms)					
24,000,000	255	32.8					
24,000,000	128	16.5					
24,000,000	32	4.2					
3,000,000	255	262.1					
3,000,000	128	132.1					
3,000,000	32	33.8					
187,500 ²	255	4194					
187,500 ²	128	2114					
187,500 ²	32	541					
 Notes: 1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value of 0x00 at the update time. 2. Internal SYSCLK reset frequency = Internal Oscillator divided by 128. 							

Table 26.3. Watchdog Timer Timeout Intervals¹

SILICON LABS

27.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 27.1.

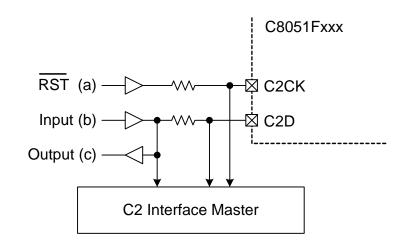


Figure 27.1. Typical C2 Pin Sharing

The configuration in Figure 27.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

303

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com