NXP USA Inc. - <u>KMPC8343CZQAGDB Datasheet</u>

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (3)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8343czqagdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*.

See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

1 Overview

This section provides a high-level overview of the device features. Figure 1 shows the major functional units within the MPC8343EA.

Figure 1. MPC8343EA Block Diagram

Major features of the device are as follows:

- Embedded PowerPC e300 processor core; operates at up to 400 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology
- Double data rate, DDR1/DDR2 SDRAM memory controller
 - Programmable timing supporting DDR1 and DDR2 SDRAM
 - 32- bit data interface, up to 266 MHz data rate

Overview

- Up to four physical banks (chip selects), each bank up to 1 Gbyte independently addressable
- DRAM chip configurations from 64 Mbits to 1 Gbit with $\times 8/\times 16$ data ports
- Full error checking and correction (ECC) support
- Support for up to 16 simultaneous open pages (up to 32 pages for DDR2)
- Contiguous or discontiguous memory mapping
- Read-modify-write support
- Sleep-mode support for SDRAM self refresh
- Auto refresh
- On-the-fly power management using CKE
- Registered DIMM support
- 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2
- Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
 - Dual controllers designed to comply with IEEE 802.3TM, 802.3uTM, 820.3xTM, 802.3zTM, 802.3acTM standards
 - Ethernet physical interfaces:
 - 1000 Mbps IEEE Std. 802.3 RGMII, IEEE Std. 802.3z RTBI, full-duplex
 - 10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex
 - Buffer descriptors are backward-compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module
 - MII management interface for control and status
 - Programmable CRC generation and checking
- PCI interface
 - Designed to comply with PCI Specification Revision 2.3
 - Data bus width:
 - 32-bit data PCI interface operating at up to 66 MHz
 - PCI 3.3-V compatible
 - PCI host bridge capabilities
 - PCI agent mode on PCI interface
 - PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Posting of processor-to-PCI and PCI-to-memory writes
 - On-chip arbitration supporting five masters on PCI
 - Accesses to all PCI address spaces
 - Parity supported
 - Selectable hardware-enforced coherency

- Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects for eight external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - Handshaking (external control) signals for all channels: DMA_DREQ[0:3], DMA_DACK[0:3], DMA_DDONE[0:3]
 - All channels accessible to local core and remote PCI masters

Parameter	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_

Table 2. Recommended Operating Conditions (continued)

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8343EA.

Figure 2. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

RESET Initialization

5.2 **RESET AC Electrical Characteristics**

Table 10 provides the reset initialization AC timing specifications of the MPC8343EA.

Table 10. RESET Initialization Timing Specifications

Parameter	Min	Max	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8343EA is in PCI host mode	32	—	t _{CLKIN}	2
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to PCI_SYNC_IN when the MPC8343EA is in PCI agent mode	32	—	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343EA is in PCI host mode	4	_	t _{CLKIN}	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343EA is in PCI agent mode	4	—	t _{PCI_SYNC_IN}	1
Input hold time for POR configuration signals with respect to negation of HRESET	0	—	ns	—
Time for the MPC8343EA to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$	—	4	ns	3
Time for the MPC8343EA to turn on POR configuration signals with respect to the negation of HRESET	1		t _{PCI_SYNC_IN}	1, 3

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual*.

2. t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual.

3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 11 lists the PLL and DLL lock times.

Table 11. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8343EA. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V. The AC electrical specifications are the same for DDR and DRR2 SDRAM.

NOTE

The information in this document is accurate for revision 3.0 silicon and later. For information on revision 1.1 silicon and earlier versions see the *MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*. See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8343EA when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	_
Output leakage current	I _{OZ}	-9.9	9.9	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

2. MV_{REF} is expected to equal 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} cannot exceed ±2% of the DC value.

 V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

DDR and DDR2 SDRAM

Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	_
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	_
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	_

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 15 provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Figure 7 shows the DDR SDRAM output timing diagram.

Figure 8 provides the AC test load for the DDR bus.

Figure 8. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8343EA.

7.1 DUART DC Electrical Characteristics

Table 21 provides the DC electrical characteristics for the DUART interface of the MPC8343EA.

Table 21. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8 V \leq V _{IN} \leq 2 V)	I _{IN}	—	±5	μA

Table 21. DUA	RT DC Electrica	Characteristics	(continued)
---------------	-----------------	-----------------	-------------

Parameter	Symbol	Min	Мах	Unit
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8343EA.

Table 22. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)—MII/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII interface is defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.2.1.2 MII Receive AC Timing Specifications

Table 26 provides the MII receive AC timing specifications.

Table 26. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise (20%–80%)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF}	1.0	—	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 10 provides the AC test load for TSEC.

Figure 10. TSEC AC Test Load

Figure 11 shows the MII receive AC timing diagram.

Figure 11. MII Receive AC Timing Diagram

USB

9 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8343EA.

9.1 USB DC Electrical Characteristics

Table 31 provides the DC electrical characteristics for the USB interface.

Table 31. USB DC Electrical Characteristics	Table 31. U	ISB DC	Electrical	Characteristics
---	-------------	--------	------------	-----------------

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

9.2 USB AC Electrical Specifications

Table 32 describes the general timing parameters of the USB interface of the MPC8343EA.

Table 32. USB General Timing Parameters (ULPI Mode Only)

Parameter	Symbol ¹	Min	Max	Unit	Notes
USB clock cycle time	t _{USCK}	15	_	ns	2–5
Input setup to USB clock—all inputs	t _{USIVKH}	4	_	ns	2–5
Input hold to USB clock—all inputs	t _{USIXKH}	1	_	ns	2–5
USB clock to output valid—all outputs	t _{USKHOV}	—	7	ns	2–5
Output hold from USB clock—all outputs	t _{USKHOX}	2	_	ns	2–5

Notes:

 The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{USIXKH} symbolizes USB timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t_{USKHOX} symbolizes USB timing (US) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.

2. All timings are in reference to USB clock.

3. All signals are measured from $OV_{DD}/2$ of the rising edge of the USB clock to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.

4. Input timings are measured at the pin.

5. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Figure 19. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

PCI

Table 41. PCI AC Timing Specifications at 66 MHz¹ (continued)

Parameter	Symbol ²	Min	Max	Unit	Notes
Input hold from clock	t _{PCIXKH}	0		ns	3, 5

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

Table 42 provides the PCI AC timing specifications at 33 MHz.

Table 42. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	-	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 30 provides the AC test load for PCI.

Figure 30. PCI AC Test Load

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Module height (typical) Module height (minimum) Solder balls

Ball diameter (typical)

2.23 mm 2.00 mm 62 Sn/36 Pb/2 Ag (ZQ package) 96.5 Sn/3.5Ag (VR package) 0.60 mm

18.3 Pinout Listings

Table 51 provides the pin-out listing for the MPC8343EA, 620-PBGA package.

Table 51. MPC8343EA (PBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI			
PCI1_INTA/IRQ_OUT	D20	0	OV _{DD}	2
PCI1_RESET_OUT	B21	0	OV _{DD}	—
PCI1_AD[31:0]	E19, D17, A16, A18, B17, B16, D16, B18, E17, E16, A15, C16, D15, D14, C14, A12, D12, B11, C11, E12, A10, C10, A9, E11, E10, B9, B8, D9, A8, C9, D8, C8	I/O	OV _{DD}	—
PCI1_C/BE[3:0]	A17, A14, A11, B10	I/O	OV _{DD}	—
PCI1_PAR	D13	I/O	OV _{DD}	—
PCI1_FRAME	B14	I/O	OV _{DD}	5
PCI1_TRDY	A13	I/O	OV _{DD}	5
PCI1_IRDY	E13	I/O	OV _{DD}	5
PCI1_STOP	C13	I/O	OV _{DD}	5
PCI1_DEVSEL	B13	I/O	OV _{DD}	5
PCI1_IDSEL	C17	I	OV _{DD}	—
PCI1_SERR	C12	I/O	OV _{DD}	5
PCI1_PERR	B12	I/O	OV _{DD}	5
PCI1_REQ[0]	A21	I/O	OV _{DD}	—
PCI1_REQ[1]/CPCI1_HS_ES	C19	I	OV _{DD}	—
PCI1_REQ[2:4]	C18, A19, E20	I	OV _{DD}	—
PCI1_GNT0	B20	I/O	OV _{DD}	—
PCI1_GNT1/CPCI1_HS_LED	C20	0	OV _{DD}	—
PCI1_GNT2/CPCI1_HS_ENUM	B19	0	OV _{DD}	—
PCI1_GNT[3:4]	A20, E18	0	OV _{DD}	—
M66EN	L26	I	OV _{DD}	—
	DDR SDRAM Memory Interface			
MDQ[0:31]	AC25, AD27, AD25, AH27, AE28, AD26, AD24, AF27, AF25, AF28, AH24, AG26, AE25, AG25, AH26, AH25, AG22, AH22, AE21, AD19, AE22, AF23, AE19, AG20, AG19, AD17, AE16, AF16, AF18, AG18, AH17, AH16	I/O	GV _{DD}	_

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LBCTL	H5	0	OV _{DD}	_
LALE	E3	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	F4	I/O	OV _{DD}	
LGPL1/LSDWE/cfg_reset_source1	D2	I/O	OV _{DD}	
LGPL2/LSDRAS/LOE	C1	0	OV _{DD}	_
LGPL3/LSDCAS/cfg_reset_source2	C2	I/O	OV _{DD}	_
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}	12
LGPL5/cfg_clkin_div	B3	I/O	OV _{DD}	_
LCKE	E4	0	OV _{DD}	_
LCLK[0:2]	D4, A3, C4	0	OV _{DD}	_
LSYNC_OUT	U3	0	OV _{DD}	_
LSYNC_IN	Y2	I	OV_{DD}	
	General Purpose I/O Timers			
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/ GTM2_TIN2	D27	I/O	OV _{DD}	
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/ GTM2_TGATE2	E26	I/O	OV _{DD}	—
GPIO1[2]/DMA_DDONE0/ GTM1_TOUT1	D28	I/O	OV _{DD}	—
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	G25	I/O	OV _{DD}	_
GPIO1[4]/DMA_DACK1/ GTM1_TGATE2/GTM2_TGATE1	J24	I/O	OV _{DD}	_
GPIO1[5]/DMA_DDONE1/ GTM1_TOUT2/GTM2_TOUT1	F26	I/O	OV _{DD}	_
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	E27	I/O	OV _{DD}	—
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/ GTM2_TGATE4	E28	I/O	OV _{DD}	_
GPIO1[8]/DMA_DDONE2/ GTM1_TOUT3	H25	I/O	OV _{DD}	_
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	F27	I/O	OV _{DD}	—
GPIO1[10]/DMA_DACK3/ GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	—
GPIO1[11]/DMA_DDONE3/ GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	_

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
TSEC1_RX_DV	U24	I	LV _{DD1}	_		
TSEC1_RX_ER/GPIO2[26]	L28	I/O	OV _{DD}	_		
TSEC1_RXD[3:0]	W26, W24, Y28, Y27	I	LV _{DD1}	_		
TSEC1_TX_CLK	N25	I	OV _{DD}	_		
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	10		
TSEC1_TX_EN	W27	0	LV _{DD1}	—		
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	_		
Three-S	peed Ethernet Controller (Gigabit Ethe	rnet 2)				
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	—		
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	—		
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	—		
TSEC2_RX_CLK	AB25	I	LV _{DD2}	—		
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	—		
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	_		
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	_		
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	_		
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	_		
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3		
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	_		
	DUART					
UART_SOUT[1:2]/MSRCID[0:1]/ LSRCID[0:1]	B4, A4	0	OV _{DD}			
UART_SIN[1:2]/MSRCID[2:3]/ LSRCID[2:3]	D5, C5	I/O	OV _{DD}	—		
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	_		
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}			
UART_RTS[1:2]	D6, C6	0	OV _{DD}	_		
I ² C interface						
IIC1_SDA	E5	I/O	OV _{DD}	2		
IIC1_SCL	A6	I/O	OV _{DD}	2		
IIC2_SDA	B6	I/O	OV _{DD}	2		
IIC2_SCL	E7	I/O	OV _{DD}	2		

Clocking

I	RCWL[COREPLI	-]	aara alki aab alk Datia			
0–1	2–5	6	<i>core_cik</i> : <i>csb_cik</i> Ralio			
00	0010	0	2:1	2		
01	0010	0	2:1	4		
10	0010	0	2:1	8		
11	0010	0	2:1	8		
00	0010	1	2.5:1	2		
01	0010	1	2.5:1	4		
10	0010	1	2.5:1	8		
11	0010	1	2.5:1	8		
00	0011	0	3:1	2		
01	0011	0	3:1	4		
10	0011	0	3:1	8		
11	0011	0	3:1	8		

Table 57. e300 Core PLL Configuration (continued)

¹ Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

19.3 Suggested PLL Configurations

Table 58 shows suggested PLL configurations for 33 and 66 MHz input clocks, when CFG_CLKIN_DIV is low at reset.

	RCWL		266 MHz Device			333 MHz Device			400 MHz Device		
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
33 MHz CLKIN/PCI_CLK Options											
343	0011	1000011	33	100	150	33	100	150	33	100	150
324	0011	0100100	33	100	200	33	100	200	33	100	200
423	0100	0100011	33	133	200	33	133	200	33	133	200
622	0110	0100010	33	200	200	33	200	200	33	200	200
523	0101	0100011	33	166	250	33	166	250	33	166	250
424	0100	0100100	33	133	266	33	133	266	33	133	266
822	1000	0100010	33	266	266	33	266	266	33	266	266

Table 58. Suggested PLL Configurations

	RCWL		266 MHz Device			333 MHz Device			400 MHz Device		
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
326	0011	0100110				33	100	300	33	100	300
623	0110	0100011	—			33	200	300	33	200	300
922	1001	0100010	_			33	300	300	33	300	300
425	0100	0100101	_			33	133	333	33	133	333
524	0101	0100100	_			33	166	333	33	166	333
A22	1010	0100010	—			33	333	333	33	333	333
723	0111	0100011	—						33	233	350
604	0110	0000100	_			—			33	200	400
624	0110	0100100	—						33	200	400
823	1000	0100011	_			—			33	266	400
	66 MHz CLKIN/PCI_CLK Options										
242	0010	1000010	66	133	133	66	133	133	66	133	133
322	0011	0100010	66	200	200	66	200	200	66	200	200
224	0010	0100100	66	133	266	66	133	266	66	133	266
422	0100	0100010	66	266	266	66	266	266	66	266	266
323	0011	0100011	—			66	200	300	66	200	300
223	0010	0100101				66	133	333	66	133	333
522	0101	0100010				66	333	333	66	333	333
304	0011	0000100	—			_			66	200	400
324	0011	0100100	_						66	200	400
403	0100	0000011	_			—			66	266	400
423	0100	0100011		_			_		66	266	400

Table 58. Suggested PLI	- Configurations	(continued)
-------------------------	------------------	-------------

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.
 ² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

Ordering Information

However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for the output pins.

21.7 Pull-Up Resistor Requirements

The MPC8343EA requires high resistance pull-up resistors (10 k Ω is recommended) on open-drain pins, including I²C pins, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, refer to application note AN2931, "PowerQUICC Design Checklist."

22 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8343EEC).

22.1 Part Numbers Fully Addressed by This Document

Table 62 shows an analysis of the Freescale part numbering nomenclature for the MPC8343EA. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration