### NXP USA Inc. - KMPC8343ECZQAGDB Datasheet





#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                 |
|---------------------------------|--------------------------------------------------------------------------|
| Core Processor                  | PowerPC e300                                                             |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Speed                           | 400MHz                                                                   |
| Co-Processors/DSP               | Security; SEC                                                            |
| RAM Controllers                 | DDR, DDR2                                                                |
| Graphics Acceleration           | No                                                                       |
| Display & Interface Controllers | -                                                                        |
| Ethernet                        | 10/100/1000Mbps (3)                                                      |
| SATA                            | -                                                                        |
| USB                             | USB 2.0 + PHY (2)                                                        |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                         |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                       |
| Security Features               | Cryptography, Random Number Generator                                    |
| Package / Case                  | 620-BBGA Exposed Pad                                                     |
| Supplier Device Package         | 620-HBGA (29x29)                                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8343eczqagdb |
|                                 |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Overview

- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i<sup>®</sup>, iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
  - Public key execution unit (PKEU) :
    - RSA and Diffie-Hellman algorithms
    - Programmable field size up to 2048 bits
    - Elliptic curve cryptography
    - F2m and F(p) modes
    - Programmable field size up to 511 bits
  - Data encryption standard (DES) execution unit (DEU)
    - DES and 3DES algorithms
    - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
    - ECB and CBC modes for both DES and 3DES
  - Advanced encryption standard unit (AESU)
    - Implements the Rijndael symmetric-key cipher
    - Key lengths of 128, 192, and 256 bits
    - ECB, CBC, CCM, and counter (CTR) modes
  - XOR parity generation accelerator for RAID applications
  - ARC four execution unit (AFEU)
    - Stream cipher compatible with the RC4 algorithm
    - 40- to 128-bit programmable key
  - Message digest execution unit (MDEU)
    - SHA with 160-, 224-, or 256-bit message digest
    - MD5 with 128-bit message digest
    - HMAC with either algorithm
  - Random number generator (RNG)
  - Four crypto-channels, each supporting multi-command descriptor chains
    - Static and/or dynamic assignment of crypto-execution units through an integrated controller
    - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
  - USB on-the-go mode with both device and host functionality
  - Complies with USB specification Rev. 2.0
  - Can operate as a stand-alone USB device
    - One upstream facing port
    - Six programmable USB endpoints



#### Electrical Characteristics

- Misaligned transfer capability
- Data chaining and direct mode
- Interrupt on completed segment and chain
- DUART
  - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
  - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
  - 39 parallel I/O pins multiplexed on various chip interfaces
- System timers
  - Periodic interrupt timer
  - Real-time clock
  - Software watchdog timer
  - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1<sup>™</sup>, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

# 2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8343EA. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

# 2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

## 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

| Parameter                                                                                                    | Symbol           | Max Value                    | Unit | Notes |
|--------------------------------------------------------------------------------------------------------------|------------------|------------------------------|------|-------|
| Core supply voltage                                                                                          | V <sub>DD</sub>  | -0.3 to 1.32                 | V    | —     |
| PLL supply voltage                                                                                           | AV <sub>DD</sub> | -0.3 to 1.32                 | V    | —     |
| DDR and DDR2 DRAM I/O voltage                                                                                | GV <sub>DD</sub> | -0.3 to 2.75<br>-0.3 to 1.98 | V    | —     |
| Three-speed Ethernet I/O, MII management voltage                                                             | LV <sub>DD</sub> | -0.3 to 3.63                 | V    | —     |
| PCI, local bus, DUART, system control and power management, $\mathrm{I}^{2}\mathrm{C},$ and JTAG I/O voltage | OV <sub>DD</sub> | -0.3 to 3.63                 | V    | -     |

### Table 1. Absolute Maximum Ratings<sup>1</sup>



|                   | Parameter                                                                                        | Symbol            | Max Value                        | Unit | Notes |
|-------------------|--------------------------------------------------------------------------------------------------|-------------------|----------------------------------|------|-------|
| Input voltage     | DDR DRAM signals                                                                                 | MV <sub>IN</sub>  | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2, 5  |
|                   | DDR DRAM reference                                                                               | MV <sub>REF</sub> | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2, 5  |
|                   | Three-speed Ethernet signals                                                                     | LV <sub>IN</sub>  | -0.3 to (LV <sub>DD</sub> + 0.3) | V    | 4, 5  |
|                   | Local bus, DUART, CLKIN, system control and power management, I <sup>2</sup> C, and JTAG signals | OV <sub>IN</sub>  | -0.3 to (OV <sub>DD</sub> + 0.3) | V    | 3, 5  |
|                   | PCI                                                                                              | OV <sub>IN</sub>  | -0.3 to (OV <sub>DD</sub> + 0.3) | V    | 6     |
| Storage temperatu | ire range                                                                                        | T <sub>STG</sub>  | –55 to 150                       | °C   | _     |

### Table 1. Absolute Maximum Ratings<sup>1</sup> (continued)

#### Notes:

- <sup>1</sup> Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- <sup>2</sup> **Caution:** MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>3</sup> **Caution:** OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>4</sup> **Caution:** LV<sub>IN</sub> must not exceed LV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>5</sup> (M,L,O)V<sub>IN</sub> and MV<sub>REF</sub> may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

## 2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8343EA. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

| Parameter                               | Symbol            | Recommended<br>Value             | Unit | Notes |
|-----------------------------------------|-------------------|----------------------------------|------|-------|
| Core supply voltage                     | V <sub>DD</sub>   | 1.2 V ± 60 mV                    | V    | 1     |
| PLL supply voltage                      | AV <sub>DD</sub>  | 1.2 V ± 60 mV                    | V    | 1     |
| DDR and DDR2 DRAM I/O voltage           | GV <sub>DD</sub>  | 2.5 V ± 125 mV<br>1.8 V ± 90 mV  | V    | —     |
| Three-speed Ethernet I/O supply voltage | LV <sub>DD1</sub> | 3.3 V ± 330 mV<br>2.5 V ± 125 mV | V    | —     |
| Three-speed Ethernet I/O supply voltage | LV <sub>DD2</sub> | 3.3 V ± 330 mV<br>2.5 V ± 125 mV | V    | —     |

#### Table 2. Recommended Operating Conditions



Table 5 shows the estimated typical I/O power dissipation for MPC8343EA.

| Interface                                                              | Parameter        | DDR2<br>GV <sub>DD</sub><br>(1.8 V) | DDR1<br>GV <sub>DD</sub><br>(2.5 V) | OV <sub>DD</sub><br>(3.3 V) | LV <sub>DD</sub><br>(3.3 V) | LV <sub>DD</sub><br>(2.5 V) | Unit | Comments            |
|------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|------|---------------------|
| DDR I/O                                                                | 200 MHz, 32 bits | 0.31                                | 0.42                                | —                           | —                           | —                           | W    | —                   |
| 65% utilization<br>2.5 V<br>Rs = 20 Ω<br>Rt = 50 Ω<br>2 pair of clocks | 266 MHz, 32 bits | 0.35                                | 0.5                                 |                             |                             |                             | W    | —                   |
| PCI I/O                                                                | 33 MHz, 32 bits  | _                                   | _                                   | 0.04                        | _                           | —                           | W    | —                   |
| load = 30 pF                                                           | 66 MHz, 32 bits  | _                                   |                                     | 0.07                        | —                           | —                           | W    | —                   |
| Local bus I/O                                                          | 167 MHz, 32 bits | _                                   | _                                   | 0.34                        | —                           | —                           | W    | —                   |
| load = 25 pF                                                           | 133 MHz, 32 bits | _                                   | _                                   | 0.27                        | —                           | —                           | W    | —                   |
|                                                                        | 83 MHz, 32 bits  | _                                   | _                                   | 0.17                        | —                           | —                           | W    | —                   |
|                                                                        | 66 MHz, 32 bits  | _                                   | _                                   | 0.14                        | —                           | —                           | W    | —                   |
|                                                                        | 50 MHz, 32 bits  | _                                   |                                     | 0.11                        | —                           | —                           | W    | —                   |
| TSEC I/O                                                               | MII              | _                                   |                                     |                             | 0.01                        | —                           | W    | Multiply by number  |
| load = 25 pF                                                           | GMII or TBI      | _                                   |                                     |                             | 0.06                        | —                           | W    | of interfaces used. |
|                                                                        | RGMII or RTBI    | —                                   |                                     |                             | —                           | 0.04                        | W    |                     |
| USB                                                                    | 12 MHz           |                                     |                                     | 0.01                        | —                           | —                           | W    | —                   |
|                                                                        | 480 MHz          | —                                   |                                     | 0.2                         | —                           | —                           | W    | —                   |
| Other I/O                                                              |                  | —                                   | _                                   | 0.01                        | —                           | —                           | W    | —                   |

Table 5. MPC8343EA Typical I/O Power Dissipation

# 4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the device.

# 4.1 DC Electrical Characteristics

Table 6 provides the clock input (CLKIN/PCI\_SYNC\_IN) DC timing specifications for the MPC8343EA.

Table 6. CLKIN DC Timing Specifications

| Parameter           | Condition                      | Symbol          | Min  | Мах                    | Unit |
|---------------------|--------------------------------|-----------------|------|------------------------|------|
| Input high voltage  | _                              | V <sub>IH</sub> | 2.7  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage   | —                              | V <sub>IL</sub> | -0.3 | 0.4                    | V    |
| CLKIN input current | $0~V \leq V_{IN} \leq OV_{DD}$ | I <sub>IN</sub> | —    | ±10                    | μA   |



#### DDR and DDR2 SDRAM

#### Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

#### Table 13. DDR2 SDRAM Capacitance for GV<sub>DD</sub>(typ) = 1.8 V

| Parameter/Condition                          | Symbol           | Min | Мах | Unit | Notes |
|----------------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS, DQS       | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS, DQS | C <sub>DIO</sub> |     | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $GV_{DD}$  = 1.8 V ± 0.090 V, f = 1 MHz, T<sub>A</sub> = 25°C, V<sub>OUT</sub> =  $GV_{DD}/2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when  $GV_{DD}(typ) = 2.5 \text{ V}.$ 

#### Table 14. DDR SDRAM DC Electrical Characteristics for GV<sub>DD</sub>(typ) = 2.5 V

| Parameter/Condition                             | Symbol            | Min                      | Мах                      | Unit | Notes |
|-------------------------------------------------|-------------------|--------------------------|--------------------------|------|-------|
| I/O supply voltage                              | GV <sub>DD</sub>  | 2.375                    | 2.625                    | V    | 1     |
| I/O reference voltage                           | MV <sub>REF</sub> | $0.49 	imes GV_{DD}$     | $0.51 	imes GV_{DD}$     | V    | 2     |
| I/O termination voltage                         | V <sub>TT</sub>   | MV <sub>REF</sub> – 0.04 | MV <sub>REF</sub> + 0.04 | V    | 3     |
| Input high voltage                              | V <sub>IH</sub>   | MV <sub>REF</sub> + 0.18 | GV <sub>DD</sub> + 0.3   | V    | —     |
| Input low voltage                               | V <sub>IL</sub>   | -0.3                     | MV <sub>REF</sub> – 0.18 | V    | —     |
| Output leakage current                          | I <sub>OZ</sub>   | -9.9                     | -9.9                     | μA   | 4     |
| Output high current (V <sub>OUT</sub> = 1.95 V) | I <sub>ОН</sub>   | -15.2                    | —                        | mA   | —     |
| Output low current (V <sub>OUT</sub> = 0.35 V)  | I <sub>OL</sub>   | 15.2                     | —                        | mA   | —     |

Notes:

1.  $\text{GV}_{\text{DD}}$  is expected to be within 50 mV of the DRAM  $\text{GV}_{\text{DD}}$  at all times.

2.  $MV_{REF}$  is expected to be equal to 0.5 ×  $GV_{DD}$ , and to track  $GV_{DD}$  DC variations as measured at the receiver. Peak-to-peak noise on  $MV_{REF}$  may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV<sub>REF</sub>. This rail should track variations in the DC level of MV<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  GV<sub>DD</sub>.

Table 15 provides the DDR capacitance when  $GV_{DD}(typ) = 2.5$  V.

#### Table 15. DDR SDRAM Capacitance for GV<sub>DD</sub>(typ) = 2.5 V

| Parameter/Condition                     | Symbol           | Min | Мах | Unit | Notes |
|-----------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS       | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | —   | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $GV_{DD} = 2.5 V \pm 0.125 V$ , f = 1 MHz, T<sub>A</sub> = 25°C, V<sub>OUT</sub> =  $GV_{DD}/2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.



DDR and DDR2 SDRAM

### Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with GV\_DD of (1.8 or 2.5 V)  $\pm$  5%.

| Parameter                                      | Symbol <sup>1</sup>                         | Min                        | Max                        | Unit | Notes |
|------------------------------------------------|---------------------------------------------|----------------------------|----------------------------|------|-------|
| ADDR/CMD/MODT output hold with respect to MCK  | t <sub>DDKHAX</sub>                         |                            |                            | ns   | 3     |
| 400 MHz                                        |                                             | 1.95                       | —                          |      |       |
| 333 MHz                                        |                                             | 2.40                       | —                          |      |       |
| 266 MHz                                        |                                             | 3.15                       | —                          |      |       |
| 200 MHz                                        |                                             | 4.20                       | —                          |      |       |
| MCS(n) output setup with respect to MCK        | t <sub>DDKHCS</sub>                         |                            |                            | ns   | 3     |
| 400 MHz                                        |                                             | 1.95                       | —                          |      |       |
| 333 MHz                                        |                                             | 2.40                       | —                          |      |       |
| 266 MHz                                        |                                             | 3.15                       | —                          |      |       |
| 200 MHz                                        |                                             | 4.20                       | —                          |      |       |
| MCS(n) output hold with respect to MCK         | t <sub>DDKHCX</sub>                         |                            |                            | ns   | 3     |
| 400 MHz                                        |                                             | 1.95                       | —                          |      |       |
| 333 MHz                                        |                                             | 2.40                       | —                          |      |       |
| 266 MHz                                        |                                             | 3.15                       | —                          |      |       |
| 200 MHz                                        |                                             | 4.20                       | —                          |      |       |
| MCK to MDQS Skew                               | t <sub>DDKHMH</sub>                         | -0.6                       | 0.6                        | ns   | 4     |
| MDQ/MECC/MDM output setup with respect to MDQS | t <sub>DDKHDS,</sub><br>t <sub>DDKLDS</sub> |                            |                            | ps   | 5     |
| 400 MHz                                        |                                             | 700                        | —                          |      |       |
| 333 MHz                                        |                                             | 775                        | —                          |      |       |
| 266 MHz                                        |                                             | 1100                       | —                          |      |       |
| 200 MHz                                        |                                             | 1200                       | —                          |      |       |
| MDQ/MECC/MDM output hold with respect to MDQS  | t <sub>DDKHDX,</sub><br>t <sub>DDKLDX</sub> |                            |                            | ps   | 5     |
| 400 MHz                                        |                                             | 700                        | —                          |      |       |
| 333 MHz                                        |                                             | 900                        | —                          |      |       |
| 266 MHz                                        |                                             | 1100                       | —                          |      |       |
| 200 MHz                                        |                                             | 1200                       | —                          |      |       |
| MDQS preamble start                            | t <sub>DDKHMP</sub>                         | $-0.5 	imes t_{MCK} - 0.6$ | $-0.5 	imes t_{MCK} + 0.6$ | ns   | 6     |



| Parameter                                          | Symbol          | Min                    | Мах | Unit |
|----------------------------------------------------|-----------------|------------------------|-----|------|
| High-level output voltage, $I_{OH} = -100 \ \mu A$ | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | _   | V    |
| Low-level output voltage, $I_{OL} = 100 \ \mu A$   | V <sub>OL</sub> | _                      | 0.2 | V    |

# 7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8343EA.

Table 22. DUART AC Timing Specifications

| Parameter         | Value       | Unit | Notes |
|-------------------|-------------|------|-------|
| Minimum baud rate | 256         | baud | —     |
| Maximum baud rate | > 1,000,000 | baud | 1     |
| Oversample rate   | 16          |      | 2     |

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

# 8.1 Three-Speed Ethernet Controller (TSEC)—MII/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII interface is defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."



## 8.2.1.2 MII Receive AC Timing Specifications

Table 26 provides the MII receive AC timing specifications.

#### Table 26. MII Receive AC Timing Specifications

At recommended operating conditions with  $LV_{DD}/OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                         | Symbol <sup>1</sup>                 | Min  | Тур | Мах | Unit |
|---------------------------------------------|-------------------------------------|------|-----|-----|------|
| RX_CLK clock period 10 Mbps                 | t <sub>MRX</sub>                    | —    | 400 | —   | ns   |
| RX_CLK clock period 100 Mbps                | t <sub>MRX</sub>                    | _    | 40  | _   | ns   |
| RX_CLK duty cycle                           | t <sub>MRXH</sub> /t <sub>MRX</sub> | 35   | —   | 65  | %    |
| RXD[3:0], RX_DV, RX_ER setup time to RX_CLK | t <sub>MRDVKH</sub>                 | 10.0 | —   | —   | ns   |
| RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  | t <sub>MRDXKH</sub>                 | 10.0 | —   | —   | ns   |
| RX_CLK clock rise (20%–80%)                 | t <sub>MRXR</sub>                   | 1.0  | —   | 4.0 | ns   |
| RX_CLK clock fall time (80%-20%)            | t <sub>MRXF</sub>                   | 1.0  | —   | 4.0 | ns   |

#### Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 10 provides the AC test load for TSEC.

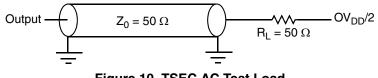



Figure 10. TSEC AC Test Load

Figure 11 shows the MII receive AC timing diagram.

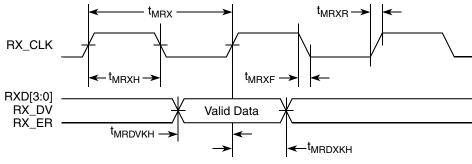



Figure 11. MII Receive AC Timing Diagram



# 13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8343EA.

# **13.1 PCI DC Electrical Characteristics**

Table 40 provides the DC electrical characteristics for the PCI interface of the MPC8343EA.

| Parameter                 | Symbol          | Test Condition                                       | Min                    | Max                    | Unit |
|---------------------------|-----------------|------------------------------------------------------|------------------------|------------------------|------|
| High-level input voltage  | V <sub>IH</sub> | $V_{OUT} \ge V_{OH}$ (min) or                        | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage   | V <sub>IL</sub> | $V_{OUT} \le V_{OL}$ (max)                           | -0.3                   | 0.8                    | V    |
| Input current             | I <sub>IN</sub> | $V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD}$      | _                      | ±5                     | μA   |
| High-level output voltage | V <sub>OH</sub> | OV <sub>DD</sub> = min,<br>I <sub>OH</sub> = -100 μA | OV <sub>DD</sub> – 0.2 |                        | V    |
| Low-level output voltage  | V <sub>OL</sub> | OV <sub>DD</sub> = min,<br>I <sub>OL</sub> = 100 μA  | _                      | 0.2                    | V    |

### **Table 40. PCI DC Electrical Characteristics**

Note:

1. The symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1.

# 13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8343EA. Note that the PCI\_CLK or PCI\_SYNC\_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. Table 41 provides the PCI AC timing specifications at 66 MHz.

| Table 41. PCI AC Timing Specifications at 66 MHz <sup>1</sup> |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

| Parameter                      | Symbol <sup>2</sup> | Min | Мах | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | <sup>t</sup> PCKHOV | _   | 6.0 | ns   | 3     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 1   | _   | ns   | 3     |
| Clock to output high impedance | t <sub>PCKHOZ</sub> | -   | 14  | ns   | 3, 4  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | _   | ns   | 3, 5  |



PCI

#### Table 41. PCI AC Timing Specifications at 66 MHz<sup>1</sup> (continued)

| Parameter             | Symbol <sup>2</sup> | Min | Мах | Unit | Notes |
|-----------------------|---------------------|-----|-----|------|-------|
| Input hold from clock | t <sub>PCIXKH</sub> | 0   |     | ns   | 3, 5  |

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.</sub>
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

## Table 42 provides the PCI AC timing specifications at 33 MHz.

#### Table 42. PCI AC Timing Specifications at 33 MHz

| Parameter                      | Symbol <sup>1</sup> | Min | Мах | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | <sup>t</sup> PCKHOV | _   | 11  | ns   | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 2   | —   | ns   | 2     |
| Clock to output high impedance | t <sub>PCKHOZ</sub> | —   | 14  | ns   | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | —   | ns   | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   | —   | ns   | 2, 4  |

Notes:

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 30 provides the AC test load for PCI.

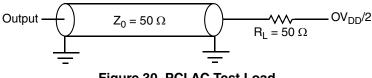



Figure 30. PCI AC Test Load

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Figure 31 shows the PCI input AC timing diagram.

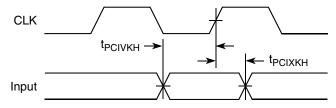
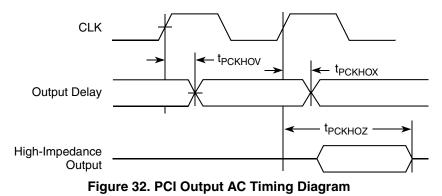




Figure 31. PCI Input AC Timing Diagram

Figure 32 shows the PCI output AC timing diagram.



# 14 Timers

This section describes the DC and AC electrical specifications for the timers.

# 14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8343EA timer pins, including TIN,  $\overline{\text{TOUT}}$ , TGATE, and RTC\_CLK.

| Parameter           | Symbol          | Condition                 | Min  | Мах                    | Unit |
|---------------------|-----------------|---------------------------|------|------------------------|------|
| Input high voltage  | V <sub>IH</sub> | —                         | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                         | -0.3 | 0.8                    | V    |
| Input current       | I <sub>IN</sub> | —                         | —    | ±5                     | μA   |
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA | 2.4  | —                      | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA  | —    | 0.5                    | V    |
| Output low voltage  | V <sub>OL</sub> | l <sub>OL</sub> = 3.2 mA  | —    | 0.4                    | V    |

**Table 43. Timer DC Electrical Characteristics** 



# 16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

# **16.1 IPIC DC Electrical Characteristics**

Table 47 provides the DC electrical characteristics for the external interrupt pins.

### Table 47. IPIC DC Electrical Characteristics<sup>1</sup>

| Parameter          | Symbol Condition |                          | Min  | Max                    | Unit | Notes |
|--------------------|------------------|--------------------------|------|------------------------|------|-------|
| Input high voltage | V <sub>IH</sub>  | _                        | 2.0  | OV <sub>DD</sub> + 0.3 | V    | —     |
| Input low voltage  | V <sub>IL</sub>  | _                        | -0.3 | 0.8                    | V    | —     |
| Input current      | I <sub>IN</sub>  | _                        | _    | ±5                     | μA   | —     |
| Output low voltage | V <sub>OL</sub>  | l <sub>OL</sub> = 8.0 mA | _    | 0.5                    | V    | 2     |
| Output low voltage | V <sub>OL</sub>  | l <sub>OL</sub> = 3.2 mA | _    | 0.4                    | V    | 2     |

#### Notes:

1. This table applies for pins  $\overline{IRQ}$ [0:7],  $\overline{IRQ}$ \_OUT, and  $\overline{MCP}$ \_OUT.

2.  $\overline{IRQ\_OUT}$  and  $\overline{MCP\_OUT}$  are open-drain pins; thus  $V_{OH}$  is not relevant for those pins.

# 16.2 IPIC AC Timing Specifications

Table 48 provides the IPIC input and output AC timing specifications.

## Table 48. IPIC Input AC Timing Specifications<sup>1</sup>

| Parameter                       | Symbol <sup>2</sup> | Min | Unit |
|---------------------------------|---------------------|-----|------|
| IPIC inputs—minimum pulse width | t <sub>PICWID</sub> | 20  | ns   |

#### Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t<sub>PICWID</sub> ns to ensure proper operation in edge triggered mode.

# 17 SPI

This section describes the SPI DC and AC electrical specifications.

# **17.1 SPI DC Electrical Characteristics**

Table 49 provides the SPI DC electrical characteristics.

### Table 49. SPI DC Electrical Characteristics

| Parameter          | Symbol          | Condition | Min  | Max                    | Unit |
|--------------------|-----------------|-----------|------|------------------------|------|
| Input high voltage | V <sub>IH</sub> | —         | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage  | V <sub>IL</sub> | —         | -0.3 | 0.8                    | V    |



Package and Pin Listings

| Signal                      | Package Pin Number                     | Pin Type | Power<br>Supply   | Notes |
|-----------------------------|----------------------------------------|----------|-------------------|-------|
|                             | USB                                    |          |                   |       |
| DR_D0_ENABLEN               | C28                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D1_SER_TXD               | F25                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D2_VMO_SE0               | B28                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D3_SPEED                 | C27                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D4_DP                    | D26                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D5_DM                    | E25                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D6_SER_RCV               | C26                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_D7_DRVVBUS               | D25                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_SESS_VLD_NXT             | B26                                    | I        | OV <sub>DD</sub>  | —     |
| DR_XCVR_SEL_DPPULLUP        | E24                                    | I/O      | OV <sub>DD</sub>  | —     |
| DR_STP_SUSPEND              | A27                                    | 0        | OV <sub>DD</sub>  | —     |
| DR_RX_ERROR_PWRFAULT        | C25                                    | I        | OV <sub>DD</sub>  | —     |
| DR_TX_VALID_PCTL0           | A26                                    | 0        | OV <sub>DD</sub>  | —     |
| DR_TX_VALIDH_PCTL1          | B25                                    | 0        | OV <sub>DD</sub>  | —     |
| DR_CLK                      | A25                                    | I        | OV <sub>DD</sub>  | —     |
|                             | Programmable Interrupt Controller      |          |                   |       |
| MCP_OUT                     | E8                                     | 0        | $OV_{DD}$         | 2     |
| IRQ0/MCP_IN/GPIO2[12]       | J28                                    | I/O      | $OV_{DD}$         |       |
| IRQ[1:5]/GPIO2[13:17]       | K25, J25, H26, L24, G27                | I/O      | OV <sub>DD</sub>  |       |
| IRQ[6]/GPIO2[18]/CKSTOP_OUT | G28                                    | I/O      | $OV_{DD}$         |       |
| IRQ[7]/GPIO2[19]/CKSTOP_IN  | J26                                    | I/O      | OV <sub>DD</sub>  | —     |
|                             | Ethernet Management Interface          |          |                   |       |
| EC_MDC                      | Y24                                    | 0        | LV <sub>DD1</sub> |       |
| EC_MDIO                     | Y25                                    | I/O      | LV <sub>DD1</sub> | 11    |
|                             | Gigabit Reference Clock                |          |                   |       |
| EC_GTX_CLK125               | Y26                                    | I        | LV <sub>DD1</sub> |       |
| Three-S                     | speed Ethernet Controller (Gigabit Eth | ernet 1) |                   |       |
| TSEC1_COL/GPIO2[20]         | M26                                    | I/O      | OV <sub>DD</sub>  | —     |
| TSEC1_CRS/GPIO2[21]         | U25                                    | I/O      | LV <sub>DD1</sub> | —     |
| TSEC1_GTX_CLK               | V24                                    | 0        | LV <sub>DD1</sub> | 3     |
| TSEC1_RX_CLK                | U26                                    | I        | LV <sub>DD1</sub> | —     |

### Table 51. MPC8343EA (PBGA) Pinout Listing (continued)



Package and Pin Listings

| Signal             | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pin Type                                                                                                   | Power<br>Supply    | Notes |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|-------|
|                    | Power and Ground Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                                                                          |                    |       |
| AV <sub>DD</sub> 1 | C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power for e300<br>PLL (1.2 V)                                                                              | AV <sub>DD</sub> 1 | _     |
| AV <sub>DD</sub> 2 | U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power for<br>system PLL<br>(1.2 V)                                                                         | AV <sub>DD</sub> 2 | —     |
| AV <sub>DD</sub> 3 | AF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power for DDR<br>DLL (1.2 V)                                                                               | _                  | —     |
| AV <sub>DD</sub> 4 | U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power for LBIU<br>DLL (1.2 V)                                                                              | AV <sub>DD</sub> 4 | _     |
| GND                | <ul> <li>A2, B1, B2, D10, D18, E6, E14, E22, F9,<br/>F12, F15, F18, F21, F24, G5, H6, J23,<br/>L4, L6, L12, L13, L14, L15, L16, L17,<br/>M11, M12, M13, M14, M15, M16, M17,<br/>M18, M23, N11, N12, N13, N14, N15,<br/>N16, N17, N18, P6, P11, P12, P13, P14,<br/>P15, P16, P17, P18, P24, R5, R23, R11,<br/>R12, R13, R14, R15, R16, R17, R18,<br/>T11, T12, T13, T14, T15, T16, T17, T18,<br/>U6, U11, U12, U13, U14, U15, U16,<br/>U17, U18, V12, V13, V14, V15, V16,<br/>V17, V23, V25, W4, Y6, AA23, AB24,<br/>AC5, AC8, AC11, AC14, AC17, AC20,<br/>AD9, AD15, AD21, AE12, AE18, AF3,<br/>AF26</li> </ul> |                                                                                                            |                    |       |
| GV <sub>DD</sub>   | U9, V9, W10, W19, Y11, Y12, Y14, Y15,<br>Y17, Y18, AA6, AB5, AC9, AC12, AC15,<br>AC18, AC21, AC24, AD6, AD8, AD14,<br>AD20, AE5, AE11, AE17, AG2, AG27                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power for DDR<br>DRAM I/O<br>voltage<br>(2.5 V)                                                            | GV <sub>DD</sub>   | -     |
| LV <sub>DD1</sub>  | U20, W25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power for three<br>speed Ethernet<br>#1 and for<br>Ethernet<br>management<br>interface I/O<br>(2.5V, 3.3V) | LV <sub>DD1</sub>  | _     |
| LV <sub>DD2</sub>  | V20, Y23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power for three<br>speed Ethernet<br>#2 I/O (2.5 V,<br>3.3 V)                                              | LV <sub>DD2</sub>  | -     |
| V <sub>DD</sub>    | J11, J12, J15, K10, K11, K12, K13, K14,<br>K15, K16, K17, K18, K19, L10, L11, L18,<br>L19, M10, M19, N10, N19, P9, P10, P19,<br>R10, R19, R20, T10, T19, U10, U19,<br>V10, V11, V18, V19, W11, W12, W13,<br>W14, W15, W16, W17, W18                                                                                                                                                                                                                                                                                                                                                                             | Power for core<br>(1.2 V)                                                                                  | V <sub>DD</sub>    | _     |

## Table 51. MPC8343EA (PBGA) Pinout Listing (continued)



Package and Pin Listings

| Signal           | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                           | Pin Type                        | Power<br>Supply             | Notes |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------|
| OV <sub>DD</sub> | B27, D3, D11, D19, E15, E23, F5, F8,<br>F11, F14, F17, F20, G24, H23, H24, J6<br>J14, J17, J18, K4, L9, L20, L23, L25, M6<br>M9, M20, P5, P20, P23, R6, R9, R24,<br>U23, V4, V6                                                                                                                                                                                                                                              | Ethernet, and<br>other standard | OV <sub>DD</sub>            |       |
| MVREF1           | AF19                                                                                                                                                                                                                                                                                                                                                                                                                         | I                               | DDR<br>reference<br>voltage | _     |
| MVREF2           | AE10                                                                                                                                                                                                                                                                                                                                                                                                                         | I                               | DDR<br>reference<br>voltage | _     |
|                  | No Connection                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                             |       |
| NC               | A22, A23, A24, B22, B23, B24, C21,<br>C22, C23, C24, D21, D22, D23, D24,<br>E21, M27, M28, N26, N27, N28, P25,<br>P26, P27, R28, T24, T25, T26, T27, T28<br>U27, U28, Y3, Y4, Y5, AA1, AA2, AA3<br>AA4, AB1, AB2, AB3, AB4, AC1, AC2,<br>AC3, AC4, AD1, AD2, AD3, AD5, AD7<br>AD11, AD12, AE4, AE6, AE8, AE9,<br>AE23, AF1, AF5, AF6, AF8, AF24, AG1<br>AG3, AG4, AG7, AG8, AG9, AG10, AH2<br>AH3, AH5, AH8, AH9, V5, V2, V1 |                                 | _                           | _     |

#### Table 51. MPC8343EA (PBGA) Pinout Listing (continued)

#### Notes:

1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV<sub>DD</sub>.

2. This pin is an open-drain signal. A weak pull-up resistor (2-10 kΩ) should be placed on this pin to OV<sub>DD</sub>.

3. During reset, this output is actively driven rather than three-stated.

4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.

5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.

6. This pin must be always be tied to GND.

7. This pin must always be pulled up to OV<sub>DD</sub>.

8. Thermal sensitive resistor.

9. It is recommended that MDIC0 be tied to GND using an 18.2  $\Omega$  resistor and MDIC1 be tied to DDR power using an 18.2  $\Omega$  resistor.

10.TSEC1\_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

11. A weak pull-up resistor (2–10 k $\Omega$ ) should be placed on this pin to LV<sub>DD1</sub>.

12. For systems that boot from local bus (GPCM)-controlled NOR flash, a pull up on LGPL4 is required.



# 19 Clocking

Figure 37 shows the internal distribution of the clocks.

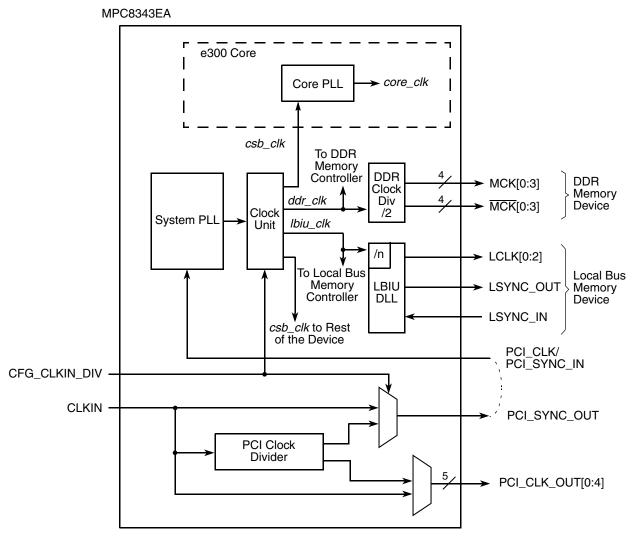



Figure 37. MPC8343EA Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI\_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8343EA is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI\_SYNC\_OUT and PCI\_CLK\_OUT. The CFG\_CLKIN\_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI\_SYNC\_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI\_CLK\_OUT n signals.

PCI\_SYNC\_OUT is connected externally to PCI\_SYNC\_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI\_SYNC\_OUT must be connected properly to PCI\_SYNC\_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8343EA to function. When the device is configured as a PCI agent device, PCI\_CLK is the primary input clock and the CLKIN signal should be tied to GND.



Clocking

|                                        |      |                                                    | Ir                      | nput Clock Fr | equency (MHz | ) <sup>2</sup> |
|----------------------------------------|------|----------------------------------------------------|-------------------------|---------------|--------------|----------------|
| CFG_CLKIN_DIV<br>at Reset <sup>1</sup> | SPMF | <i>csb_clk</i> :<br>Input Clock Ratio <sup>2</sup> | 16.67                   | 25            | 33.33        | 66.67          |
|                                        |      |                                                    | csb_clk Frequency (MHz) |               |              |                |
| High                                   | 0010 | 2:1                                                |                         |               |              | 133            |
| High                                   | 0011 | 3 : 1                                              |                         |               | 100          | 200            |
| High                                   | 0100 | 4 : 1                                              |                         |               | 133          | 266            |
| High                                   | 0101 | 5 : 1                                              |                         |               | 166          | 333            |
| High                                   | 0110 | 6 : 1                                              |                         |               | 200          |                |
| High                                   | 0111 | 7:1                                                |                         |               | 233          |                |
| High                                   | 1000 | 8 : 1                                              |                         |               |              |                |

#### Table 55. CSB Frequency Options for Host Mode (continued)

<sup>1</sup> CFG\_CLKIN\_DIV selects the ratio between CLKIN and PCI\_SYNC\_OUT.

<sup>2</sup> CLKIN is the input clock in host mode; PCI\_CLK is the input clock in agent mode.

DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

### Table 56. CSB Frequency Options for Agent Mode

|                                        |      |                                                    | Input Clock Frequency (MHz) <sup>2</sup> |     |       | ) <sup>2</sup> |
|----------------------------------------|------|----------------------------------------------------|------------------------------------------|-----|-------|----------------|
| CFG_CLKIN_DIV<br>at Reset <sup>1</sup> | SPMF | <i>csb_clk</i> :<br>Input Clock Ratio <sup>2</sup> | 16.67                                    | 25  | 33.33 | 66.67          |
|                                        |      |                                                    | <i>csb_clk</i> Frequency (MHz            |     |       | )              |
| Low                                    | 0010 | 2 : 1                                              |                                          |     |       | 133            |
| Low                                    | 0011 | 3 : 1                                              |                                          |     | 100   | 200            |
| Low                                    | 0100 | 4 : 1                                              |                                          | 100 | 133   | 266            |
| Low                                    | 0101 | 5 : 1                                              |                                          | 125 | 166   | 333            |
| Low                                    | 0110 | 6 : 1                                              | 100                                      | 150 | 200   |                |
| Low                                    | 0111 | 7:1                                                | 116                                      | 175 | 233   |                |
| Low                                    | 1000 | 8 : 1                                              | 133                                      | 200 | 266   |                |
| Low                                    | 1001 | 9 : 1                                              | 150                                      | 225 | 300   |                |
| Low                                    | 1010 | 10 : 1                                             | 166                                      | 250 | 333   |                |
| Low                                    | 1011 | 11 : 1                                             | 183                                      | 275 |       |                |
| Low                                    | 1100 | 12 : 1                                             | 200                                      | 300 |       |                |
| Low                                    | 1101 | 13 : 1                                             | 216                                      | 325 |       |                |
| Low                                    | 1110 | 14 : 1                                             | 233                                      |     |       |                |
| Low                                    | 1111 | 15 : 1                                             | 250                                      |     |       |                |
| Low                                    | 0000 | 16 : 1                                             | 266                                      |     |       |                |
| High                                   | 0010 | 4 : 1                                              |                                          | 100 | 133   | 266            |



|                         | RC   | RCWL   266 MHz Device   333 MHz Device |                                              | ice                  | 400 MHz Device        |                                              |                      |                       |                                              |                      |                       |
|-------------------------|------|----------------------------------------|----------------------------------------------|----------------------|-----------------------|----------------------------------------------|----------------------|-----------------------|----------------------------------------------|----------------------|-----------------------|
| Ref<br>No. <sup>1</sup> | SPMF | CORE<br>PLL                            | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) |
| 326                     | 0011 | 0100110                                |                                              | _                    |                       | 33                                           | 100                  | 300                   | 33                                           | 100                  | 300                   |
| 623                     | 0110 | 0100011                                |                                              | _                    |                       | 33                                           | 200                  | 300                   | 33                                           | 200                  | 300                   |
| 922                     | 1001 | 0100010                                |                                              | _                    |                       | 33                                           | 300                  | 300                   | 33                                           | 300                  | 300                   |
| 425                     | 0100 | 0100101                                |                                              | _                    |                       | 33                                           | 133                  | 333                   | 33                                           | 133                  | 333                   |
| 524                     | 0101 | 0100100                                |                                              | _                    |                       | 33                                           | 166                  | 333                   | 33                                           | 166                  | 333                   |
| A22                     | 1010 | 0100010                                |                                              | _                    |                       | 33                                           | 333                  | 333                   | 33                                           | 333                  | 333                   |
| 723                     | 0111 | 0100011                                |                                              |                      |                       |                                              | —                    |                       | 33                                           | 233                  | 350                   |
| 604                     | 0110 | 0000100                                | —                                            |                      |                       |                                              | _                    |                       | 33                                           | 200                  | 400                   |
| 624                     | 0110 | 0100100                                | —                                            |                      |                       |                                              | _                    |                       | 33                                           | 200                  | 400                   |
| 823                     | 1000 | 0100011                                | _                                            |                      |                       | _                                            |                      | 33                    | 266                                          | 400                  |                       |
|                         |      |                                        |                                              | 66 N                 | MHZ CLKIN             | I/PCI_CLK                                    | Options              |                       |                                              |                      |                       |
| 242                     | 0010 | 1000010                                | 66                                           | 133                  | 133                   | 66                                           | 133                  | 133                   | 66                                           | 133                  | 133                   |
| 322                     | 0011 | 0100010                                | 66                                           | 200                  | 200                   | 66                                           | 200                  | 200                   | 66                                           | 200                  | 200                   |
| 224                     | 0010 | 0100100                                | 66                                           | 133                  | 266                   | 66                                           | 133                  | 266                   | 66                                           | 133                  | 266                   |
| 422                     | 0100 | 0100010                                | 66                                           | 266                  | 266                   | 66                                           | 266                  | 266                   | 66                                           | 266                  | 266                   |
| 323                     | 0011 | 0100011                                |                                              | —                    |                       | 66                                           | 200                  | 300                   | 66                                           | 200                  | 300                   |
| 223                     | 0010 | 0100101                                |                                              | —                    |                       | 66                                           | 133                  | 333                   | 66                                           | 133                  | 333                   |
| 522                     | 0101 | 0100010                                | _                                            |                      |                       | 66                                           | 333                  | 333                   | 66                                           | 333                  | 333                   |
| 304                     | 0011 | 0000100                                | —                                            |                      |                       | _                                            |                      | 66                    | 200                                          | 400                  |                       |
| 324                     | 0011 | 0100100                                | _                                            |                      |                       |                                              |                      | 66                    | 200                                          | 400                  |                       |
| 403                     | 0100 | 0000011                                |                                              |                      |                       | —                                            |                      | 66                    | 266                                          | 400                  |                       |
| 423                     | 0100 | 0100011                                |                                              | _                    |                       |                                              | _                    |                       | 66                                           | 266                  | 400                   |

| Table 58. Suggested PLI | Configurations (continued) |
|-------------------------|----------------------------|
|-------------------------|----------------------------|

<sup>1</sup> The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.
 <sup>2</sup> The input clock is CLKIN for PCI host mode or PCI\_CLK for PCI agent mode.



#### Thermal

that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

## 20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$  = junction-to-ambient thermal resistance (°C/W)  $R_{\theta JC}$  = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$  = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$  is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 60 shows heat sink thermal resistance for PBGA of the MPC8343EA.

### Table 60. Heat Sink and Thermal Resistance of MPC8343EA (PBGA)

| Heat Sink Accuming Thermal Graces                            | Air Flow           | 29 × 29 mm PBGA    |  |
|--------------------------------------------------------------|--------------------|--------------------|--|
| Heat Sink Assuming Thermal Grease                            |                    | Thermal Resistance |  |
| AAVID 30 $\times$ 30 $\times$ 9.4 mm pin fin                 | Natural convection | 13.5               |  |
| AAVID $30 \times 30 \times 9.4$ mm pin fin                   | 1 m/s              | 9.6                |  |
| AAVID 30 $\times$ 30 $\times$ 9.4 mm pin fin                 | 2 m/s              | 8.8                |  |
| AAVID 31 $\times$ 35 $\times$ 23 mm pin fin                  | Natural convection | 11.3               |  |
| AAVID 31 $\times$ 35 $\times$ 23 mm pin fin                  | 1 m/s              | 8.1                |  |
| AAVID 31 $\times$ 35 $\times$ 23 mm pin fin                  | 2 m/s              | 7.5                |  |
| Wakefield, $53 \times 53 \times 25$ mm pin fin               | Natural convection | 9.1                |  |
| Wakefield, $53 \times 53 \times 25$ mm pin fin               | 1 m/s              | 7.1                |  |
| Wakefield, $53 \times 53 \times 25$ mm pin fin               | 2 m/s              | 6.5                |  |
| MEI, 75 $\times$ 85 $\times$ 12 no adjacent board, extrusion | Natural convection | 10.1               |  |



| Heat Sink Assuming Thermel Crosse                                   | Air Flow | 29 × 29 mm PBGA    |  |
|---------------------------------------------------------------------|----------|--------------------|--|
| Heat Sink Assuming Thermal Grease                                   |          | Thermal Resistance |  |
| MEI, $75 \times 85 \times 12$ no adjacent board, extrusion          | 1 m/s    | 7.7                |  |
| MEI, $75 \times 85 \times 12$ no adjacent board, extrusion          | 2 m/s    | 6.6                |  |
| MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass | 1 m/s    | 6.9                |  |

#### Table 60. Heat Sink and Thermal Resistance of MPC8343EA (PBGA) (continued)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

| Aavid Thermalloy<br>80 Commercial St.<br>Concord, NH 03301<br>Internet: www.aavidthermalloy.com                               | 603-224-9988 |
|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| Alpha Novatech<br>473 Sapena Ct. #12<br>Santa Clara, CA 95054<br>Internet: www.alphanovatech.com                              | 408-567-8082 |
| International Electronic Research Corporation (IERC)<br>413 North Moss St.<br>Burbank, CA 91502<br>Internet: www.ctscorp.com  | 818-842-7277 |
| Millennium Electronics (MEI)<br>Loroco Sites<br>671 East Brokaw Road<br>San Jose, CA 95112<br>Internet: www.mei-thermal.com   | 408-436-8770 |
| Tyco Electronics<br>Chip Coolers <sup>TM</sup><br>P.O. Box 3668<br>Harrisburg, PA 17105-3668<br>Internet: www.chipcoolers.com | 800-522-2800 |
| Wakefield Engineering<br>33 Bridge St.<br>Pelham, NH 03076<br>Internet: www.wakefield.com                                     | 603-635-5102 |