E·XFL

NXP USA Inc. - MPC8343EVRAGD Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (3)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8343evragd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints

Parameter	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

Table 2. Recommended Operating Conditions (continued)

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8343EA.

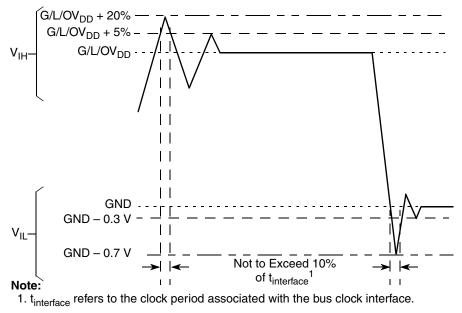


Figure 2. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

Parameter	Condition	Symbol	Min	Мах	Unit
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$	I _{IN}	_	±10	μA
PCI_SYNC_IN input current	$0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$	I _{IN}	_	±50	μA

Table 6. CLKIN DC Timing Specifications (continued)

4.2 AC Electrical Characteristics

The primary clock source for the MPC8343EA can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Table 7. CLKIN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	_	—	66	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	_	_	ns	_
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} ∕t _{CLKIN}	40	_	60	%	3
CLKIN/PCI_CLK jitter	—			±150	ps	4, 5

Notes:

1. **Caution:** The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating frequencies.

- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
- 6. Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 50 KHz modulation rate regardless of input frequency.

4.3 TSEC Gigabit Reference Clock Timing

Table 8 provides the TSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

Table 8. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV $_{DD}$ = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	t _{G125}	-	125	_	MHz	—
EC_GTX_CLK125 cycle time	t _{G125}		8		ns	—
EC_GTX_CLK125 rise and fall time $\label{eq:LV_DD} \begin{array}{l} \text{LV}_{\text{DD}} = 2.5 \text{ V} \\ \text{LV}_{\text{DD}} = 3.3 \text{ V} \end{array}$	t _{G125R} /t _{G125F}	_		0.75 1.0	ns	1

Table 8. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI		45 47	_	55 53	%	2
EC_GTX_CLK125 jitter		—	_	±150	ps	2

Notes:

- 1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- 2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.2, "RGMII and RTBI AC Timing Specifications for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8343EA.

5.1 **RESET DC Electrical Characteristics**

Table 9 provides the DC electrical characteristics for the RESET pins of the MPC8343EA.

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	_	_	±5	μA
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 9. RESET Pins DC Electrical Characteristics¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

DDR and DDR2 SDRAM

Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	—

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 15 provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR and DDR2 SDRAM

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications (continued)

At recommended operating conditions with GV_DD of (1.8 or 2.5 V) \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
266 MHz		-750	750		_
200 MHz		-750	750		—

Notes:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the equation: t_{DISKEW} = ± (T/4 – abs (t_{CISKEW})); where T is the clock period and abs (t_{CISKEW}) is the absolute value of t_{CISKEW}.

3. This specification applies only to the DDR interface.

Figure 5 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

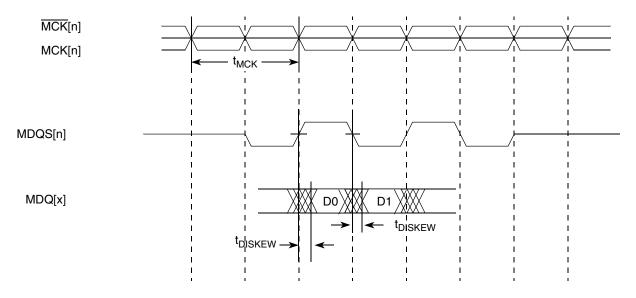


Figure 5. DDR Input Timing Diagram

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20 shows the DDR and DDR2 output AC timing specifications.

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	7.5	10	ns	2
ADDR/CMD/MODT output setup with respect to MCK	t _{DDKHAS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		

Parameter	Symbol	Min	Мах	Unit
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	_	0.2	V

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8343EA.

Table 22. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	—
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)—MII/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII interface is defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

Ethernet: Three-Speed Ethernet, MII Management

8.2 MII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RGMII, and RTBI are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

Table 25 provides the MII transmit AC timing specifications.

Table 25. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH/} t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0	—	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 9 shows the MII transmit AC timing diagram.

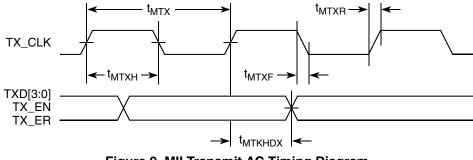


Figure 9. MII Transmit AC Timing Diagram

Ethernet: Three-Speed Ethernet, MII Management

8.2.2 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns
Fall time (80%–20%)	t _{RGTF}	_	—	0.75	ns

Notes:

1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.

5. Duty cycle reference is $LV_{DD}/2$.

PCI

Table 41. PCI AC Timing Specifications at 66 MHz¹ (continued)

Parameter	Symbol ²	Min	Мах	Unit	Notes
Input hold from clock	t _{PCIXKH}	0		ns	3, 5

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

Table 42 provides the PCI AC timing specifications at 33 MHz.

Table 42. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4

Notes:

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 30 provides the AC test load for PCI.

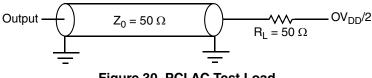


Figure 30. PCI AC Test Load

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

GPIO

14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

Table 44. Timers Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 45 provides the DC electrical characteristics for the MPC8343EA GPIO.

Table 45.	GPIO	DC	Electrical	Characteristics
-----------	------	----	------------	-----------------

PArameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

15.2 GPIO AC Timing Specifications

Table 46 provides the GPIO input and output AC timing specifications.

Table 46. GPIO Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	USB			
DR_D0_ENABLEN	C28	I/O	OV _{DD}	—
DR_D1_SER_TXD	F25	I/O	OV _{DD}	—
DR_D2_VMO_SE0	B28	I/O	OV _{DD}	—
DR_D3_SPEED	C27	I/O	OV _{DD}	—
DR_D4_DP	D26	I/O	OV _{DD}	—
DR_D5_DM	E25	I/O	OV _{DD}	—
DR_D6_SER_RCV	C26	I/O	OV _{DD}	—
DR_D7_DRVVBUS	D25	I/O	OV _{DD}	—
DR_SESS_VLD_NXT	B26	I	OV _{DD}	—
DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	—
DR_STP_SUSPEND	A27	0	OV _{DD}	—
DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	—
DR_TX_VALID_PCTL0	A26	0	OV _{DD}	—
DR_TX_VALIDH_PCTL1	B25	0	OV _{DD}	—
DR_CLK	A25	I	OV _{DD}	—
	Programmable Interrupt Controller			
MCP_OUT	E8	0	OV_{DD}	2
IRQ0/MCP_IN/GPIO2[12]	J28	I/O	OV_{DD}	
IRQ[1:5]/GPIO2[13:17]	K25, J25, H26, L24, G27	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	G28	I/O	OV_{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	J26	I/O	OV _{DD}	—
	Ethernet Management Interface			
EC_MDC	Y24	0	LV _{DD1}	
EC_MDIO	Y25	I/O	LV _{DD1}	11
	Gigabit Reference Clock			
EC_GTX_CLK125	Y26	I	LV _{DD1}	
Three-S	speed Ethernet Controller (Gigabit Eth	ernet 1)		
TSEC1_COL/GPIO2[20]	M26	I/O	OV _{DD}	—
TSEC1_CRS/GPIO2[21]	U25	I/O	LV _{DD1}	—
TSEC1_GTX_CLK	V24	0	LV _{DD1}	3
TSEC1_RX_CLK	U26	I	LV _{DD1}	—

Table 51. MPC8343EA (PBGA) Pinout Listing (continued)

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_RX_DV	U24	I	LV _{DD1}	_
TSEC1_RX_ER/GPIO2[26]	L28	I/O	OV _{DD}	—
TSEC1_RXD[3:0]	W26, W24, Y28, Y27	I	LV _{DD1}	—
TSEC1_TX_CLK	N25	I	OV _{DD}	—
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	10
TSEC1_TX_EN	W27	0	LV _{DD1}	—
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	—
Three-S	peed Ethernet Controller (Gigabit Eth	nernet 2)		
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	_
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	_
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	—
TSEC2_RX_CLK	AB25	I	LV _{DD2}	—
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	—
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	—
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	—
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	—
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	—
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	—
	DUART			
UART_SOUT[1:2]/MSRCID[0:1]/ LSRCID[0:1]	B4, A4	0	OV _{DD}	_
UART_SIN[1:2]/MSRCID[2:3]/ LSRCID[2:3]	D5, C5	I/O	OV _{DD}	—
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	_
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}	—
UART_RTS[1:2]	D6, C6	0	OV _{DD}	_
	I ² C interface		-1	
IIC1_SDA	E5	I/O	OV _{DD}	2
IIC1_SCL	A6	I/O	OV _{DD}	2
IIC2_SDA	B6	I/O	OV _{DD}	2
IIC2_SCL	E7	I/O	OV _{DD}	2

Clocking

Table 53 provides the operating frequencies for the MPC8343EA PBGA under recommended operating conditions.

Parameter ¹	266 MHz	333 MHz	400 MHz	Unit	
e300 core frequency (<i>core_clk</i>)	200–266	200–333	200–400	MHz	
Coherent system bus frequency (csb_clk)		100–266		MHz	
DDR1 memory bus frequency (MCK) ²		100–133		MHz	
DDR2 memory bus frequency (MCK) ³	100–133				
Local bus frequency (LCLKn) ⁴	16.67–133				
PCI input frequency (CLKIN or PCI_CLK)		25–66		MHz	
Security core maximum internal operating frequency		133		MHz	
USB_DR, USB_MPH maximum internal operating frequency	133			MHz	

Table 53. Operating Frequencies for PBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2× the DDR memory bus frequency.

³ The DDR data rate is 2× the DDR memory bus frequency.

⁴ The local bus frequency is ½, ¼, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWL[LBIUCM]).

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 54 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10

Table 54. System PLL Multiplication Factors

			Ir	nput Clock Fre	equency (MHz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				csb_clk Freq	uency (MHz)	
High	0011	6 : 1	100	150	200	
High	0100	8:1	133	200	266	
High	0101	10 : 1	166	250	333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233]	
High	1000	16 : 1	266			

Table 56. CSB Frequency Options for Agent Mode (continued)

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

19.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 57 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 57 should be considered as reserved.

NOTE

Core VCO frequency = core frequency × VCO divider

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

F	RCWL[COREPLL]		aara alku aab alk Patia	VCO Divider ¹		
0–1	2–5	6	<i>core_clk</i> : <i>csb_clk</i> Ratio			
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)		
00	0001	0	1:1	2		
01	0001	0	1:1	4		
10	0001	0	1:1	8		
11	0001	0	1:1	8		
00	0001	1	1.5:1	2		
01	0001	1	1.5:1	4		
10	0001	1	1.5:1	8		
11	0001	1	1.5:1	8		

Table 57. e300 Core PLL Configuration

	RC	WL	266 MHz Device		33	3 MHz Dev	ice	40	400 MHz Device		
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
326	0011	0100110		_		33	100	300	33	100	300
623	0110	0100011		_		33	200	300	33	200	300
922	1001	0100010		_		33	300	300	33	300	300
425	0100	0100101		_		33	133	333	33	133	333
524	0101	0100100		_			166	333	33	166	333
A22	1010	0100010		_			333	333	33	333	333
723	0111	0100011		_					33	233	350
604	0110	0000100		_			—		33	200	400
624	0110	0100100		_			_		33	200	400
823	1000	0100011		—			_		33	266	400
				66 N	MHZ CLKIN	I/PCI_CLK	Options				
242	0010	1000010	66	133	133	66	133	133	66	133	133
322	0011	0100010	66	200	200	66	200	200	66	200	200
224	0010	0100100	66	133	266	66	133	266	66	133	266
422	0100	0100010	66	266	266	66	266	266	66	266	266
323	0011	0100011		—		66	200	300	66	200	300
223	0010	0100101		—		66	133	333	66	133	333
522	0101	0100010		—		66	333	333	66	333	333
304	0011	0000100		—			_		66	200	400
324	0011	0100100				—		66	200	400	
403	0100	0000011							66	266	400
423	0100	0100011		_			_		66	266	400

Table 58. Suggested PLI	Configurations (continued)
-------------------------	----------------------------

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.
 ² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

Interface	material	vendors	include	the	following:
meriace	material	venuors	menuae	une	ionowing.

the indicition vehicles include the following.	
Chomerics, Inc. 77 Dragon Ct.	781-935-4850
Woburn, MA 01801	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
P.O. Box 994	
Midland, MI 48686-0997	
Internet: www.dowcorning.com	
Shin-Etsu MicroSi, Inc.	888-642-7674
10028 S. 51st St.	
Phoenix, AZ 85044	
Internet: www.microsi.com	
The Bergquist Company	800-347-4572
18930 West 78th St.	
Chanhassen, MN 55317	
Internet: www.bergquistcompany.com	

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 P_D = power dissipation (W)

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8343EA.

21.1 System Clocking

The MPC8343EA includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV_{DD}1, AV_{DD}2, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 38, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 38 shows the PLL power supply filter circuit.

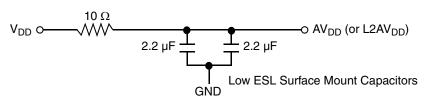


Figure 38. PLL Power Supply Filter Circuit

System Design Information

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8343EA can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8343EA system, and the device itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the device. These capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8343EA.

21.5 Output Buffer DC Impedance

The MPC8343EA drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 39). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals

 $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N) \div 2$.

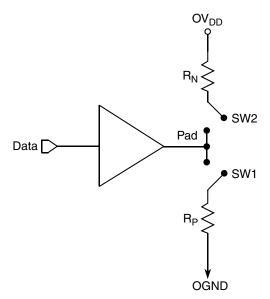


Figure 39. Driver Impedance Measurement

Two measurements give the value of this resistance and the strength of the driver current source. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1 \div (1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1 \div V_2 - 1)$. The drive current is then $I_{source} = V_1 \div R_{source}$.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	NA	Z _{DIFF}	W

Table 61. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

21.6 Configuration Pin Multiplexing

The MPC8343EA power-on configuration options can be set through external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see the customer-visible configuration pins). These pins are used as output only pins in normal operation.