

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (3)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8343vragdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5 shows the estimated typical I/O power dissipation for MPC8343EA.

Interface	Parameter	DDR2 GV _{DD} (1.8 V)	DDR1 GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 32 bits	0.31	0.42	_	_	_	W	—
65% utilization 2.5 V Rs = 20 Ω Rt = 50 Ω 2 pair of clocks	266 MHz, 32 bits	0.35	0.5				W	—
PCI I/O	33 MHz, 32 bits	_	_	0.04	_		W	—
10ad = 30 pF	66 MHz, 32 bits	_	_	0.07	_		W	—
Local bus I/O	167 MHz, 32 bits	_	_	0.34	_		W	—
10ad = 25 pF	133 MHz, 32 bits	_	_	0.27	_	_	W	—
	83 MHz, 32 bits	_	_	0.17	_	_	W	—
	66 MHz, 32 bits			0.14		_	W	—
	50 MHz, 32 bits			0.11		_	W	—
TSEC I/O	МІІ	_	_		0.01		W	Multiply by number
10ad = 25 pF	GMII or TBI				0.06	_	W	of interfaces used.
	RGMII or RTBI					0.04	W	
USB	12 MHz			0.01		_	W	—
	480 MHz	_	—	0.2	_	_	W	—
Other I/O		_	_	0.01	_	_	W	—

Table 5. MPC8343EA Typical I/O Power Dissipation

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the device.

4.1 DC Electrical Characteristics

Table 6 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8343EA.

Table 6. CLKIN DC Timing Specifications

Parameter	Condition	Symbol	Min	Max	Unit
Input high voltage	—	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
CLKIN input current	$0~V \leq V_{IN} \leq OV_{DD}$	I _{IN}	_	±10	μA

Parameter	Condition	Symbol	Min	Мах	Unit
PCI_SYNC_IN input current	0 V \leq V $_{IN}$ \leq 0.5 V or OV $_{DD}$ – 0.5 V \leq V $_{IN}$ \leq OV $_{DD}$	I _{IN}	_	±10	μA
PCI_SYNC_IN input current	$0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$	I _{IN}	—	±50	μA

Table 6. CLKIN DC Timing Specifications (continued)

4.2 AC Electrical Characteristics

The primary clock source for the MPC8343EA can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Table 7. CLKIN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	—	—	66	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	—	ns	—
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	—	—	—	±150	ps	4, 5

Notes:

1. **Caution:** The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating frequencies.

- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
- 6. Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 50 KHz modulation rate regardless of input frequency.

4.3 TSEC Gigabit Reference Clock Timing

Table 8 provides the TSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

Table 8. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV $_{DD}$ = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	t _{G125}	—	125		MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	
EC_GTX_CLK125 rise and fall time $\label{eq:LV_DD} \begin{array}{c} \text{LV}_{\text{DD}} = 2.5 \text{ V} \\ \text{LV}_{\text{DD}} = 3.3 \text{ V} \end{array}$	t _{G125R} /t _{G125F}	_	_	0.75 1.0	ns	1

RESET Initialization

5.2 **RESET AC Electrical Characteristics**

Table 10 provides the reset initialization AC timing specifications of the MPC8343EA.

Table 10. RESET Initialization Timing Specifications

Parameter	Min	Max	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8343EA is in PCI host mode	32	—	t _{CLKIN}	2
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to PCI_SYNC_IN when the MPC8343EA is in PCI agent mode	32	—	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343EA is in PCI host mode	4	_	t _{CLKIN}	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343EA is in PCI agent mode	4	—	t _{PCI_SYNC_IN}	1
Input hold time for POR configuration signals with respect to negation of HRESET	0	—	ns	—
Time for the MPC8343EA to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$	—	4	ns	3
Time for the MPC8343EA to turn on POR configuration signals with respect to the negation of HRESET	1		t _{PCI_SYNC_IN}	1, 3

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual*.

2. t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual.

3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 11 lists the PLL and DLL lock times.

Table 11. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

DDR and DDR2 SDRAM

Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	_
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	_
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	_

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 15 provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR and DDR2 SDRAM

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with GV_DD of (1.8 or 2.5 V) \pm 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
ADDR/CMD/MODT output hold with respect to MCK	t _{DDKHAX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output setup with respect to MCK	t _{DDKHCS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output hold with respect to MCK	t _{DDKHCX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS	^t DDKHDS, t _{DDKLDS}			ps	5
400 MHz		700	—		
333 MHz		775	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQ/MECC/MDM output hold with respect to MDQS	^t DDKHDX, t _{DDKLDX}			ps	5
400 MHz		700	—		
333 MHz		900	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{MCK}-0.6$	$-0.5\times t_{MCK}+0.6$	ns	6

8.1.1 **TSEC DC Electrical Characteristics**

MII, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 23 and Table 24. The RGMII and RTBI signals in Table 24 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV_{DD}^2	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	40	μA
Input low current	IIL	V _{IN} ¹ = GND		-600		μA

Table 23. MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN} in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. MII pins not needed for RGMII or RTBI operation are powered by the $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ supply.

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-15	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Figure 12 shows the RBMII and RTBI AC timing and multiplexing diagrams.

Figure 12. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to the MII management interface signals management data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC)—MII/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 28 and Table 29.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (2.5 V)	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	_	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V

Table 28. MII Management DC Electrical Characteristics Powered at 2.5 V

10.2 Local Bus AC Electrical Specification

Table 34 and Table 35 describe the general timing parameters of the local bus interface of the MPC8343EA.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.5	_	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	2.2	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0	_	ns	3, 4
LUPWAIT Input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	_	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	_	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	—
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	4.5	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	3.8	ns	8

Table 34. Local Bus General Timing Parameters—DLL On

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

- 2. All timings are in reference to the rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to 0.4 × OV_{DD} of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6

Notes:

1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 14). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4. Non-JTAG signal input timing with respect to t_{TCLK}.

5. Non-JTAG signal output timing with respect to t_{TCLK}.

6. Guaranteed by design and characterization.

Figure 23 provides the AC test load for TDO and the boundary-scan outputs of the MPC8343EA.

Figure 23. AC Test Load for the JTAG Interface

Figure 24 provides the JTAG clock input timing diagram.

Figure 24. JTAG Clock Input Timing Diagram

Figure 25 provides the $\overline{\text{TRST}}$ timing diagram.

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8343EA.

12.1 I²C DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the I²C interface of the MPC8343EA.

Table 38. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times \text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times \text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	I	-10	10	μA	4
Capacitance for each I/O pin	Cl	—	10	pF	_

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349EA Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 39 provides the AC timing parameters for the I²C interface of the MPC8343EA. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 38).

Table 39. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	_	μS
High period of the SCL clock	t _{I2CH}	0.6	_	μS
Setup time for a repeated START condition	t _{I2SVKH}	0.6	_	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs
Data setup time	t _{I2DVKH}	100	_	ns
Data hold time:CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μS

PCI

Table 41. PCI AC Timing Specifications at 66 MHz¹ (continued)

Parameter	Symbol ²	Min	Мах	Unit	Notes
Input hold from clock	t _{PCIXKH}	0	—	ns	3, 5

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

Table 42 provides the PCI AC timing specifications at 33 MHz.

Table 42. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	-	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 30 provides the AC test load for PCI.

Figure 30. PCI AC Test Load

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Figure 34 and Figure 35 represent the AC timings from Table 50. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 34 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 34. SPI AC Timing in Slave Mode (External Clock) Diagram

Figure 35 shows the SPI timings in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 35. SPI AC Timing in Master Mode (Internal Clock) Diagram

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8343EA is available in a plastic ball grid array (PBGA). See Section 18.1, "Package Parameters for the MPC8343EA PBGA," and Section 18.2, "Mechanical Dimensions for the MPC8343EA PBGA."

18.1 Package Parameters for the MPC8343EA PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 620 plastic ball grid array (PBGA).

Package outline	29 mm × 29 mm
Interconnects	620
Pitch	1.00 mm
Module height (maximum)	2.46 mm

Package and Pin Listings

Module height (typical) Module height (minimum) Solder balls

Ball diameter (typical)

2.23 mm 2.00 mm 62 Sn/36 Pb/2 Ag (ZQ package) 96.5 Sn/3.5Ag (VR package) 0.60 mm

Package and Pin Listings

18.3 Pinout Listings

Table 51 provides the pin-out listing for the MPC8343EA, 620-PBGA package.

Table 51. MPC8343EA (PBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI			
PCI1_INTA/IRQ_OUT	D20	0	OV _{DD}	2
PCI1_RESET_OUT	B21	0	OV _{DD}	—
PCI1_AD[31:0]	E19, D17, A16, A18, B17, B16, D16, B18, E17, E16, A15, C16, D15, D14, C14, A12, D12, B11, C11, E12, A10, C10, A9, E11, E10, B9, B8, D9, A8, C9, D8, C8	I/O	OV _{DD}	—
PCI1_C/BE[3:0]	A17, A14, A11, B10	I/O	OV _{DD}	—
PCI1_PAR	D13	I/O	OV _{DD}	—
PCI1_FRAME	B14	I/O	OV _{DD}	5
PCI1_TRDY	A13	I/O	OV _{DD}	5
PCI1_IRDY	E13	I/O	OV _{DD}	5
PCI1_STOP	C13	I/O	OV _{DD}	5
PCI1_DEVSEL	B13	I/O	OV _{DD}	5
PCI1_IDSEL	C17	I	OV _{DD}	—
PCI1_SERR	C12	I/O	OV _{DD}	5
PCI1_PERR	B12	I/O	OV _{DD}	5
PCI1_REQ[0]	A21	I/O	OV _{DD}	—
PCI1_REQ[1]/CPCI1_HS_ES	C19	I	OV _{DD}	—
PCI1_REQ[2:4]	C18, A19, E20	I	OV _{DD}	—
PCI1_GNT0	B20	I/O	OV _{DD}	—
PCI1_GNT1/CPCI1_HS_LED	C20	0	OV _{DD}	—
PCI1_GNT2/CPCI1_HS_ENUM	B19	0	OV _{DD}	—
PCI1_GNT[3:4]	A20, E18	0	OV _{DD}	—
M66EN	L26	I	OV _{DD}	—
	DDR SDRAM Memory Interface			
MDQ[0:31]	AC25, AD27, AD25, AH27, AE28, AD26, AD24, AF27, AF25, AF28, AH24, AG26, AE25, AG25, AH26, AH25, AG22, AH22, AE21, AD19, AE22, AF23, AE19, AG20, AG19, AD17, AE16, AF16, AF18, AG18, AH17, AH16	I/O	GV _{DD}	_

Package and Pin Listings

Table 51. MPC8343EA	(PBGA) Pinout	Listing	(continued))
---------------------	-------	----------	---------	-------------	---

Signal	Signal Package Pin Number		Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	AG13, AE14, AH12, AH10, AE15	I/O	GV _{DD}	—
MECC[5]/MDVAL	AH14	I/O	GV _{DD}	—
MECC[6:7]	AE13, AH11	I/O	GV _{DD}	—
MDM[0:3]	AG28, AG24, AF20, AG17	0	GV _{DD}	—
MDM[8]	AG12	0	GV _{DD}	—
MDQS[0:3]	AE27, AE26, AE20, AH18	I/O	GV _{DD}	—
MDQS[8]	AH13	I/O	GV _{DD}	—
MBA[0:1]	AF10, AF11	0	GV _{DD}	—
MA[0:14]	AF13, AF15, AG16, AD16, AF17, AH20, AH19, AH21, AD18, AG21, AD13, AF21, AF22, AE1, AA5	0	GV _{DD}	_
MWE	AD10	0	GV _{DD}	—
MRAS	AF7	0	GV _{DD}	—
MCAS	AG6	0	GV _{DD}	—
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}	—
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3
MCK[0:3]	AH15, AE24, AE2, AF14	0	GV _{DD}	—
MCK[0:3]	AG15, AD23, AE3, AG14	0	GV _{DD}	—
MODT[0:3]	AG5, AD4, AH6, AF4	0	GV _{DD}	—
MBA[2]	AD22	0	GV _{DD}	—
MDIC0	AG11	I/O	—	9
MDIC1	AF12	I/O	—	9
	Local Bus Controller Interface			
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}	_
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}	—
LDP[2]/LCS[4]	H2	I/O	OV _{DD}	—
LDP[3]/LCS[5]	G1	I/O	OV _{DD}	—
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}	—
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}	—

19 Clocking

Figure 37 shows the internal distribution of the clocks.

Figure 37. MPC8343EA Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8343EA is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8343EA to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal should be tied to GND.

As shown in Figure 37, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349EA Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + \text{RCWL[LBIUCM]})$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 52 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, csb_clk

Table 52. Configurable Clock Units

All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part ordered, see Section 22.1, "Part Numbers Fully Addressed by This Document," for part ordering details and contact your Freescale Sales Representative or authorized distributor for more information.

Thermal

that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 60 shows heat sink thermal resistance for PBGA of the MPC8343EA.

Table 60. Heat Sink and Thermal Resistance of MPC8343EA (PBGA)

Heat Sink Assuming Thermal Grease		29 × 29 mm PBGA	
neat Sink Assuming merinal Grease	AITTOW	Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	13.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	9.6	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	8.8	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	11.3	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	8.1	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	7.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	9.1	
Wakefield, $53\times53\times25$ mm pin fin	1 m/s	7.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	6.5	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	10.1	

T			······	41	£ . 11
Interface	material	vendors	include	the	tonowing:

6	
Chomerics, Inc.	781-935-4850
77 Dragon Ct.	
Woburn, MA 01801	
Internet: www.chomerics.com	
Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 P_D = power dissipation (W)

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8343EA.

21.1 System Clocking

The MPC8343EA includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV_{DD}1, AV_{DD}2, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 38, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 38 shows the PLL power supply filter circuit.

Figure 38. PLL Power Supply Filter Circuit