
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	·
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (3)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8343zqagd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints

- Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects for eight external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - Handshaking (external control) signals for all channels: DMA_DREQ[0:3], DMA_DACK[0:3], DMA_DDONE[0:3]
 - All channels accessible to local core and remote PCI masters

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8343EA for the 3.3-V signals, respectively.

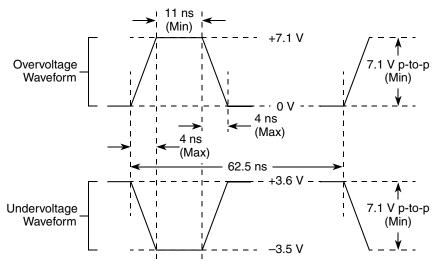


Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode)	GV _{DD} = 1.8 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 **Power Sequencing**

This section details the power sequencing considerations for the MPC8343EA.

2.2.1 Power-Up Sequencing

MPC8343EAdoes not require the core supply voltage (V_{DD} and AV_{DD}) and I/O supply voltages (GV_{DD} , LV_{DD} , and OV_{DD}) to be applied in any particular order. During the power ramp up, before the power

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8343EA. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V. The AC electrical specifications are the same for DDR and DRR2 SDRAM.

NOTE

The information in this document is accurate for revision 3.0 silicon and later. For information on revision 1.1 silicon and earlier versions see the *MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*. See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8343EA when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51\times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	_
Output leakage current	I _{OZ}	-9.9	9.9	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to equal 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} cannot exceed ±2% of the DC value.

 V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Ethernet: Three-Speed Ethernet, MII Management

8.2 MII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RGMII, and RTBI are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

Table 25 provides the MII transmit AC timing specifications.

Table 25. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH/} t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0	—	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 9 shows the MII transmit AC timing diagram.

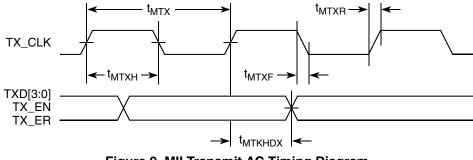


Figure 9. MII Transmit AC Timing Diagram

10.2 Local Bus AC Electrical Specification

Table 34 and Table 35 describe the general timing parameters of the local bus interface of the MPC8343EA.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5		ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.5	—	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	2.2	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LUPWAIT Input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to LALE rise	t _{LBKHLR}		4.5	ns	—
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}		4.5	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}		4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}		4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	3.8	ns	8

Table 34. Local Bus General Timing Parameters—DLL On

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

- 2. All timings are in reference to the rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to 0.4 × OV_{DD} of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Figure 17 through Figure 22 show the local bus signals.

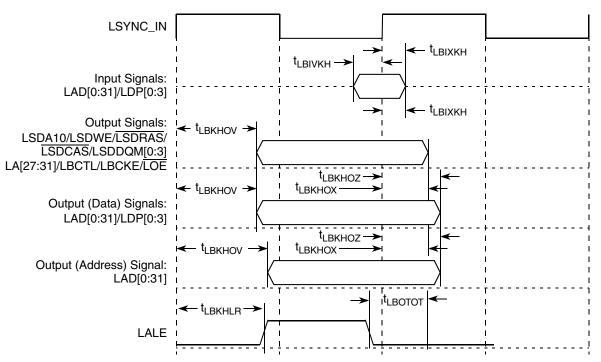


Figure 17. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

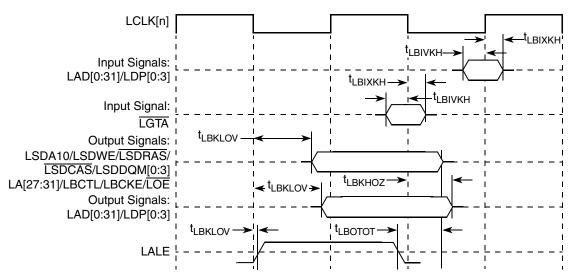


Figure 18. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

Local Bus

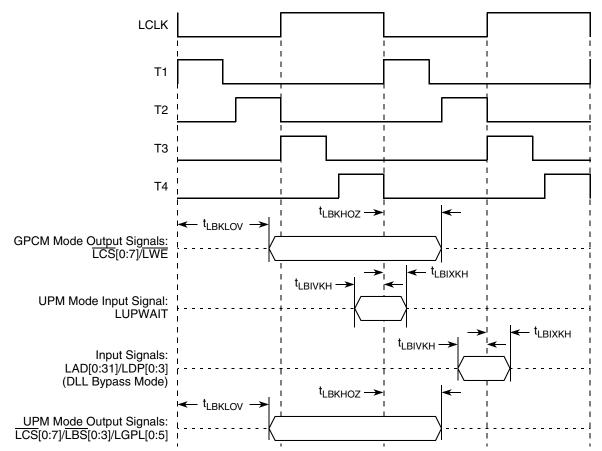


Figure 21. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8343EA.

12.1 I²C DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the I²C interface of the MPC8343EA.

Table 38. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3\times \text{OV}_{\text{DD}}$	V	—
Low level output voltage	V _{OL}	0	$0.2\times \text{OV}_{\text{DD}}$	V	1
Output fall time from V_{IH} (min) to V_{IL} (max) with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	I	-10	10	μΑ	4
Capacitance for each I/O pin	Cl	—	10	pF	—

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349EA Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 39 provides the AC timing parameters for the I²C interface of the MPC8343EA. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 38).

Table 39. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μS
High period of the SCL clock	t _{I2CH}	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time:CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μs

Figure 31 shows the PCI input AC timing diagram.

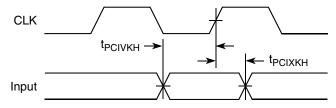
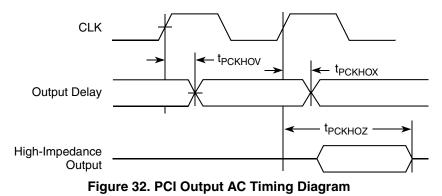



Figure 31. PCI Input AC Timing Diagram

Figure 32 shows the PCI output AC timing diagram.

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8343EA timer pins, including TIN, $\overline{\text{TOUT}}$, TGATE, and RTC_CLK.

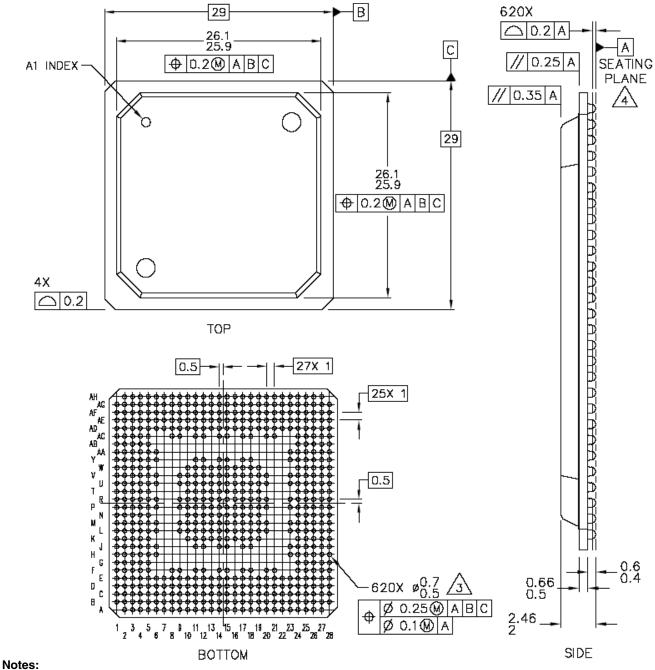

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 43. Timer DC Electrical Characteristics

18.2 Mechanical Dimensions for the MPC8343EA PBGA

Figure 36 shows the mechanical dimensions and bottom surface nomenclature for the MPC8343EA, 620-PBGA package.

notes:

1. All dimensions are in millimeters.

- 2. Dimensioning and tolerancing per ASME Y14. 5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 36. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8343EA PBGA

Package and Pin Listings

Table 51	MPC8343EA	(PRGA) Pinout	l istina ((continued)
Table JT.		(FDGA)) Fillout	Lisung ((continueu)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	SPI			
SPIMOSI/LCS[6]	D7	I/O	OV _{DD}	—
SPIMISO/LCS[7]	C7	I/O	OV _{DD}	—
SPICLK	B7	I/O	OV _{DD}	_
SPISEL	A7	I	OV _{DD}	_
	Clocks			
PCI_CLK_OUT[0:2]	Y1, W3, W2	0	OV _{DD}	—
PCI_CLK_OUT[3]/LCS[6]	W1	0	OV _{DD}	_
PCI_CLK_OUT[4]/LCS[7]	V3	0	OV _{DD}	_
PCI_SYNC_IN/PCI_CLOCK	U4	I	OV _{DD}	_
PCI_SYNC_OUT	U5	0	OV _{DD}	3
RTC/PIT_CLOCK	E9	I	OV _{DD}	_
CLKIN	W5	I	OV _{DD}	_
	JTAG			
ТСК	H27	I	OV _{DD}	_
TDI	H28	I	OV _{DD}	4
TDO	M24	0	OV _{DD}	3
TMS	J27	I	OV _{DD}	4
TRST	K26	I	OV _{DD}	4
	Test			
TEST	F28	I	OV _{DD}	6
TEST_SEL	Т3	I	OV _{DD}	7
	РМС			
QUIESCE	K27	0	OV _{DD}	_
	System Control			•
PORESET	K28	I	OV _{DD}	_
HRESET	M25	I/O	OV _{DD}	1
SRESET	L27	I/O	OV _{DD}	2
	Thermal Management			•
THERM0	B15	I	_	8

RCWL[SPMF]	System PLL Multiplication Factor
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 54. S	ystem PLL	Multiplication	Factors ((continued))
-------------	-----------	----------------	-----------	-------------	---

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 55 and Table 56 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

			li	nput Clock Fre	equency (MHz	:) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				csb_clk Frec	uency (MHz)	
Low	0010	2 : 1				133
Low	0011	3:1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		<u>1</u>
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233			
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			

Table 55. CSB Frequency Options for Host Mode

Clocking

			Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				csb_clk Free		
High	0010	2:1				133
High	0011	3 : 1			100	200
High	0100	4 : 1			133	266
High	0101	5 : 1			166	333
High	0110	6 : 1			200	
High	0111	7:1			233	
High	1000	8 : 1				

Table 55. CSB Frequency Options for Host Mode (continued)

¹ CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

Table 56. CSB Frequency Options for Agent Mode

			Ir	put Clock Fre	equency (MHz	z) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				<i>csb_clk</i> Freq	juency (MHz)	
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9 : 1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233			
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	4 : 1		100	133	266

Thermal

that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 60 shows heat sink thermal resistance for PBGA of the MPC8343EA.

Table 60. Heat Sink and Thermal Resistance of MPC8343EA (PBGA)

Heat Sink Accuming Thermal Graces	Air Flow	$29 \times 29 \text{ mm PBGA}$	
Heat Sink Assuming Thermal Grease		Thermal Resistance	
AAVID 30 \times 30 \times 9.4 mm pin fin	Natural convection	13.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	9.6	
AAVID 30 \times 30 \times 9.4 mm pin fin	2 m/s	8.8	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	11.3	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	8.1	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	7.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	9.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	7.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	6.5	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	10.1	

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 P_D = power dissipation (W)

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8343EA.

21.1 System Clocking

The MPC8343EA includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV_{DD}1, AV_{DD}2, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 38, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 38 shows the PLL power supply filter circuit.

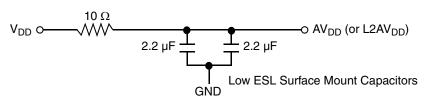


Figure 38. PLL Power Supply Filter Circuit

System Design Information

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8343EA can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8343EA system, and the device itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the device. These capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8343EA.

21.5 Output Buffer DC Impedance

The MPC8343EA drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 39). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals

 $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N) \div 2$.

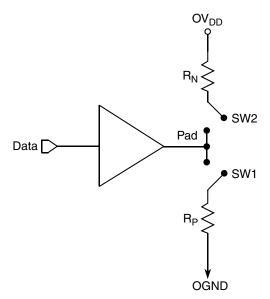


Figure 39. Driver Impedance Measurement

Two measurements give the value of this resistance and the strength of the driver current source. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1 \div (1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1 \div V_2 - 1)$. The drive current is then $I_{source} = V_1 \div R_{source}$.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	NA	Z _{DIFF}	W

Table 61. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

21.6 Configuration Pin Multiplexing

The MPC8343EA power-on configuration options can be set through external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see the customer-visible configuration pins). These pins are used as output only pins in normal operation.

Ordering Information

parts including extended temperatures, refer to the device product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8343	Blank = Not included E = included	Blank = 0 to 105°C C = -40 to 105°C	ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400	D = 266	B = 3.1

Table 62. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 with a platform frequency of 266 and up to with a platform frequency of 333

2. See Section 18, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

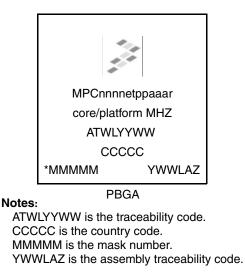

Table 63 shows the SVR settings by device and package type.

Table 63. SVR Settings

Device	Package	SVR (Rev. 3.0)
MPC8343EA	PBGA	8056_0030
MPC8343A	PBGA	8057_0030

22.2 Part Marking

Parts are marked as in the example shown in Figure 40.

Figure 40. Freescale Part Marking for PBGA Devices

Document Revision History

23 Document Revision History

This table provides a revision history of this document.

Rev. Number	Date	Substantive Change(s)
11	09/2011	 In Section 2.2, "Power Sequencing," added Section 2.2.1, "Power-Up Sequencing" and Figure 4. In Table 25, Table 29, and Table 27, removed the GTX_CLK125. In Table 30, updated t_{MDKHDX} Max value from 170ns to 70ns.
10	11/2010	 In Table 51, added overbar to LCS[4] and LCS[5] signals. In Table 51 added note for pin LGPL4. In Section 21.7, "Pull-Up Resistor Requirements, updated the list of open drain type pins.
9	05/2010	 In Table 25 through Table 26, changed V_{IL}(min) to V_{IH}(max) to (20%–80%). Added Table 8, "EC_GTX_CLK125 AC Timing Specifications."
8	5/2009	 In Section 18.1, "Package Parameters for the MPC8343EA PBGA, changed solder ball for TBGA and PBGA from 95.5 Sn/0.5 Cu/4 Ag to 96.5 Sn/3.5 Ag. In Table 53, added two columns for the DDR1 and DDR2 memory bus frequency. In Table 62, footnote 1, changed 667(TBGA) to 533(TBGA). footnote 4, added data rate for DDR1 and DDR2.
7	2/2009	 Added footnote 6 to Table 7. In Section 9.2, "USB AC Electrical Specifications," clarified that AC table is for ULPI only. In Table 35, corrected t_{LBKHOV} parameter to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 18, Figure 20, and Figure 21 for output signals. Added footnote 10 to Table 51. In Table 51, updated note 11 to say the following: "SEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net." In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins." In Table 62, updated note 1 to say the following: "For temperature range = C, processor frequency is limited to 400 with a platform frequency of 266."
6	4/2007	 In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row. In Section 21.7, "Pull-Up Resistor Requirements, "deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."
5	3/2007	 Page 1, updated first paragraph to reflect PowerQUICC II Pro information. In Table 18, "DDR and DDR2 SDRAM Input AC Timing Specifications," added note 2 to t_{CISKEW} and deleted original note 3; renumbered the remaining notes. In Figure 38, "JTAG Interface Connection," updated with new figure. In Figure 38, "JTAG Interface Connection," updated with new figure. In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by this Document," replaced first paragraph.
4	12/2006	Table 19, "DDR and DDR2 SDRAM Output AC Timing Specifications," modified T _{ddkhds} for 333 MHz from 900 ps to 775 ps.