
Motorola - MCF5407CAI162 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor Coldfire V4

Core Size 32-Bit Single-Core

Speed 162MHz

Connectivity EBI/EMI, I²C, UART/USART

Peripherals DMA, WDT

Number of I/O 16

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 208-BFQFP

Supplier Device Package 208-FQFP (28x28)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5407cai162

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mcf5407cai162-4398864
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


 

© Motorola Inc., 2001. All rights reserved.

ColdFire is a registered trademark and DigitalDNA is a trademark of Motorola, Inc. 

I

 

2

 

C is a registered trademark of Philips Semiconductors

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, 
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability 
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation 
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can 
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must 
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent 
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems 
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in 
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or 
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, 
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable 
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or 
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola 
and  are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

 

How to reach us:

USA/EUROPE/Locations Not Listed:

 

 Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 
or 1–800–441–2447

 

JAPAN: 

 

Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 
81–3–3440–3569

 

ASIA/PACIFIC: 

 

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., 
Hong Kong. 852–26668334

 

Technical Information Center: 

 

1–800–521–6274

 

HOME PAGE: 

 

http://www.motorola.com/semiconductors

 

Document Comments

 

: FAX (512) 895-2638, Attn: TECD Applications Engineering



   

ColdFire Module Description

      
1.2.1  Process 

The MCF5407 is manufactured in a 0.22-µ CMOS process with quad-layer-metal routing
technology. This process combines the high performance and low power needed for
embedded system applications. Inputs are 3.3-V tolerant; outputs are CMOS or open-drain
CMOS with outputs operating from VDD + 0.5 V to GND - 0.5 V, with guaranteed
TTL-level specifications.

1.3  ColdFire Module Description
The following sections provide overviews of the various modules incorporated in the
MCF5407. 

1.3.1  ColdFire Core

The Version 4 ColdFire core consists of two independent and decoupled pipelines to
maximize performance—the instruction fetch pipeline (IFP) and the operand execution
pipeline (OEP). 

1.3.1.1  Instruction Fetch Pipeline (IFP)

The four-stage instruction fetch pipeline (IFP) is designed to prefetch instructions for the
operand execution pipeline (OEP). Because the fetch and execution pipelines are decoupled
by a ten-instruction FIFO buffer, the fetch mechanism can prefetch instructions in advance
of their use by the OEP, thereby minimizing the time stalled waiting for instructions. To
maximize the performance of conditional branch instructions, the Version 4 IFP
implements a sophisticated two-level acceleration mechanism. 

The first level is an 8-entry, direct-mapped branch cache with a 2-bit prediction state
(strongly/weakly, taken/not-taken) for each entry. The branch cache implements instruction
folding techniques. These allow conditional branch instructions that are predicted correctly
as taken to execute in zero cycles. 

For those conditional branches with no information in the branch cache, a second-level,
direct-mapped prediction table containing 128 entries is accessed. Again, each entry uses
the same 2-bit prediction state definition as the branch cache. This branch prediction state
is then used to predict the direction of prefetched conditional branch instructions. 

Other change-of-flow instructions, including unconditional branches, jumps, and
subroutine calls, use a similar mechanism where the IFP calculates the target address. The
performance of subroutine return instructions is improved through the use of a four-entry,
LIFO return stack. 

In all cases, these mechanisms allow the IFP to redirect the fetch stream down the path
predicted to be taken well in advance of the actual instruction execution. The result is
significantly improved performance.
Chapter 1.  Overview  1-7



ColdFire Module Description  
1.3.1.2  Operand Execution Pipeline (OEP)

The prefetched instruction stream is gated from the FIFO buffer into the five-stage OEP.
The OEP consists of two, traditional two-stage RISC compute engines with a register file
access feeding an arithmetic/logic unit (ALU). The compute engine located at the top of the
OEP is typically used for operand memory address calculations (the address ALU), while
the compute engine located at the bottom of the pipeline is used for instruction execution
(the execution ALU). The resulting structure provides 3.9 Gbytes/S data operand
bandwidth at 162 MHz to the two compute engines and supports single-cycle execution
speeds for most instructions, including all load, store, and most embedded-load operations.
In response to users and developers’ comments, the V4 design supports execution of the
ColdFire Revision B instruction set, which adds a small number of new instructions to
improve performance and code density.

The OEP also implements two advanced performance features. It dynamically determines
the appropriate location of instruction execution (either in the address ALU or the execution
ALU) based on the pipeline state. The address compute engine, in conjunction with register
renaming resources, can be used to execute a number of heavily-used opcodes and forward
the results to subsequent instructions without any pipeline stalls. Additionally, the OEP
implements instruction folding techniques involving MOVE instructions so that two
instructions can be issued in a single machine cycle. The resulting microarchitecture
approaches the performance of a full superscalar implementation, but at a much lower
silicon cost.

1.3.1.3  MAC Module

The MAC unit provides signal processing capabilities for the MCF5407 in a variety of
applications including digital audio and servo control. Integrated as an execution unit in the
processor’s OEP, the MAC unit implements a three-stage arithmetic pipeline optimized for
16 x 16 multiplies. Both 16- and 32-bit input operands are supported by this design in
addition to a full set of extensions for signed and unsigned integers, plus signed, fixed-point
fractional input operands. 

1.3.1.4  Integer Divide Module

Integrated into the OEP, the divide module performs operations using signed and unsigned
integers. The module supports word and longword divides producing quotients and/or
remainders.

1.3.2  Harvard Architecture

A Harvard memory architecture implements separate instruction and data buses to the
processor-local memories, removing conflicts between instruction fetches and operand
accesses.
1-8 MCF5407 User’s Manual

 



ColdFire Module Description  
or 32-bit ports. The base address, access permissions, and internal bus transfer terminations
are programmable with configuration registers for each chip select. CS0 also provides
global chip select functionality of boot ROM upon reset for initializing the MCF5407.

1.3.8.3  16-Bit Parallel Port Interface

A 16-bit general-purpose programmable parallel port serves as either an input or an output
on a pin-by-pin basis.

1.3.8.4  Interrupt Controller

The interrupt controller provides user-programmable control of ten internal peripheral
interrupts and implements four external fixed interrupt-request pins. Each internal interrupt
can be programmed to any one of seven interrupt levels and four priority levels within each
of these levels. Additionally, the external interrupt request pins can be mapped to levels 1,
3, 5, and 7 or levels 2, 4, 6, and 7. Autovector capability is available for both internal and
external interrupts.

1.3.8.5  JTAG

To help with system diagnostics and manufacturing testing, the MCF5407 processor
includes dedicated user-accessible test logic that complies with the IEEE 1149.1a standard
for boundary-scan testability, often referred to as the Joint Test Action Group, or JTAG. For
more information, refer to the IEEE 1149.1a standard.

1.3.9  System Debug Interface
The ColdFire processor core debug interface is provided to support system debugging in
conjunction with low-cost debug and emulator development tools. Through a standard
debug interface, users can access real-time trace and debug information. This allows the
processor and system to be debugged at full speed without the need for costly in-circuit
emulators. The debug unit in the MCF5407 is a compatible upgrade to the MCF52xx and
MCF53xx debug modules with added breakpoint registers and support for I/O interrupt
request servicing while in emulator mode. 

The on-chip breakpoint resources include a total of 13 programmable registers—two sets
of address registers (each with two 32-bit registers), two sets of data registers (each with a
32-bit data register plus a 32-bit data mask register), one 32-bit PC register plus a 32-bit PC
mask register and three additional 32-bit PC registers. These registers can be accessed
through the dedicated debug serial communication channel or from the processor’s
supervisor mode programming model. The breakpoint registers can be configured to
generate triggers by combining the address, data, and PC conditions in a variety of single
or dual-level definitions. The trigger event can be programmed to generate a processor halt
or initiate a debug interrupt exception.

The MCF5407’s new interrupt servicing options during emulator mode allow real-time
critical interrupt service routines to be serviced while processing a debug interrupt event,
thereby ensuring that the system continues to operate even during debugging.
1-12 MCF5407 User’s Manual

 



LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MAC Multiple accumulate unit 

MBAR Memory base address register

MSB Most-significant byte

msb Most-significant bit

Mux Multiplex

NOP No operation

OEP Operand execution pipeline

PC Program counter

PCLK Processor clock

PLL Phase-locked loop

PLRU Pseudo least recently used

POR Power-on reset

PQFP Plastic quad flat pack

RISC Reduced instruction set computing 

Rx Receive

SIM System integration module

SOF Start of frame

TAP Test access port

TTL Transistor-to-transistor logic

Tx Transmit

UART Universal asynchronous/synchronous receiver transmitter

Table I-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
Part I. MCF5407 Processor Core  I-xxi



Instruction Set Summary  
Table 2-6.  Notational Conventions 

Instruction Operand Syntax

Opcode Wildcard

cc Logical condition (example: NE for not equal)

Register Specifications

An Any address register n (example: A3 is address register 3)

Ay,Ax Source and destination address registers, respectively

Dn Any data register n (example: D5 is data register 5)

Dy,Dx Source and destination data registers, respectively

Rc Any control register (example VBR is the vector base register)

Rm MAC registers (ACC, MAC, MASK)

Rn Any address or data register

Rw Destination register w (used for MAC instructions only) 

Ry,Rx Any source and destination registers, respectively

Xi index register i (can be an address or data register: Ai, Di)

Register Names

ACC MAC accumulator register

CCR Condition code register (lower byte of SR)

MACSR MAC status register

MASK MAC mask register

PC Program counter

SR Status register

Port Name

PSTDDATA Processor status/debug data port

Miscellaneous Operands

 #<data> Immediate data following the 16-bit operation word of the instruction

<ea> Effective address

<ea>y,<ea>x Source and destination effective addresses, respectively

<label> Assembly language program label

<list> List of registers for MOVEM instruction (example: D3–D0)

<shift> Shift operation: shift left (<<), shift right (>>)

<size> Operand data size: byte (B), word (W), longword (L)

bc Both instruction and data caches

dc Data cache

ic Instruction cache

# <vector> Identifies the 4-bit vector number for trap instructions

<> identifies an indirect data address referencing memory
2-16 MCF5407 User’s Manual

 



Cache Organization
4.8.2  The Cache at Start-Up

As Figure 4-4 (A) shows, after power-up, cache contents are undefined; V and M may be
set on some lines even though the cache may not contain the appropriate data for start up.
Because reset and power-up do not invalidate cache lines automatically, the cache should
be cleared explicitly by setting CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way 0 is
occupied, the cacheable entry is loaded into the same set in way 1, as shown in Figure 4-4
(D). This process is described in detail in Section 4.9, “Cache Operation.” 
Chapter 4.  Local Memory  4-9



Cache Registers
4.10  Cache Registers
This section describes the MCF5407 implementation of the Version 4 cache registers.

4.10.1  Cache Control Register (CACR)

The CACR in Figure 4-8 contains bits for configuring the cache. It can be written by the
MOVEC register instruction and can be read or written from the debug facility. A hardware
reset clears CACR, which disables the cache; however, reset does not affect the tags, state
information, or data in the cache.

Table 4-4 describes CACR fields.

31 30 29 28 27 26 25 24 23 20 19 18 17 16

Field DEC DW DESB DDPI DHLCK DDCM DCINVA — BEC BCINVA —

Reset 0000_0000_0000_0000

R/W Write (R/W by debug module)

15 14 13 12 11 10 9 8 7 0

Field IEC — DNFB IDPI IHLCK IDCM — ICINVA —

Reset 0000_0000_0000_0000

R/W Write (R/W by debug module)

Rc 0x002

Figure 4-8. Cache Control Register (CACR)

Table 4-4. CACR Field Descriptions 

Bits Name Description

31 DEC Enable data cache.
0 Cache disabled. The data cache is not operational, but data and tags are preserved.
1 Cache enabled.

30 DW Data default write-protect. For normal operations that do not hit in the RAMBARs or ACRs, this 
field defines write-protection. See Section 4.9.1, “Caching Modes.”
0 Not write protected. 
1 Write protected. Write operations cause an access error exception.

29 DESB Enable data store buffer. Affects the precision of transfers. CACR[DESB] has precedence over 
CACR[9–8] and ACRn[9–8]; therefore, the store buffer must be disabled to use imprecise mode.
0 Imprecise-mode, write-through or cache-inhibited writes bypass the store buffer and generate 

bus cycles directly. Section 4.9.5.2.1, “Push and Store Buffers,” describes the associated 
performance penalty.

1 The four-entry FIFO store buffer is enabled; to maximize performance, this buffer defers 
pending imprecise-mode, write-through or cache-inhibited writes. 

Precise-mode, cache-inhibited accesses always bypass the store buffer. Precise and imprecise 
modes are described in Section 4.9.2, “Cache-Inhibited Accesses.”

28 DDPI Disable CPUSHL invalidation.
0 Normal operation. A CPUSHL instruction causes the selected line to be pushed if modified and 

then invalidated.
1 No clear operation. A CPUSHL instruction causes the selected line to be pushed if modified, 

then left valid.
Chapter 4.  Local Memory  4-21



Cache Management  
addq.l #1,d0 ;increment to next way
move.l d0,a0 ;set = 0, way = d0
cmpi.l #4,d0 ;flushed all the ways?
bne setloop
rts

The following CACR loads assume the instruction cache has been invalidated, the default
instruction cache mode is cacheable, and the default data cache mode is copyback. 

dataCacheLoadAndLock:

move.l #0xa3080800,d0; enable and invalidate data cache ...
movec d0,cacr ; ... in the CACR

The following code preloads half of the data cache (4 Kbytes). It assumes a contiguous
block of data is to be mapped into the data cache, starting at a 0-modulo-4K address. 

move.l #256,d0 ;256 16-byte lines in 4K space
lea data_,a0 ; load pointer defining data area

dataCacheLoop:
tst.b (a0) ;touch location + load into data cache
lea 16(a0),a0 ;increment address to next line
subq.l #1,d0 ;decrement loop counter
bne.b dataCacheLoop ;if done, then exit, else continue

; A 4K region has been loaded into levels 0 and 1 of the 8K data cache. lock it!

move.l #0xaa088000,d0 ;set the data cache lock bit ...
movec d0,cacr ; ... in the CACR
rts

align 16

The following CACR loads assume the data cache has been invalidated, the default
instruction cache mode is cacheable and the default operand cache mode is copyback. 

Note that this function must be mapped into a cache inhibited or SRAM space or these text
lines will be prefetched into the instruction cache, which may displace some of the 8-Kbyte
space being explicitly fetched.

instructionCacheLoadAndLock:

move.l #0xa2088100,d0 ;enable and invalidate the instruction 
movec d0,cacr ;cache in the CACR

The following code segments preload half of the instruction cache (8 Kbytes). It assumes a
contiguous block of data is to be mapped, starting at a 0-modulo-8K address

move.l #512,d0 ;512 16-byte lines in 8K space
lea code_,a0 ;load pointer defining code area

instCacheLoop:
; intouch (a0) ;touch location + load into instruction cache

; Note in the assembler we use, there is no INTOUCH opcode. The following
; is used to produce the required binary representation 

cpushl #nc,(a0) ;touch location + load into 
4-26 MCF5407 User’s Manual

 



Background Debug Mode (BDM)
5.5.3.3.4  Write Memory Location (WRITE)

Write data to the memory location specified by the longword address. The address space is
defined by BAAR[TT,TM]. Hardware forces low-order address bits to zeros for word and
longword accesses to ensure that word addresses are word-aligned and longword addresses
are longword-aligned.

Command Formats:

15 12 11 8 7 4 3 1

Byte 0x1 0x8 0x0 0x0

A[31:16]

A[15:0]

X X X X X X X X D[7:0]

Word 0x1 0x8 0x4 0x0

A[31:16]

A[15:0]

D[15:0]

Longword 0x1 0x8 0x8 0x0

A[31:16]

A[15:0]

D[31:16]

D[15:0]

Figure 5-26. WRITE Command Format
Chapter 5.  Debug Support  5-33



Background Debug Mode (BDM)
5.5.3.3.5  Dump Memory Block (DUMP)

DUMP is used with the READ command to access large blocks of memory. An initial READ

is executed to set up the starting address of the block and to retrieve the first result. If an
initial READ is not executed before the first DUMP, an illegal command response is returned.
The DUMP command retrieves subsequent operands. The initial address is incremented by
the operand size (1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands
use this address, perform the memory read, increment it by the current operand size, and
store the updated address in the temporary register.

NOTE:
DUMP does not check for a valid address; it is a valid command
only when preceded by NOP, READ, or another DUMP command.
Otherwise, an illegal command response is returned. NOP can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is processed, allowing the operand
size to be dynamically altered.

Command/Result Formats: 

15 12 11 8 7 4 3 0

Byte Command 0x1 0xD 0x0 0x0

Result X X X X X X X X D[7:0]

Word Command 0x1 0xD 0x4 0x0

Result D[15:0]

Longword Command 0x1 0xD 0x8 0x0

Result D[31:16]

D[15:0]

Figure 5-28.  DUMP Command/Result Formats
Chapter 5.  Debug Support  5-35



NOP No operation

PCLK Processor clock

PLL Phase-locked loop

POR Power-on reset

Rx Receive

SIM System integration module

SOF Start of frame

TAP Test access port

TTL Transistor-to-transistor logic

Tx Transmit

UART Universal asynchronous/synchronous receiver transmitter

Table II-i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
Part II. System Integration Module (SIM)  II-iii



Synchronous Operation
Table 11-13 describes DACRn fields.

Table 11-13. DACR0/DACR1 Field Descriptions (Synchronous Mode) 

Bit Name Description

31–18 BA Base address register. With DCMR[BAM], determines the address range in which the associated 
DRAM block is located. Each BA bit is compared with the corresponding address of the current bus 
cycle. If all unmasked bits match, the address hits in the associated DRAM block. BA functions the 
same as in asynchronous operation.

17–16 — Reserved, should be cleared. 

15 RE Refresh enable. Determines when the DRAM controller generates a refresh cycle to the DRAM 
block. 
0 Do not refresh associated DRAM block
1 Refresh associated DRAM block

14 — Reserved, should be cleared. 

13–12 CASL CAS latency. Affects the following SDRAM timing specifications. Timing nomenclature varies with 
manufacturers. Refer to the SDRAM specification for the appropriate timing nomenclature:

Parameter
Number of Bus Clocks

CASL= 00 CASL = 01 CASL= 10 CASL= 11

tRCD—SRAS assertion to SCAS assertion 1 2 3 3

tCASL—SCAS assertion to data out 1 2 3 3

tRAS—ACTV command to precharge command 2 4 6 6

tRP—Precharge command to ACTV command 1 2 3 3

tRWL,tRDL—Last data input to precharge 
command

1 1 1 1

tEP—Last data out to precharge command) 1 1 1 1

11 — Reserved, should be cleared. 

10–8 CBM Command and bank MUX [2:0]. Because different SDRAM configurations cause the command and 
bank select lines to correspond to different addresses, these resources are programmable. CBM 
determines the addresses onto which these functions are multiplexed. 
CBM Command Bit Bank Select Bits
000 17 18 and up
001 18 19 and up
010 19 20 and up
011 20 21 and up
100 21 22 and up
101 22 23 and up
110 23 24 and up
111 24 25 and up
This encoding and the address multiplexing scheme handle common SDRAM organizations. Bank 
select bits include a base bit and all address bits above for SDRAMs with multiple bank select bits. 

7 — Reserved, should be cleared. 
Chapter 11.  Synchronous/Asynchronous DRAM Controller Module  11-21



Chapter 12  
DMA Controller Module
This chapter describes the MCF5407 DMA controller module. It provides an overview of
the module and describes in detail its signals and registers. The latter sections of this
chapter describe operations, features, and supported data transfer modes in detail. 

12.1  Overview
The direct memory access (DMA) controller module provides an efficient way to move
blocks of data with minimal processor interaction. The DMA module, shown in
Figure 12-1, provides four channels that allow byte, word, or longword operand transfers.
Each channel has a dedicated set of registers that define the source and destination
addresses (SARn and DARn), byte count (BCRn), and control and status (DCRn and
DSRn). Transfers can be dual or single address to off-chip devices or dual address to
on-chip devices, such as UART, SDRAM controller, and parallel port.

Figure 12-1. DMA Signal Diagram

MUX

Arbitration/

Interface BusData Path
Control

Internal 

External

ChannelChannel

MUX

Registered 

Data Path 

SAR0

DAR0

BCR0

DCR0

DSR0

Channel 0

Interrupts

SAR1

DAR1

BCR1

DCR1

DSR1

Channel 1

SAR2

DAR2

BCR2

DCR2

DSR2

Channel 2

SAR3

DAR3

BCR3

DCR3

DSR3

Channel 3

Bus

Requests

Attributes

Current Master Attributes

Write Bus DataRead Bus Data

External Bus Address

External Bus Size

Channel
Enables

Requests

Bus Signals

Control

Control
Chapter 12.  DMA Controller Module  12-1



DMA Signal Description  
12.1.1  DMA Module Features

The DMA controller module features are as follows: 

• Four fully independent, programmable DMA controller channels/bus modules

• Auto-alignment feature for source or destination accesses

• Dual- and single-address transfers

• Two external request pins (DREQ[1:0]) provided for channels 1 and 0

• Two external acknowledge pins (DACK[1:0]) provided for channels 1 and 0

• Channels 2 and 3 have request signals connected to the interrupt lines of UART0 and 
UART1, programmable through the channel select field MODCTL[DSL]. See 
Section 14.3.4, “Modem Control Register (MODCTL).”

• Channel arbitration on transfer boundaries

• Data transfers in 8-, 16-, 32-, or 128-bit blocks using a 16-byte buffer

• Continuous-mode and cycle-steal transfers

• Independent transfer widths for source and destination

• Independent source and destination address registers

• Data transfer can occur in as few as two clocks

12.2  DMA Signal Description
Table 12-1 briefly describes the DMA module signals that provide handshake control for
either a source or destination external device. 

Table 12-1. DMA Signals 

Signal I/O Description

DREQ[1:0]/
PP[6:5]

I External DMA request. DREQ[1:0] can serve as the DMA request inputs or as two parallel port 
bits. They are programmable individually through the PAR. A peripheral device asserts these 
inputs to request an operand transfer between it and memory. 
DREQ signals are asserted to initiate DMA accesses in the respective channels. The system 
should drive unused DREQ signals to logic high. Although each channel has an individual 
DREQ signal, in the MCF5407 only channels 0 and 1 connect to external DREQ pins. DREQ2 
and DREQ3 are programmable for use with UART0 and UART1 through MODCTL[DSL]. See 
Section 14.3.4, “Modem Control Register (MODCTL).” 

TT[1:0]/
PP[1:0]

O Transfer type. A DMA access is indicated by the transfer type pins, TT[1:0] = 01. The transfer 
modifier, TM[2:0], and DMA acknowledgement, DACK[1:0], configurations shown below are 
meaningful only if TT[1:0] = 01, indicating an external master or DMA access. 
12-2 MCF5407 User’s Manual

 



Calculating Time-Out Values
move.w TMR0,D0;save the contents of TMR0 while setting
bset #0,D0 ;the 0 bit. This enables timer 0 and starts counting
move.w D0, TMR0 ;load the value back into the register, setting TMR0[RST]

T0_LOOP

move.b TER0,D1 ;load TER0 and see if 
btst #1,D1 ;TER0[REF] has been set
beq T0_LOOP

addi.l #1,D2;Increment D2
cmp.l #5,D2;Did D2 reach 5? (i.e. timer ref has timed)
beq T0_FINISH;If so, end timer0 example. Otherwise jump back.

move.b #0x02,D0 ;writing one to TER0[REF] clears the event flag 
move.b D0,TER0 
jmp T0_LOOP

T0_FINISH
HALT;End processing. Example is finished

13.5  Calculating Time-Out Values
The formula below determines time-out periods for various reference values:

Time-out period = (1/clock frequency) x (1 or 16) x (TMRn[PS] + 1) x 
(TRRn[REF])

When calculating time-out periods, add 1 to the prescaler to simplify calculating, because
TMRn[PS] = 0x00 yields a prescaler of 1 and TMRn[PS] = 0xFF yields a prescaler of 256.
For example, if a 54-MHz timer clock is divided by 16, TMRn[PS] = 0x7F, and the timer
is referenced at 0xABCD (43,981 decimal), the time-out period is as follows:

Time-out period = (1/54,000,000) x (16) x (127 + 1) x (43,981) = 1.67 S

The time-out values in Table 13-4 represent the time it takes the counter value in TCNn
value to go from 0x0000 to the default reference value, TRRn[REF] = 0xFFFF. Time-out
values shown for CLKIN are divided by 1 and by 16 (TMRn[CLK] is 01 or 10,
respectively). 

Any clock source (CLKIN ÷ 1, CLKIN ÷ 16, or TIN) can be prescaled using TMRn[PS]. 

Table 13-4. Time-Out Values (in Seconds)—TRR[REF] = 0xFFFF 
(162-MHz Processor Clock) 

TMR[PS] 
(Dec)

CLK = 10 (÷ 1) CLK = 01 (÷ 16)

TMR[PS] 
(Dec)

CLK = 10 (÷ 1) CLK = 01 (÷ 16)

CLKIN (MHz) CLKIN (MHz)

54 40.5 32.4 54 40.5 32.4 54 40.5 32.4 54 40.5 32.4

0 0.019 0.026 0.032 0.001 0.002 0.002 128 2.505 3.340 4.175 0.157 0.209 0.261

1 0.039 0.052 0.065 0.002 0.003 0.004 129 2.524 3.366 4.207 0.158 0.210 0.263

2 0.058 0.078 0.097 0.004 0.005 0.006 130 2.544 3.392 4.240 0.159 0.212 0.265

3 0.078 0.104 0.129 0.005 0.006 0.008 131 2.563 3.418 4.272 0.160 0.214 0.267

4 0.097 0.129 0.162 0.006 0.008 0.010 132 2.583 3.443 4.304 0.161 0.215 0.269

5 0.117 0.155 0.194 0.007 0.010 0.012 133 2.602 3.469 4.337 0.163 0.217 0.271
Chapter 13.  Timer Module  13-7



Operation
Figure 14-39. UART Mode Programming Flowchart (Sheet 3 of 5)

B

Y

N

N

A

Y

A B

Y

N

RETURN

HAVE
FRAMING ERROR

?

SET FRAMING
ERROR FLAG

HAVE
PARITY ERROR

?

SET PARITY 
ERROR FLAG

GET CHARACTER
FROM RECEIVER

SAME AS 
TRANSMITTED
CHARACTER

?

SET INCORRECT
CHARACTER FLAG

DISABLE 
TRANSMITTER

RESTORE 
TO ORIGINAL MODE

FRCHK RSTCHN

PRCHK

CHRCHK
Chapter 14.  UART Modules  14-41



Chapter 15  
Parallel Port (General-Purpose I/O) 
This chapter describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers. It includes a code example for setting up
the parallel port.

15.1  Parallel Port Operation 
The MCF5407 parallel port module has 16 signals, which are programmed as follows:

• The pin assignment register (PAR) selects the function of the 16 multiplexed pins. 

• Port A data direction register (PADDR) determines whether pins configured as 
parallel port signals are inputs or outputs.

• The Port A data register (PADAT) shows the status of the parallel port signals. 

The operations of the PAR, PADDR, and PADAT are described in the following sections.

15.1.1  Pin Assignment Register (PAR)

The pin assignment register (PAR), which is part of the system integration module (SIM),
defines how each PAR bit determines each pin function, as shown in Figure 15-1. 

 

If PP[9:8]/A[25:24] are unavailable because A[25:0] are needed for external addressing,
PP[15:10]/A[31:26] can be configured as general-purpose I/O. Table 15-1 summarizes
MCF5407 parallel port pins, described in detail in Chapter 17, “Signal Descriptions.”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field PAR15 PAR14 PAR13 PAR12 PAR11 PAR10 PAR9 PAR8 PAR7 PAR6 PAR5 PAR4 PAR3 PAR2 PAR1 PAR0

PAR[n] = 0 PP15 PP14 PP13 PP12 PP11 PP10 PP9 PP8 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0

PAR[n] = 1 A31 A30 A29 A28 A27 A26 A25 A24 TIP DREQ0 DREQ1 TM2 TM1/
DACK1

TM0/
DACK0

TT1 TT0

Reset Determined by driving D4/ADDR_CONFIG with a 1 or 0 when RSTI negates. The system is configured as 
PP[15:0] if D4 is low; otherwise alternate pin functions selected by PAR[n] = 1 are used.

R/W R/W

Address Address MBAR + 0x004

Figure 15-1. Parallel Port Pin Assignment Register (PAR)
Chapter 15.  Parallel Port (General-Purpose I/O)  15-1



Clock and Reset Signals  
17.5.5  Data/Configuration Pins (D[7:0])

This section describes data pins, D[7:0], that are read at reset for configuration. Table 17-11
shows pin assignments. 

17.5.5.1  D[7:5,3]—Boot Chip-Select (CS0) Configuration

D[7:5,3] determine defaults for the global chip select (CS0), the only chip select valid at
reset. These signals correspond to bits in chip-select configuration register 0 (CSCR0). 

17.5.5.2  D7—Auto Acknowledge Configuration (AA_CONFIG)

At reset, the enabling and disabling of auto acknowledge for boot CS0 is determined by the
logic level driven on D7 at the rising edge of RSTI. AA_CONFIG is multiplexed with D7
and sampled only at reset. The D7 logic level is reflected as the reset value of CSCR[AA].
Table 17-12 shows how the D7 logic level corresponds to the auto acknowledge timing for
CS0 at reset. Note that auto acknowledge can be disabled by driving a logic 0 on D7 at reset.

17.5.5.3  D[6:5]—Port Size Configuration (PS_CONFIG[1:0])

The default port size value of the boot CS0 is determined by the logic levels driven on
D[6:5] at the rising edge of RSTI, which are reflected as the reset value of CSCR[PS]. Table
17-13 shows how the logic levels of D[6:5] correspond to the CS0 port size at reset. 

Table 17-11. Data Pin Configuration 

Pin Function

D7 Auto-acknowledge configuration (AA_CONFIG)

D[6:5] Port size configuration (PS_CONFIG[1:0])

D4 Address configuration (ADDR_CONFIG/D4)

D3 Byte enable configuration (BE_CONFIG)

D[2:0] Divide control (DIVIDE[2:0])

Table 17-12. D7 Selection of CS0 Automatic Acknowledge

D7 (CSCR0[AA]) Boot CS0 AA

0 Disabled

1 Enabled with 15 wait states

Table 17-13. D6 and D5 Selection of CS0 Port Size

D[6:5] (CSCR0[PS]) Boot CS0 Port Size

00 32-bit port

01 8-bit port

1x 16-bit port 
17-14 MCF5407 User’s Manual

 



General Operation of External Master Transfers
Figure 18-28. Two-Wire Implicit and Explicit Bus Mastership

In Figure 18-28, the external device is master during C1 and C2. It releases bus control in
C3 by asserting BG to the MCF5407. During C4 and C5, the MCF5407 is implicit master
because no internal access is pending. In C5, an internal bus request becomes pending,
causing the MCF5407 to become explicit bus master in C6 by asserting BD. In C7, the
external device removes the bus grant to the MCF5407. The MCF5407 does not release the
bus (the MCF5407 continues to assert BD) until the transfer ends.

NOTE:
The MCF5407 can start a transfer in the clock cycle after BG
is asserted. The external master must not assert BG to the
MCF5407 while driving the bus or the part may be damaged.

Figure 18-29 is a MCF5407 bus arbitration state diagram. States are described in
Table 18-6. 

R/W

TIP

TS

AS

D[31:0]

TA

BG

BD

External Master

Explicit
Mastership

Implicit
Mastership

C1 C2 C4 C5 C6 C7C3 C8 C9

MCF5407

CLKIN

A[31:0], TT[1:0]
SIZ[1:0], TM[2:0]
Chapter 18.  Bus Operation  18-27


