
Freescale Semiconductor - MCF5407CAI220 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor Coldfire V4

Core Size 32-Bit Single-Core

Speed 220MHz

Connectivity EBI/EMI, I²C, UART/USART

Peripherals DMA, WDT

Number of I/O 16

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 208-BFQFP

Supplier Device Package 208-FQFP (28x28)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5407cai220

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mcf5407cai220-4398876
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

CONTENTS

Paragraph
Number Title Page

Number

13.3.5 Timer Event Registers (TER0/TER1)... 13-5
13.4 Code Example... 13-6
13.5 Calculating Time-Out Values ... 13-7

Chapter 14
UART Modules

14.1 Overview... 14-1
14.2 Serial Module Overview... 14-2
14.3 Register Descriptions .. 14-3
14.3.1 UART Mode Registers 1 (UMR1n).. 14-5
14.3.2 UART Mode Register 2 (UMR2n) ... 14-7
14.3.3 Rx FIFO Threshold Register (RXLVL).. 14-8
14.3.4 Modem Control Register (MODCTL).. 14-9
14.3.5 Tx FIFO Threshold Register (TXLVL) .. 14-10
14.3.6 UART Status Registers (USRn) ... 14-10
14.3.7 UART Clock-Select Registers (UCSRn).. 14-12
14.3.8 Receive Samples Available Register (RSMP).. 14-12
14.3.9 Transmit Space Available Register (TSPC) ... 14-13
14.3.10 UART Command Registers (UCRn) .. 14-13
14.3.11 UART Receiver Buffers (URBn) ... 14-15
14.3.12 UART Transmitter Buffers (UTBn) ... 14-16
14.3.13 UART Input Port Change Registers (UIPCRn).. 14-17
14.3.14 UART Auxiliary Control Register (UACRn)... 14-17
14.3.15 UART Interrupt Status/Mask Registers (UISRn/UIMRn).......................... 14-18
14.3.16 UART Divider Upper/Lower Registers (UDUn/UDLn) 14-19
14.3.17 UART Interrupt Vector Register (UIVRn)... 14-20
14.3.18 UART Input Port Register (UIPn) .. 14-20
14.3.19 UART Output Port Data Registers (UOP1n/UOP0n)................................. 14-21
14.4 UART Module Signal Definitions .. 14-21
14.5 Operation... 14-23
14.5.1 Transmitter/Receiver Clock Source.. 14-23
14.5.1.1 Programmable Divider.. 14-24
14.5.1.2 Calculating Baud Rates... 14-24
14.5.1.2.1 CLKIN Baud Rates... 14-24
14.5.1.2.2 External Clock .. 14-25
14.5.2 Transmitter and Receiver Operating Modes... 14-25
14.5.2.1 Transmitting in UART Mode ... 14-26
14.5.2.2 Transmitter in Modem Mode (UART1) ... 14-27
14.5.2.2.1 AC ‘97 Low-Power Mode .. 14-29
14.5.2.3 Receiver .. 14-29
14.5.2.4 UART1 in UART Mode ... 14-31
xiv MCF5407 User’s Manual

Addressing Mode Summary
2.5 Addressing Mode Summary
Addressing modes are categorized by how they are used. Data addressing modes refer to
data operands. Memory addressing modes refer to memory operands. Alterable addressing
modes refer to alterable (writable) data operands. Control addressing modes refer to
memory operands without an associated size.

These categories sometimes combine to form more restrictive categories. Two combined
classifications are alterable memory (both alterable and memory) and data alterable (both
alterable and data). Twelve of the most commonly used effective addressing modes from
the M68000 Family are available on ColdFire microprocessors. Table 2-5 summarizes
these modes and their categories.

2.6 Instruction Set Summary
The ColdFire instruction set is a simplified version of the M68000 instruction set. The
removed instructions include BCD, bit field, logical rotate, decrement and branch, and
integer multiply with a 64-bit result. Nine new MAC instructions have been added.

Table 2-6 lists notational conventions used throughout this manual.

Table 2-5. ColdFire Effective Addressing Modes

Addressing Modes Syntax
Mode
Field

Reg.
Field

Category

Data Memory Control Alterable

Register direct
Data
Address

Dn
An

000
001

reg. no.
reg. no.

X
—

—
—

—
—

X
X

Register indirect
Address
Address with

Postincrement
Address with

Predecrement
Address with

Displacement

(An)
(An)+
–(An)

(d16, An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
—
—
X

X
X
X
X

Address register indirect with
scaled index

8-bit displacement
(d8, An,
Xi*SF)

110 reg. no. X X X X

Program counter indirect
with displacement (d16, PC) 111 010 X X X —

Program counter indirect
with scaled index

8-bit displacement
(d8, PC,
Xi*SF)

111 011 X X X —

Absolute data addressing
Short
Long

(xxx).W
(xxx).L

111
111

000
001

X
X

X
X

X
X

—
—

Immediate #<xxx> 111 100 X X — —
Chapter 2. ColdFire Core 2-15

ColdFire Instruction Set Architecture Enhancements
MVS Move with Sign Extend MVS
Operation: (Source with sign extension) → Destination

Assembler Syntax: MVS <ea>y,Dx

Attributes: Size = byte, word

Description: Sign-extend the source operand and move to the destination register. For the
byte operation, bit 7 of the source is copied to bits 31–8 of the destination. For the word
operation, bit 15 of the source is copied to bits 31-16 of the destination.

Condition Codes:

Instruction Fields:

• Size field—specifies the size of the operation
0 byte operation
1 word operation

• Register field—specifies a data register as the destination.

• Effective address field—specifies the source operand; use only data addressing
modes from the following table:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 1 1 REGISTER 1 0 SIZ
E

EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay

Ay 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

MVS V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .b, .w
2-48 MCF5407 User’s Manual

ColdFire Instruction Set Architecture Enhancements
SATS Signed Saturate SATS
Operation:

If CCR.V == 1,
then if Dx[31] == 0,

then Dx[31:0] = 0x80000000
else Dx[31:0] = 0x7FFFFFFF

else Dx[31:0] is unchanged

Assembler Syntax: SATS Dx

Attributes: Size = long

Description: Update the destination register only if the overflow bit of the CCR is set. If the
operand is negative, then set the result to greatest positive number, otherwise set the result
to the largest negative value. The condition codes are set according to the result.

Condition Codes:

Instruction Fields:

• Register field—Specifies the destination data register.

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— ∗ ∗ 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 0 0 1 1 0 0 1 0 0 0 0 REGISTER

SATS V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .l
2-50 MCF5407 User’s Manual

Cache Operation Summary
;instruction cache
lea 16(a0),a0 ;increment address to next line
subq.l #1,d0 ;decrement loop counter
bne.b instCacheLoop ;if done, then exit, else continue

; A 8K region was loaded into levels 0 and 1 of the 16-Kbyte instruction cache.
; lock it!

move.l #0xa2088800,d0 ;set the instruction cache lock bit
movec d0,cacr ;in the CACR
rts

4.12 Cache Operation Summary
This section gives operational details for the cache and presents instruction and data
cache-line state diagrams.

4.12.1 Instruction Cache State Transitions

Because the instruction cache does not support writes, it supports fewer operations than the
data cache. As Figure 4-12 shows, an instruction cache line can be in one of two states, valid
or invalid. Modified state is not supported. Transitions are labeled with a capital letter
indicating the previous state and with a number indicating the specific case listed in
Table 4-6. These numbers correspond to the equivalent operations on data caches,
described in Section 4.12.2, “Data Cache State Transitions.”

Figure 4-12. Instruction Cache Line State Diagram

Table 4-6 describes the instruction cache state transitions shown in Figure 4-12.

Table 4-6. Instruction Cache Line State Transitions

Access
Current State

Invalid (V = 0) Valid (V = 1)

Read miss II1 Read line from memory and update cache;
supply data to processor;
go to valid state.

IV1 Read new line from memory and update cache;
supply data to processor; stay in valid state.

Read hit II2 Not possible IV2 Supply data to processor;
stay in valid state.

Write miss II3 Not possible IV3 Not possible

Write hit II4 Not possible IV4 Not possible

Valid
V = 1

II5—ICINVA
II6—CPUSHL & IDPI
II7—CPUSHL & IDPI

IV1—CPU read miss
IV2—CPU read hit
IV7—CPUSHL & IDPI

IV5—ICINVA
IV6—CPUSHL & IDPI

Invalid
V = 0

II1—CPU read miss
Chapter 4. Local Memory 4-27

Signal Descriptions
The Version 2 ColdFire core implemented the original debug architecture, now called
Revision A. Based on feedback from customers and third-party developers, enhancements
have been added to succeeding generations of ColdFire cores. The Version 3 core
implements the Revision B of the debug architecture, providing more flexibility for
configuring the hardware breakpoint trigger registers and removing the restrictions
involving concurrent BDM processing while hardware breakpoint registers are active.

The MCF5407 core implements Revision C of the debug architecture, which more than
doubles the on-chip breakpoint registers and provides an ability to interrupt debug service
routines. For Revision C, the revision level bit, CSR[HRL], is 2. See Section 5.4.4,
“Configuration/Status Register (CSR).”

5.2 Signal Descriptions
Table 5-1 describes debug module signals. All ColdFire debug signals are unidirectional
and related to a rising edge of the processor core’s clock signal. The standard 26-pin debug
connector is shown in Section 5.7, “Motorola-Recommended BDM Pinout.”

Table 5-1. Debug Module Signals

Signal Description

Development Serial
Clock (DSCLK)

Internally synchronized input that clocks the serial communication port to the debug module.
Maximum frequency is 1/5 the processor CLK speed. At the synchronized rising edge of
DSCLK, the data input on DSI is sampled and DSO changes state. The logic level on DSCLK is
validated if it has the same value on two consecutive rising CLKIN edges.

Development Serial
Input (DSI)

Internally synchronized input that provides data input for the serial communication port to the
debug module.

Development Serial
Output (DSO)

Provides serial output communication for debug module responses. DSO is registered
internally.

Breakpoint (BKPT) Used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state
after the current instruction completes. Halt status is reflected on processor status/debug data
signals (PSTDDATA[7:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT
functionality), asserting BKPT generates a debug interrupt exception in the processor.

Processor Status
Clock (PSTCLK)

Half-speed version of the processor clock. Its rising edge appears in the center of the two
processor-cycle window of valid PSTDDATA output. See Figure 5-2. Because debug trace port
signals change on alternate processor cycles and are unrelated to external bus frequency,
PSTCLK helps the development system sample PSTDDATA values.
If real-time trace is not used, setting CSR[PCD] keeps PSTCLK and PSTDDATA outputs from
toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing
CSR[PCD], although the emulator must resynchronize with the PSTDDATA output.
PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs
during system reset exception processing. Table 5-4 describes PST values. Chapter 7,
“Phase-Locked Loop (PLL),” describes PSTCLK generation.

Processor
Status/Debug Data
(PSTDDATA[7:0])

These outputs indicate both processor status and captured address and data values and are
discussed more thoroughly in Section 5.2.1, “Processor Status/Debug Data (PSTDDATA[7:0]).
5-2 MCF5407 User’s Manual

Programming Model
5.4.5 Data Breakpoint/Mask Registers (DBR/DBR1,
 DBMR/DBMR1)

The data breakpoint registers (DBR/DBR1), Figure 5-10, specify data patterns used as part
of the trigger into debug mode. Only DBRn bits not masked with a corresponding zero in
DBMRn are compared with the data from the processor’s local bus, as defined in TDR.

12–11 DDC Debug data control. Controls operand data capture for PSTDDATA, which displays the number of
bytes defined by the operand reference size before the actual data; byte displays 8 bits, word
displays 16 bits, and long displays 32 bits (one nibble at a time across multiple clock cycles). See
Table 5-4.
00 No operand data is displayed.
01 Capture all write data.
10 Capture all read data.
11 Capture all read and write data.

10 UHE User halt enable. Selects the CPU privilege level required to execute the HALT instruction.
0 HALT is a supervisor-only instruction.
1 HALT is a supervisor/user instruction.

9–8 BTB Branch target bytes. Defines the number of bytes of branch target address PSTDDATA displays.
00 0 bytes
01 Lower 2 bytes of the target address
10 Lower 3 bytes of the target address
11 Entire 4-byte target address
See Section 5.3.1, “Begin Execution of Taken Branch (PST = 0x5).”

7 — Reserved, should be cleared.

6 NPL Non-pipelined mode. Determines whether the core operates in pipelined or mode.
0 Pipelined mode
1 Nonpipelined mode. The processor effectively executes one instruction at a time with no overlap.

This adds at least 5 cycles to the execution time of each instruction. Instruction folding is
disabled. Given an average execution latency of 1.6, throughput in non-pipeline mode would be
6.6, approximately 25% or less compared to pipelined performance.

Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering
instruction executes. In normal pipeline operation, the occurrence of an address and/or data
breakpoint trigger is imprecise. In non-pipeline mode, triggers are always reported before the next
instruction begins execution and trigger reporting can be considered precise.
An address or data breakpoint should always occur before the next instruction begins execution.
Therefore the occurrence of the address/data breakpoints should be guaranteed.

5 — Reserved, should be cleared.

4 SSM Single-step mode. Setting SSM puts the processor in single-step mode.
0 Normal mode.
1 Single-step mode. The processor halts after execution of each instruction. While halted, any

BDM command can be executed. On receipt of the GO command, the processor executes the
next instruction and halts again. This process continues until SSM is cleared.

3–0 — Reserved, should be cleared.

Table 5-11. CSR Field Descriptions (Continued)

Bit Name Description
Chapter 5. Debug Support 5-15

Background Debug Mode (BDM)
5.5.3.3.11 Write Control Register (WCREG)

The operand (longword) data is written to the specified control register. The write alters all
32 register bits.

Command/Result Formats:

Command Sequence:

Figure 5-41. WCREG Command Sequence

Operand Data: This instruction requires two longword operands. The first selects the
register to which the operand data is to be written; the second
contains the data.

Result Data: Successful write operations return 0xFFFF. Bus errors on the write
cycle are indicated by the setting of bit 16 in the status message and
by a data pattern of 0x0001.

15 12 11 8 7 4 3 0

Command 0x2 0x8 0x8 0x0

0x0 0x0 0x0 0x0

0x0 Rc

Result D[31:16]

D[15:0]

Figure 5-40. WCREG Command/Result Formats

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

WCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY
LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"

 CONTROL
REGISTER

WRITE

MS ADDR MS ADDR
Chapter 5. Debug Support 5-43

Debug C Definition of PSTDDATA Outputs
The move-to-SR and RTE instructions include an optional PSTDDATA = 0x3 value,
indicating an entry into user mode. Additionally, if the execution of a RTE instruction
returns the processor to emulator mode, a multiple-cycle status of 0xD is signaled.

Similar to the exception processing mode, the stopped state (PSTDDATA = 0xE) and the
halted state (PSTDDATA = 0xF) display this status throughout the entire time the ColdFire
processor is in the given mode.

Table 5-28. PSTDDATA Specification for Supervisor-Mode Instructions

Instruction Syntax PSTDDATA

cpushl PSTDDATA = 1

halt PSTDDATA = 1,
PSTDDATA = F

intouch PSTDDATA = 1

move.w SR,Dx PSTDDATA = 1

move.w {Dy,#imm},SR PSTDDATA = 1, {3}

movec Ry,Rc PSTDDATA = 1

rte PSTDDATA = 7, {B, source operand}, {3}, {B, source operand}, {DD},
PSTDDATA = 5, {[9AB], target address}

stop #imm PSTDDATA = 1,
PSTDDATA = E

wdebug <ea>y PSTDDATA = 1, {B, source, B, source}
5-54 MCF5407 User’s Manual

Programming Model
6-16 MCF5407 User’s Manual

Chip-Select Registers
10.4.1.3 Chip-Select Control Registers (CSCR0–CSCR7)

Each chip-select control register, Figure 10-4, controls the auto acknowledge, external
master support, port size, burst capability, and activation of each chip select. Note that to
support the global chip select, CS0, the CSCR0 reset values differ from the other CSCRs.
CS0 allows address decoding for boot ROM before system initialization.

Figure 10-4. Chip-Select Control Registers (CSCR0–CSCR7)

Table 10-10 describes CSCRn fields.

5–1 C/I,
SC,
SD,
UC,
UD

Address space mask bits. These bits determine whether the specified accesses can occur to the
address space defined by the BAM for this chip select.

C/I CPU space and interrupt acknowledge cycle mask
SC Supervisor code address space mask
SD Supervisor data address space mask
UC User code address space mask
UD User data address space mask

0 The address space assigned to this chip select. is available to the specified access type.
1 The address space assigned to this chip select. is not available (masked) to the specified access

type. If this address space is accessed, chip select is not activated and a regular external bus
cycle occurs.

Note that if if AM = 0, SC, SD, UC, and UD are ignored in the chip select decode on external
master or DMA access.

0 V Valid bit. Indicates whether the corresponding CSAR, CSMR, and CSCR contents are valid.
Programmed chip selects do not assert until V is set (except for CS0, which acts as the global chip
select). Reset clears each CSMRn[V].
0 Chip select invalid
1 Chip select valid

15 14 13 10 9 8 7 6 5 4 3 2 0

Field — WS — AA PS1 PS0 BEM BSTR BSTW —

Reset: CSCR0 — 11_11 — D7 D6 D5 D3 —

Reset: Other CSCRs Unitialized

R/W R/W

Address 0x08A (CSCR0); 0x096 (CSCR1); 0x0A2 (CSCR2); 0x0AE (CSCR3);
0x0BA (CSCR4); 0x0C6 (CSCR5); 0x0D2 (CSCR6); 0x0DE (CSCR7)

Table 10-10. CSCRn Field Descriptions

Bits Name Description

15–14 — Reserved, should be cleared.

13–10 WS Wait states. The number of wait states inserted before an internal transfer acknowledge is generated
(WS = 0 inserts zero wait states, WS = 0xF inserts 15 wait states). If AA = 0, TA must be asserted by
the external system regardless of the number of wait states generated. In that case, the external
transfer acknowledge ends the cycle. An external TA supersedes the generation of an internal TA.

9 — Reserved, should be cleared.

Table 10-9. CSMRn Field Descriptions (Continued)

Bits Name Description
10-8 MCF5407 User’s Manual

Chip-Select Registers
CSAR5 EQU MBARx+0x0BC ;Chip select 5 address register
CSMR5 EQU MBARx+0x0C0 ;Chip select 5 mask register
CSCR5 EQU MBARx+0x0C6 ;Chip select 5 control register

CSAR6 EQU MBARx+0x0C8 ;Chip select 6 address register
CSMR6 EQU MBARx+0x0CC ;Chip select 6 mask register
CSCR6 EQU MBARx+0x0D2 ;Chip select 6 control register

CSAR7 EQU MBARx+0x0D4 ;Chip select 7 address register
CSMR7 EQU MBARx+0x0D8 ;Chip select 7 mask register
CSCR7 EQU MBARx+0x0DE ;Chip select 7 control register

; All other chip selects should be programmed and made valid before global
; chip select is de-activated by validating CS0

; Program Chip Select 3 Registers
move.w #0x0040,D0 ;CSAR3 base address 0x00400000
move.w D0,CSAR3

move.w #0x00A0,D0 ;CSCR3 = no wait states, AA=0, PS=16-bit, BEM=1,
move.w D0,CSCR3 ;BSTR=0, BSTW=0

move.l #0x001F016B,D0 ;Address range from 0x00400000 to 0x005FFFFF
move.l D0,CSMR3 ;WP,EM,C/I,SD,UD,V=1; SC,UC=0

; Program Chip Select 2 Registers

move.w #0x0020,D0 ;CSAR2 base address 0x00200000 (to 0x003FFFFF)
move.w D0,CSAR2

move.w #0x0538,D0 ;CSCR2 = 1 wait state, AA=1, PS=32-bit, BEM=1,
move.w D0,CSCR2 ;BSTR=1, BSTW=1

move.l #0x001F0001,D0 ;Address range from 0x00200000 to 0x003FFFFF
move.l D0,CSMR2 ;WP,EM,C/I,SC,SD,UC,UD=0; V=1

; Program Chip Select 1 Registers

move.w #0x0000,D0 ;CSAR1 base addresses 0x00000000 (to 0x001FFFFF)
move.w D0,CSAR1 ;and 0x80000000 (to 0x801FFFFF)

move.w #0x09B0,D0 ;CSCR1 = 2 wait states, AA=1, PS=16-bit, BEM=1,
move.w D0,CSCR1 ;BSTR=1, BSTW=0

move.l #0x801F0001,D0 ;Address range from 0x00000000 to 0x001FFFFF and
move.l D0,CSMR1 ;0x80000000 to 0x801FFFFF

;WP, EM, C/I, SC, SD, UC, UD=0, V=1

; Program Chip Select 0 Registers

move.w #0x0080,D0 ;CSAR0 base address 0x00800000 (to 0x009FFFFF)
move.w D0,CSAR0

move.w #0x0D80,D0 ;CSCR0 = three wait states, AA=1, PS=16-bit, BEM=0,
move.w D0,CSCR0 ;BSTR=0, BSTW=0

; Program Chip Select 0 Mask Register (validate chip selects)

move.l #0x001F0001,D0 ;Address range from 0x00800000 to 0x009FFFFF
move.l D0,CSMR0 ;WP,EM,C/I,SC,SD,UC,UD=0; V=1
10-10 MCF5407 User’s Manual

Asynchronous Operation
11.3.3.1 Non-Page-Mode Operation

In non-page mode, the simplest mode, the DRAM controller provides termination and runs
a separate bus cycle for each data transfer. Figure 11-5 shows a non-page-mode access in
which a DRAM read is followed by a write. Addresses for a new bus cycle are driven at the
rising clock edge.

For a DRAM block hit, the associated RAS is driven at the next falling edge. Here
DACRn[RCD] = 0, so the address is multiplexed at the next rising edge to provide the
column address. The required CAS signals are then driven at the next falling edge and
remain asserted for the period programmed in DACRn[CAS]. Here, DACRn[RNCN] = 1,
so it is precharged one clock before CAS is negated. On a read, data is sampled on the last
rising edge of the clock that CAS is valid.

Figure 11-5. Basic Non-Page-Mode Operation RCD = 0, RNCN = 1 (4-4-4-4)

Table 11-9. DRAM Addressing for 32-Bit Wide Memories

 MCF5407 Address
Pin

MCF5407 Address Bit
Driven for RAS

MCF5407 Address Bit Driven
when CAS is Asserted

Memory Size

15 15 2

Base Memory Size of
64 Kbytes

14 14 3

13 13 4

12 12 5

11 11 6

10 10 7

9 9 8

17 17 16 256 Kbytes

19 19 18 1 Mbyte

21 21 20 4 Mbytes

23 23 22 16 Mbytes

25 25 24 64 Mbytes

A[31:0]

RAS[1] or [0]

CAS[3:0]

DRAMW

D[31:0]

DACRn[RCD] = 0 DACRn[RNCN] = 1

DACRn[CAS] = 01]

Row Column

CLKIN
Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-11

Synchronous Operation
11.4.4 General Synchronous Operation Guidelines

To reduce system logic and to support a variety of SDRAM sizes, the DRAM controller
provides SDRAM control signals as well as a multiplexed row address and column address
to the SDRAM.

When SDRAM blocks are accessed, the DRAM controller can operate in either burst or
continuous page mode. The following sections describe the DRAM controller interface to
SDRAM, the supported bus transfers, and initialization.

11.4.4.1 Address Multiplexing

Table 11-6 shows the generic address multiplexing scheme for SDRAM configurations. All
possible address connection configurations can be derived from this table.

The following tables provide a more comprehensive, step-by-step way to determine the
correct address line connections for interfacing the MCF5407 to SDRAM. To use the

Table 11-14. DMR0/DMR1 Field Descriptions

Bits Name Description

31–18 BAM Base address mask. Masks the associated DACRn[BA]. Lets the DRAM controller connect to various
DRAM sizes. Mask bits need not be contiguous (see Section 11.5, “SDRAM Example.”)
0 The associated address bit is used in decoding the DRAM hit to a memory block.
1 The associated address bit is not used in the DRAM hit decode.

17–9 — Reserved, should be cleared.

8 WP Write protect. Determines whether the associated block of DRAM is write protected.
0 Allow write accesses
1 Ignore write accesses. The DRAM controller ignores write accesses to the memory block and an

address exception occurs. Write accesses to a write-protected DRAM region are compared in the
chip select module for a hit. If no hit occurs, an external bus cycle is generated. If this external bus
cycle is not acknowledged, an access exception occurs.

7 — Reserved, should be cleared.

6–1 AMx Address modifier masks. Determine which accesses can occur in a given DRAM block.
0 Allow access type to hit in DRAM
1 Do not allow access type to hit in DRAM

Bit Associated Access Type Access Definition

C/I CPU space/interrupt acknowledge MOVEC instruction or interrupt acknowledge cycle

AM Alternate master External or DMA master

SC Supervisor code Any supervisor-only instruction access

SD Supervisor data Any data fetched during the instruction access

UC User code Any user instruction

UD User data Any user data

0 V Valid. Cleared at reset to ensure that the DRAM block is not erroneously decoded.
0 Do not decode DRAM accesses.
1 Registers controlling the DRAM block are initialized; DRAM accesses can be decoded.
Chapter 11. Synchronous/Asynchronous DRAM Controller Module 11-23

DMA Controller Module Programming Model
• Single-address transfers—An external device can initiate a single-address transfer
by asserting DREQ. The MCF5407 provides address and control signals for
single-address transfers. The external device reads to or writes from the specified
address, as Figure 12-4 shows. External logic is required.

Figure 12-4. Single-Address Transfers

Any operation involving the DMA module follows the same three steps:

1. Channel initialization—Channel registers are loaded with control information,
address pointers, and a byte-transfer count.

2. Data transfer—The DMA accepts requests for operand transfers and provides
addressing and bus control for the transfers.

3. Channel termination—Occurs after the operation is finished, either successfully or
due to an error. The channel indicates the operation status in the channel’s DSR,
described in Section 12.4.5, “DMA Status Registers (DSR0–DSR3).”

12.4 DMA Controller Module Programming Model
This section describes each internal register and its bit assignment. Note that there is no way
to prevent a write to a control register during a DMA transfer. Table 12-3 shows the
mapping of DMA controller registers.

DMA

Memory

DMA

Peripheral

Control Signals Control Signals

Control Signals Control Signals

Data

Memory Peripheral
Data

Write:

Read:
Chapter 12. DMA Controller Module 12-5

DMA Controller Module Programming Model
12.4.5 DMA Status Registers (DSR0–DSR3)

In response to an event, the DMA controller writes to the appropriate DSRn bit,
Figure 12-9. Only a write to DSRn[DONE] results in action.

Table 12-5 describes DSRn fields.

15 AT DMA acknowledge type. Controls whether acknowledge information is provided for the entire
transfer or only the final transfer.
0 Entire transfer. DMA acknowledge information is displayed anytime the channel is selected as the

result of an external request.
1 Final transfer (when BCR reaches zero). For dual-address transfer, the acknowledge information

is displayed for both the read and write cycles.

14–0 — Reserved, should be cleared.

7 6 5 4 3 2 1 0

Field — CE BES BED — REQ BSY DONE

Reset — 0 0 0 — 0 0 0

R/W R/W

Address MBAR + 0x310, 0x350, 0x390, 0x3D0

Figure 12-9. DMA Status Registers (DSRn)

Table 12-5. DSRn Field Descriptions

Bits Name Description

7 — Reserved, should be cleared.

6 CE Configuration error. Occurs when BCR, SAR, or DAR does not match the requested transfer size,
or if BCR = 0 when the DMA receives a start condition. CE is cleared at hardware reset or by
writing a 1 to DSR[DONE].
0 No configuration error exists.
1 A configuration error has occurred.

5 BES Bus error on source
0 No bus error occurred.
1 The DMA channel terminated with a bus error either during the read portion of a transfer or

during an access in single-address mode (SAA = 1).

4 BED Bus error on destination
0 No bus error occurred.
1 The DMA channel terminated with a bus error during the write portion of a transfer.

3 — Reserved, should be cleared.

2 REQ Request
0 No request is pending or the channel is currently active. Cleared when the channel is selected.
1 The DMA channel has a transfer remaining and the channel is not selected.

Table 12-4. DCRn Field Descriptions (Continued)

Bits Name Description
12-10 MCF5407 User’s Manual

Chapter 15
Parallel Port (General-Purpose I/O)
This chapter describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers. It includes a code example for setting up
the parallel port.

15.1 Parallel Port Operation
The MCF5407 parallel port module has 16 signals, which are programmed as follows:

• The pin assignment register (PAR) selects the function of the 16 multiplexed pins.

• Port A data direction register (PADDR) determines whether pins configured as
parallel port signals are inputs or outputs.

• The Port A data register (PADAT) shows the status of the parallel port signals.

The operations of the PAR, PADDR, and PADAT are described in the following sections.

15.1.1 Pin Assignment Register (PAR)

The pin assignment register (PAR), which is part of the system integration module (SIM),
defines how each PAR bit determines each pin function, as shown in Figure 15-1.

If PP[9:8]/A[25:24] are unavailable because A[25:0] are needed for external addressing,
PP[15:10]/A[31:26] can be configured as general-purpose I/O. Table 15-1 summarizes
MCF5407 parallel port pins, described in detail in Chapter 17, “Signal Descriptions.”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field PAR15 PAR14 PAR13 PAR12 PAR11 PAR10 PAR9 PAR8 PAR7 PAR6 PAR5 PAR4 PAR3 PAR2 PAR1 PAR0

PAR[n] = 0 PP15 PP14 PP13 PP12 PP11 PP10 PP9 PP8 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0

PAR[n] = 1 A31 A30 A29 A28 A27 A26 A25 A24 TIP DREQ0 DREQ1 TM2 TM1/
DACK1

TM0/
DACK0

TT1 TT0

Reset Determined by driving D4/ADDR_CONFIG with a 1 or 0 when RSTI negates. The system is configured as
PP[15:0] if D4 is low; otherwise alternate pin functions selected by PAR[n] = 1 are used.

R/W R/W

Address Address MBAR + 0x004

Figure 15-1. Parallel Port Pin Assignment Register (PAR)
Chapter 15. Parallel Port (General-Purpose I/O) 15-1

General Operation of External Master Transfers
shown in Figure 18-25, the MCF5407 continues to assert BD until the completion of the
bus cycle. If BG is negated by the end of the bus cycle, the MCF5407 negates BD. While
BG is asserted, BD remains asserted to indicate the MCF5407 is master, and it continuously
drives the address bus, attributes, and control signals.

s

Figure 18-27. Two-Wire Bus Arbitration with Bus Request Asserted

In the second situation, the bus is granted to the MCF5407, but it does not have an internal
bus request pending, so it takes implicit bus mastership. The MCF5407 does not drive the
bus and does not assert BD if the bus has an implicit master. If an internal bus request is
generated, the MCF5407 assumes explicit bus mastership. If explicit mastership was
assumed because an internal request was generated, the MCF5407 immediately begins an
access and asserts BD.

In Figure 18-28, the external device is bus master during C1 and C2. During C3 the external
device releases control of the bus by asserting BG to the MCF5407. At this point, there is
an internal access pending so the MCF5407 asserts BD during C4 and begins the access.
Thus, the MCF5407 becomes the explicit external bus master. Also during C4, the external
device removes the grant from the MCF5407 by negating BG. As the current bus master,
the MCF5407 continues to assert BD until the current transfer completes. Because BG is
negated, the MCF5407 negates BD during C9 and three-states the external bus, thereby
returning external bus mastership to the external device.

A[31:0], TT[1:0]

R/W

TIP

TS

AS

D[31:0]

TA

BG

BD

External Master

C1 C2 C4 C5 C6 C7C3 C8 C9

MCF5407

CLKIN

SIZ[1:0], TM[2:0]
18-26 MCF5407 User’s Manual

JTAG Signal Descriptions
that this logic does not affect system or debug operation.

Figure 19-1 is a block diagram of the MCF5407 implementation of the 1149.1 IEEE
standard. The test logic includes several test data registers, an instruction register,
instruction register control decode, and a 16-state dedicated TAP controller.

Figure 19-1. JTAG Test Logic Block Diagram

19.2 JTAG Signal Descriptions
JTAG operation on the MCF5407 is enabled when MTMOD0 is high (logic 1), as described
in Table 19-1. Otherwise, JTAG TAP signals, TCK, TMS, TDI, TDO, and TRST, are
interpreted as the debug port pins. MTMOD0 should not be changed while RSTI is
asserted.

Test Data Registers

TDI

TMS

TRST

TDO

V+

V+

V+ Boundary Scan Register

ID Code

Bypass

3-Bit Instruction Register

3-Bit Instruction Decode
M
U
X

TAP

M
U
X

TCK
19-2 MCF5407 User’s Manual

INDEX
DMR initialization, 11-37
example, 11-34
initialization code, 11-39
interface configuration, 11-34
mode register initialization, 11-38
overview, 11-1

Signal descriptions, 17-1
address bus, 17-7
address configuration, 17-15
address strobe, 17-9
bus

arbitration, 17-12
clock output, 17-13
data, 17-8
driven, 17-13
grant, 17-12
request, 17-12

chip-select module, 17-15
clock and reset, 17-13
clock input, 17-13
data bus, 17-8
data/configuration pins, 17-14
debug

high impedance, 17-20
JTAG, 17-21
processor clock output, 17-20
processor status debug data, 17-21
test

clock, 17-22
mode, 17-20
overview, 17-20

debug module/JTAG
test data input/development serial input, 17-22
test data output/development serial output, 17-22
test mode select/breakpoint, 17-21
test reset/development serial clock, 17-21

divide control, 17-15
DMA controller module

general, 17-17
transfer modifier/acknowledge, 17-18

DRAM controller
address strobes, 17-16
overview, 17-16
synchronous

clock enable, 17-17
column address strobe, 17-17
edge select, 17-17
row address strobe, 17-17

synchronous edge select, 17-17
write, 17-16

I2C module
general, 17-20
serial clock, 17-20
serial data, 17-20

interrupt control signals, 17-12

interrupt request, 17-12
JTAG, 19-2
parallel I/O port, 17-19
read/write, 17-8
reset in, out, 17-13
serial module

clear to Send, 17-19
general, 17-18
receiver serial data input, 17-19
request to send, 17-19
transmitter serial data output, 17-18

size, 17-8
timer module, 17-19
transfer

acknowledge, 17-9
in progress, 17-10
modifier, 17-10
start, 17-9

Signals
overview, 17-1

SIM
features, 6-1
programming model, 6-3
register memory map, 6-3

Software watchdog
interrupt vector register, 6-9
service register, 6-9
timer, 6-6

Stack pointer, 2-9, 2-9
Status register, 2-11
Supervisor

programming model, 2-10
registers, 1-16

System protection control register, 6-8

T
Timer module

calculating time-out values, 13-7
capture registers, 13-4
code example, 13-6
counters, 13-5
event registers, 13-5
general-purpose programming model, 13-2
general-purpose units, 13-2
mode registers, 13-3
reference registers, 13-4

Timing
branch instruction execution, 2-30
MAC unit instructions, 3-5
MOVE instructions, 2-25
one operand, 2-26
PLL, 7-4
RSTI, 7-5
two operands, 2-27
Index Index-5

