

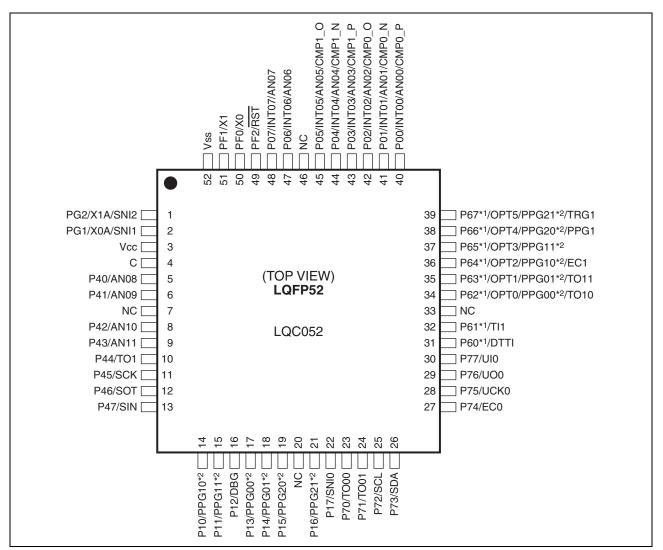
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

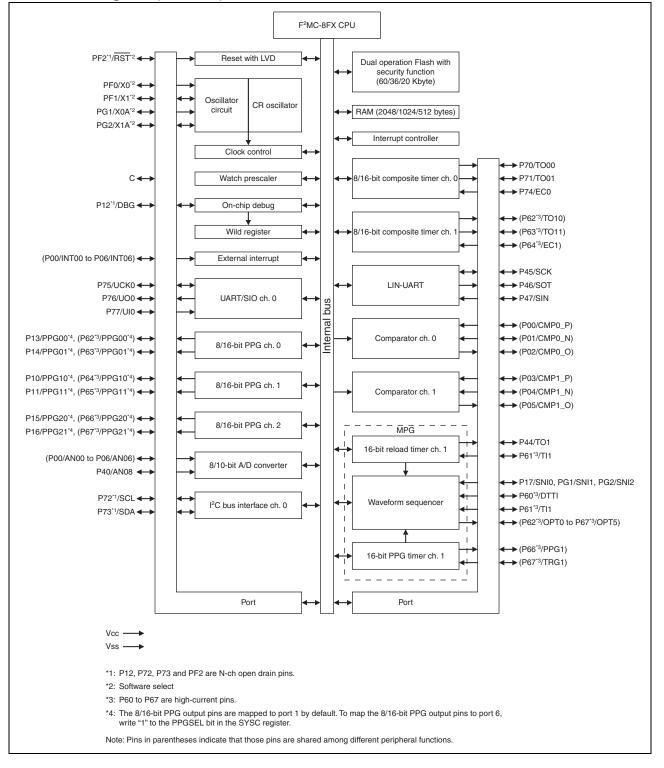
Details


Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	45
Program Memory Size	20KB (20K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.88V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f694kpmc1-g-sne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

*1: High-current pin (8 mA/12 mA)


*2: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write "1" to the PPGSEL bit in the SYSC register.

Pin no.			I/O		I/O type				
LQFP48*1, QFN48*2	LQFP52*3	Pin name	circuit type*4	Function	Input	Output	OD*⁵	PU*6	
14	15	P11	F	General-purpose I/O port	Hysteresis	CMOS		0	
17	10	PPG11	•	8/16-bit PPG ch. 1 output pin	Trysteresis	01100		Ŭ	
15	16	P12	G	General-purpose I/O port	Hysteresis	CMOS	0	_	
10		DBG)	DBG input pin		01100	Ŭ		
16	17	P13	F	General-purpose I/O port	Hysteresis	CMOS		0	
		PPG00		8/16-bit PPG ch. 0 output pin					
17	18	P14	F	General-purpose I/O port	Hysteresis	CMOS		0	
		PPG01		8/16-bit PPG ch. 0 output pin	,				
18	19	P15	F	General-purpose I/O port	Hysteresis	CMOS		0	
		PPG20		8/16-bit PPG ch. 2 output pin					
_	20	NC		It is an internally connected pin. Always leave it unconnected.	_	_	—	—	
19	21	P16	F	General-purpose I/O port	Hysteresis	CMOS		0	
10	21	PPG21		8/16-bit PPG ch. 2 output pin	Trysteresis	omee		Ŭ	
	ļ	P17		General-purpose I/O port					
20	20 22		F	Trigger input pin for the position detection function of the MPG waveform sequencer	Hysteresis	CMOS	_	0	
		P70		General-purpose I/O port					
21	23	TO00	F	8/16-bit composite timer ch. 0 output pin	Hysteresis	CMOS	-	0	
		P71		General-purpose I/O port					
22	24	TO01	F	8/16-bit composite timer ch. 0 output pin	Hysteresis	CMOS	-	0	
		P72		General-purpose I/O port					
23	25	SCL	Н	I ² C bus interface ch. 0 clock I/O pin	CMOS	CMOS	0	—	
		P73		General-purpose I/O port					
24	26	SDA	Н	I ² C bus interface ch. 0 data I/O pin	CMOS	CMOS	0	_	
		P74		General-purpose I/O port					
25	27	EC0	F	8/16-bit composite timer ch. 0 Hysteresis clock input pin		CMOS	-	0	
26	20	P75	F	General-purpose I/O port		<u>chios</u>			
26	28	UCK0	F	UART/SIO ch. 0 clock I/O pin	Hysteresis	CMOS		0	
07		P76	-	General-purpose I/O port	Libert correct	01/00	1		
27	29	UO0	F	UART/SIO ch. 0 data output pin	Hysteresis	CMOS		0	

11. Block Diagram (LQF044)

Address	Register abbreviation	Register name	R/W	Initial value
0x0055	ECCR	LIN-UART extended communication control register	R/W	0b00000XX
0x0056	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0b0000000
0x0057	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0b00100000
0x0058	SSR0	UART/SIO serial status and data register ch. 0	R/W	0b0000001
0x0059	TDR0	UART/SIO serial output data register ch. 0	R/W	0b0000000
0x005A	RDR0	UART/SIO serial input data register ch. 0	R	0b0000000
0x005B to 0x005F	_	(Disabled)	_	_
0x0060	IBCR00	I ² C bus control register 0 ch. 0	R/W	0b0000000
0x0061	IBCR10	I ² C bus control register 1 ch. 0	R/W	0b0000000
0x0062	IBSR0	I ² C bus status register ch. 0	R/W	0b0000000
0x0063	IDDR0	I ² C data register ch. 0	R/W	0b0000000
0x0064	IAAR0	I ² C address register ch. 0	R/W	0b0000000
0x0065	ICCR0	I ² C clock control register ch. 0	R/W	0b0000000
0x0066	OPCUR	16-bit MPG output control register (upper)	R/W	0b0000000
0x0067	OPCLR	16-bit MPG output control register (lower)	R/W	0b0000000
0x0068	IPCUR	16-bit MPG input control register (upper)	R/W	0b0000000
0x0069	IPCLR	16-bit MPG input control register (lower)	R/W	0b0000000
0x006A	NCCR	16-bit MPG noise cancellation control register	R/W	0b0000000
0x006B	TCSR	16-bit MPG timer control status register	R/W	0b0000000
0x006C	ADC1	8/10-bit A/D converter control register 1	R/W	0b0000000
0x006D	ADC2	8/10-bit A/D converter control register 2	R/W	0b0000000
0x006E	ADDH	8/10-bit A/D converter data register (upper)	R/W	0b0000000
0x006F	ADDL	8/10-bit A/D converter data register (lower)	R/W	0b0000000
0x0070	_	(Disabled)		—
0x0071	FSR2	Flash memory status register 2	R/W	0b0000000
0x0072	FSR	Flash memory status register	R/W	0b000X0000
0x0073	SWRE0	Flash memory sector write control register 0	R/W	0b0000000
0x0074	FSR3	Flash memory status register 3	R	0b000XXXXX
0x0075	FSR4	Flash memory status register 4	R/W	0b0000000
0x0076	WREN	Wild register address compare enable register	R/W	0b0000000
0x0077	WROR	Wild register data test setting register	R/W	0b0000000
0x0078		Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	_
0x0079	ILR0	Interrupt level setting register 0	R/W	0b11111111
0x007A	ILR1	Interrupt level setting register 1	R/W	0b11111111
0x007B	ILR2	Interrupt level setting register 2	R/W	0b11111111

Address	Register abbreviation	Register name	R/W	Initial value
0x007C	ILR3	Interrupt level setting register 3	R/W	0b11111111
0x007D	ILR4	Interrupt level setting register 4	R/W	0b11111111
0x007E	ILR5	Interrupt level setting register 5	R/W	0b11111111
0x007F	—	(Disabled)	—	—
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b0000000
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b0000000
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b0000000
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b0000000
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b0000000
0x0F85	WRDR1	Wild register data setting register ch. 1	R/W	0b0000000
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0b0000000
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0b0000000
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b0000000
0x0F89 to 0x0F91	_	(Disabled)	_	_
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b0000000
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	0b0000000
0x0F94	T01DR	8/16-bit composite timer 01 data register	R/W	0b0000000
0x0F95	T00DR	8/16-bit composite timer 00 data register	R/W	0b0000000
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	0b00000000
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	0b0000000
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b0000000
0x0F99	T11DR	8/16-bit composite timer 11 data register	R/W	0b0000000
0x0F9A	T10DR	8/16-bit composite timer 10 data register	R/W	0b0000000
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	0600000000
0x0F9C	PPS01	8/16-bit PPG01 cycle setting buffer register	R/W	0b11111111
0x0F9D	PPS00	8/16-bit PPG00 cycle setting buffer register	R/W	0b11111111
0x0F9E	PDS01	8/16-bit PPG01 duty setting buffer register	R/W	0b11111111
0x0F9F	PDS00	8/16-bit PPG00 duty setting buffer register	R/W	0b11111111
0x0FA0	PPS11	8/16-bit PPG11 cycle setting buffer register	R/W	0b11111111
0x0FA1	PPS10	8/16-bit PPG10 cycle setting buffer register	R/W	0b11111111
0x0FA2	PDS11	8/16-bit PPG11 duty setting buffer register	R/W	0b11111111
0x0FA3	PDS10	8/16-bit PPG10 duty setting buffer register	R/W	0b11111111
0x0FA4	PPGS	8/16-bit PPG start register	R/W	0b00000000
0x0FA5	REVC	8/16-bit PPG output inversion register	R/W	0b00000000

Address	Register abbreviation	Register name	R/W	Initial value
0x0FA6	PPS21	8/16-bit PPG21 cycle setting buffer register	R/W	0b11111111
0x0FA7	PPS20	8/16-bit PPG20 cycle setting buffer register	R/W	0b11111111
0x0FA8	TMRH1 16-bit reload timer timer register (upper) ch. 1			0b00000000
UXUFAO	TMRLRH1	16-bit reload timer reload register (upper) ch. 1	d timer reload register (upper) ch. 1	
	TMRL1	16-bit reload timer timer register (lower) ch. 1	R/W	060000000
0x0FA9	TMRLRL1	16-bit reload timer reload register (lower) ch. 1	- K/VV	0b00000000
0x0FAA	PDS21	8/16-bit PPG21 duty setting buffer register	R/W	0b11111111
0x0FAB	PDS20	8/16-bit PPG20 duty setting buffer register	R/W	0b11111111
0x0FAC to 0x0FAF	_	(Disabled)	_	—
0x0FB0	PDCRH1	16-bit PPG downcounter register (upper) ch. 1	R	0b0000000
0x0FB1	PDCRL1	16-bit PPG downcounter register (lower) ch. 1	R	0b00000000
0x0FB2	PCSRH1	16-bit PPG cycle setting buffer register (upper) ch. 1	R/W	0b11111111
0x0FB3	PCSRL1	16-bit PPG cycle setting buffer register (lower) ch. 1	R/W	0b11111111
0x0FB4	PDUTH1	16-bit PPG duty setting buffer register (upper) ch. 1	R/W	0b11111111
0x0FB5	PDUTL1	16-bit PPG duty setting buffer register (lower) ch. 1	R/W	0b11111111
0x0FB6 to 0x0FBB	_	(Disabled)		—
0x0FBC	BGR1	LIN-UART baud rate generator register 1	R/W	0b0000000
0x0FBD	BGR0	LIN-UART baud rate generator register 0	R/W	0b0000000
0x0FBE	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	060000000
0x0FBF	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	0b00000000
0x0FC0, 0x0FC1	_	(Disabled)		—
0x0FC2	AIDRH	A/D input disable register (upper)	R/W	0b0000000
0x0FC3	AIDRL	A/D input disable register (lower)	R/W	0b0000000
0x0FC4	OPDBRH0	16-bit MPG output data buffer register (upper) ch. 0	R/W	0b0000000
0x0FC5	OPDBRL0	16-bit MPG output data buffer register (lower) ch. 0	R/W	0b0000000
0x0FC6	OPDBRH1	16-bit MPG output data buffer register (upper) ch. 1	R/W	0b0000000
0x0FC7	OPDBRL1	16-bit MPG output data buffer register (lower) ch. 1	R/W	0b0000000
0x0FC8	OPDBRH2	16-bit MPG output data buffer register (upper) ch. 2	R/W	0b0000000
0x0FC9	OPDBRL2	16-bit MPG output data buffer register (lower) ch. 2	R/W	0b0000000
0x0FCA	OPDBRH3	16-bit MPG output data buffer register (upper) ch. 3	R/W	0b0000000
0x0FCB	OPDBRL3	16-bit MPG output data buffer register (lower) ch. 3	R/W	0b0000000
0x0FCC	OPDBRH4	16-bit MPG output data buffer register (upper) ch. 4	R/W	0b0000000

Address	Register abbreviation	Register name	R/W	Initial value
0x0FF0 to 0x0FFF	_	(Disabled)	_	_

• R/W access symbols

R/W : Readable/Writable

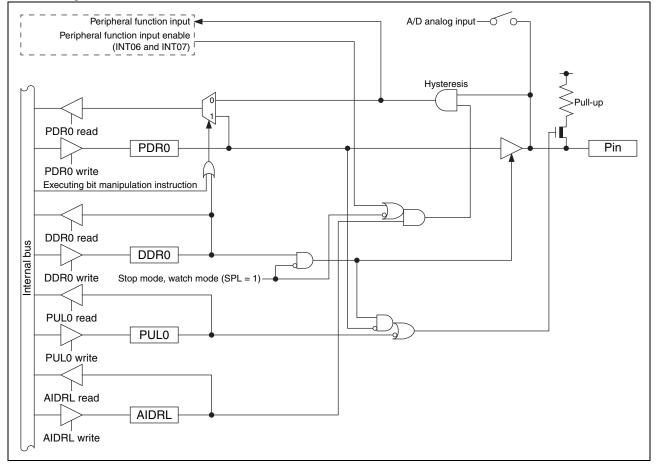
R : Read only

Initial value symbols

0 : The initial value of this bit is "0".

1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.


Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

• P06/INT06/AN06 pin

This pin has the following peripheral functions:

- External interrupt input pin (INT06)
- 8/10-bit A/D converter analog input pin (AN06)
- P07/INT07/AN07 pin
 - This pin has the following peripheral functions:
 - External interrupt input pin (INT07)
 - 8/10-bit A/D converter analog input pin (AN07)
- Block diagram of P06/INT06/AN06 and P07/INT07/AN07

17.2.3 Port 1 registers

Port 1 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write						
PDR1	0	Pin state is "L" level.	PDR1 value is "0".	As output port, outputs "L" level.						
		Pin state is "H" level.	PDR1 value is "1".	As output port, outputs "H" level.*						
DDR1	0		Port input enabled							
DDRI	1		Port output enabled							
PUL1	0		Pull-up disabled							
FULI	1		Pull-up enabled							

*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port 1

		Correspondence between related register bits and pins										
Pin name	P17	P16	P15	P14	P13	P12	P11	P10				
PDR1												
DDR1	bit7	bit6	bit5	bit4	bit3	bit2*	bit1	bit0				
PUL1												

*: Though P12 has no pull-up function, bit2 in the PUL1 register can still be accessed. The operation of P12 is not affected by the setting of bit2 in the PUL1 register.

17.2.4 Port 1 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR1 register to external pins.
 - If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR1 register returns the PDR1 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR1 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

• Operation at reset If the CPU is reset, all bits in the DDR1 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

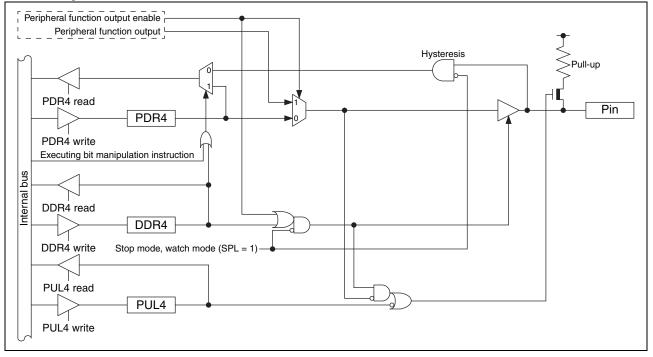
• Operation of the pull-up register

Setting the bit in the PUL1 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL1 register.

17.3 Port 4

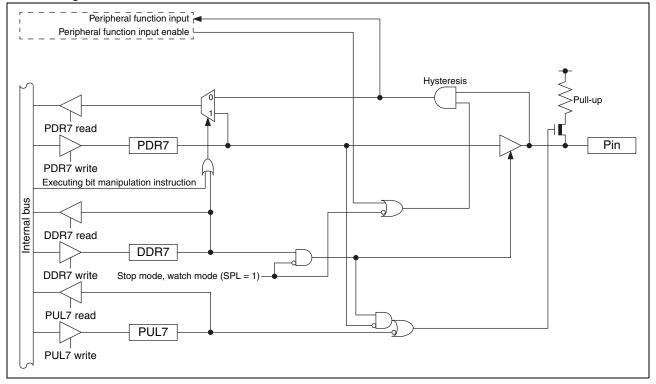
Port 4 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95690K Series Hardware Manual".

17.3.1 Port 4 configuration


- Port 4 is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port 4 data register (PDR4)
- Port 4 direction register (DDR4)
- Port 4 pull-up register (PUL4)
- A/D input disable register (upper) (AIDRH)

17.3.2 Block diagrams of port 4

- P40/AN08 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN08)
- P41/AN09 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN09)
- P42/AN10 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN10)
- P43/AN11 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN11)



- P44/TO1 pin
 - This pin has the following peripheral function:
 - 16-bit reload timer ch. 1 output pin (TO1)
- P46/SOT pin
 - This pin has the following peripheral function:
 - LIN-UART data output pin (SOT)
- Block diagram of P44/TO1 and P46/SOT

Block diagram of P74/EC0

17.6.4 Port F operations

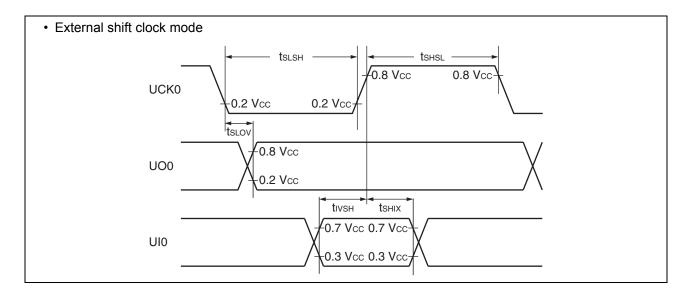
- Operation as an output port
 - A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRF register to external pins.
 - If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDRF register returns the PDRF register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned.
- · Operation at reset

If the CPU is reset, all bits in the DDRF register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

18. Interrupt Source Table

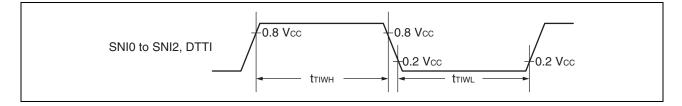
	Interrupt		r table ress		pt level register	Priority order of interrupt sources		
Interrupt source	request number	Upper	Lower	Register	Bit	of the same level (occurring simultaneously)		
External interrupt ch. 0	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High		
External interrupt ch. 4	IIII		UNITE		200[1.0]			
External interrupt ch. 1	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]			
External interrupt ch. 5		0,1110	0/1113		201[1.0]			
External interrupt ch. 2	IRQ02	0xFFF6	0xFFF7	ILR0	L02 [1:0]			
External interrupt ch. 6	11/02/02			ILINU	L02 [1.0]			
External interrupt ch. 3	IRQ03	0xFFF4	0xFFF5	ILR0	L03 [1:0]			
External interrupt ch. 7		086664	UXEFES	ILKU	LU3 [1.0]			
UART/SIO ch. 0	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]			
MPG (DTTI)		UXFFFZ	UXFFF3		L04 [1.0]			
8/16-bit composite timer ch. 0	IRQ05	0xFFF0	0xFFF1	ILR1	1 05 [1:0]			
(lower)	IRQUS	UXFFFU	UXFFFI	ILRI	L05 [1:0]			
8/16-bit composite timer ch. 0	IRQ06		0xFFEF		1.00 [4.0]			
(upper)	IRQUO	0xFFEE	UXFFEF	ILR1	L06 [1:0]			
LIN-UART (reception)	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]			
LIN-UART (transmission)	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]			
8/16-bit PPG ch. 1 (lower)	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]			
8/16-bit PPG ch. 1 (upper)	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]			
8/16-bit PPG ch. 2 (upper)	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]			
8/16-bit PPG ch. 0 (upper)	IRQ12	0xFFE2	0xFFE3	ILR3	L12 [1:0]			
8/16-bit PPG ch. 0 (lower)	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]			
8/16-bit composite timer ch. 1								
(upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]			
8/16-bit PPG ch. 2 (lower)	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]			
16-bit reload timer ch. 1			-					
MPG (write timing/compare clear)	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]			
I ² C bus interface ch. 0		-	-					
16-bit PPG timer ch. 1								
MPG (position detection/compare	IRQ17	0xFFD8	0xFFD9	ILR4	L17 [1:0]			
interrupt)								
8/10-bit A/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]			
Time-base timer	IRQ19	0xFFD4	0xFFD5	ILR4	L19 [1:0]			
Watch prescaler								
Comparator ch. 0	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]			
Comparator ch. 1	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]			
8/16-bit composite timer ch. 1								
(lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]			
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	Low		

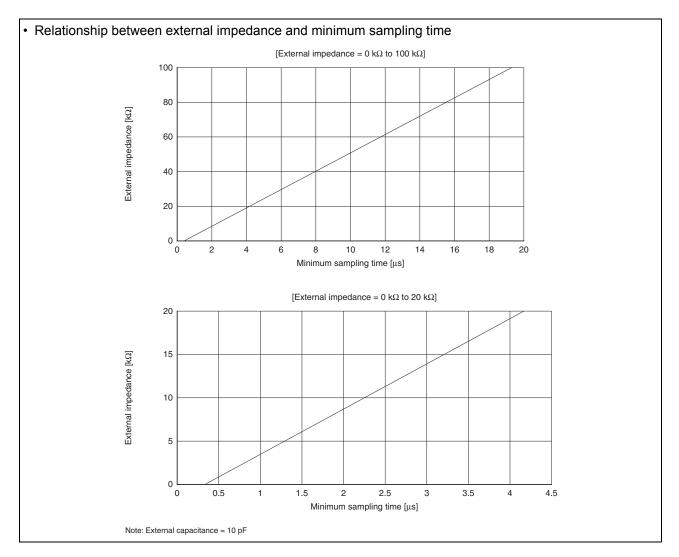

20.4 AC Characteristics

20.4.1 Clock Timing

(Vcc = 2.88 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

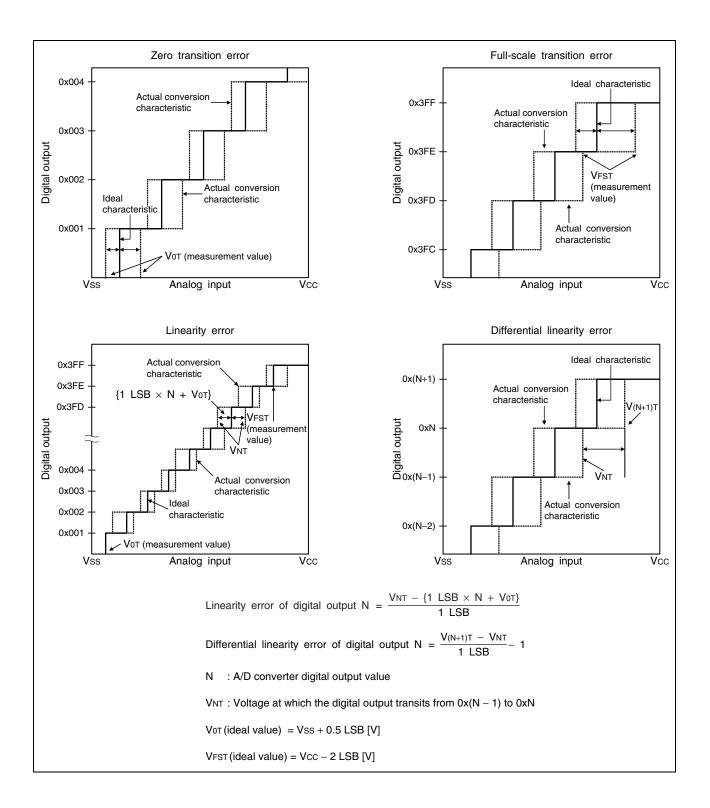
David t	0	D '	0				Demerica		
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
	Fсн	X0, X1	_	1	—	16.25	MHz	When the main oscillation circuit is used	
	ГСН	X0	X1: open	1		12	MHz	When the main external clock	
		X0, X1	*	1	_	32.5	MHz	is used	
				3.92	4	4.08	MHz	• 0 °C \leq TA \leq +70 °C	
	Ескн	_	_	3.8	4	4.2	MHz	Operating conditions • The main CR clock is used. • $-40 \ ^{\circ}C \le T_A < 0 \ ^{\circ}C,$ $+70 \ ^{\circ}C < T_A \le +85 \ ^{\circ}C$	
				7.84	8	8.16	MHz	 0 °C ≤ T_A ≤ +70 °C 	
				7.6	8	8.4	MHz	$\begin{array}{l} \text{Operating conditions}\\ \bullet \ \text{PLL multiplication rate: 2}\\ \bullet \ - 40 \ ^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0 \ ^{\circ}\text{C},\\ + 70 \ ^{\circ}\text{C} < \text{T}_{\text{A}} \leq + 85 \ ^{\circ}\text{C} \end{array}$	
	-	RPLL —			9.8	10	10.2	MHz	Operating conditions • PLL multiplication rate: 2.5 • $0 \ ^{\circ}C \le T_A \le +70 \ ^{\circ}C$
Clock frequency					9.5	10	10.5	MHz	Operating conditions • PLL multiplication rate: 2.5 • $-40 \ ^{\circ}C \le T_A < 0 \ ^{\circ}C,$ $+70 \ ^{\circ}C < T_A \le +85 \ ^{\circ}C$
	FMCRPLL			11.76	12	12.24	MHz	• 0 °C ≤ T _A ≤ +70 °C	
				11.4	12	12.6	MHz	Operating conditions • PLL multiplication rate: 3 • $-40 \ ^{\circ}C \le T_A < 0 \ ^{\circ}C,$ $+70 \ ^{\circ}C < T_A \le +85 \ ^{\circ}C$	
				15.68	16	16.32	MHz	• 0 °C ≤ T _A ≤ +70 °C	
				15.2	16	16.8	MHz	Operating conditions • PLL multiplication rate: 4 • $-40 \ ^{\circ}C \le T_A < 0 \ ^{\circ}C,$ $+70 \ ^{\circ}C < T_A \le +85 \ ^{\circ}C$	
	FcL	X0A V1A		_	32.768	_	kHz	When the sub-oscillation circuit is used	
	FCL	X0A, X1A		_	32.768	_	kHz	When the sub-external clock is used	
	FCRL			50	100	150	kHz	When the sub-CR clock is used	

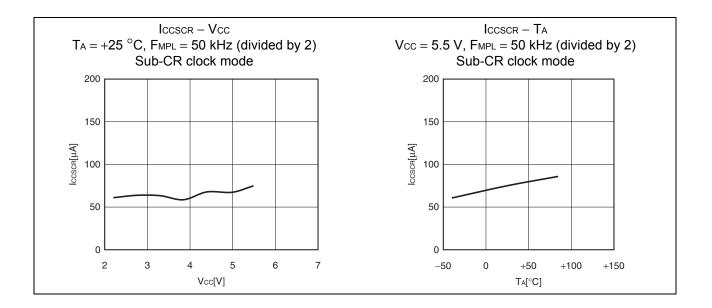



20.4.10 MPG Input Timing

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Svmbol	Pin name	Condition	Va	ue	Unit	Remarks
	Symbol	Finname	Condition	Min	Max		itema K3
Input pulse width	tтıwн, t⊤ıw∟	SNI0 to SNI2, DTTI	_	4 tmclk	_	ns	




• A/D conversion error

As |Vcc - Vss| decreases, the A/D conversion error increases proportionately.

