

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6310-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5 RF0 AN5	24	I/O I	ST Analog	Digital I/O. Analog Input 5.
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog Input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	18	I/O I O	ST Analog —	Digital I/O. Analog Input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	17	I/O I	ST Analog	Digital I/O. Analog Input 8.
RF4/AN9 RF4 AN9	16	I/O I	ST Analog	Digital I/O. Analog Input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	15	I/O I O	ST Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	14	I/O I	ST Analog	Digital I/O. Analog Input 11.
RF7/SS RF7 SS	13	I/O I	ST TTL	Digital I/O. SPI slave select input.
ST = Schn I = Input P = Powe	er	with CN		CMOS = CMOS compatible input or output s Analog = Analog input O = Output I ² C = ST with I ² C [™] or SMB levels ration bit. CCP2MX is closed (all operating modes except

TABLE 1-3: PIC18F8310/8410 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for CCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for CCP2 when CCP2MX is cleared (Microcontroller mode only).

4.0 POWER-MANAGED MODES

PIC18F6310/6410/8310/8410 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- · Sleep mode
- Idle modes
- Run modes

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features. One of these is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC[®] devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires deciding if the CPU is to be clocked or not and selecting a clock source. The IDLEN bit controls CPU clocking, while the SCS<1:0> bits select a clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

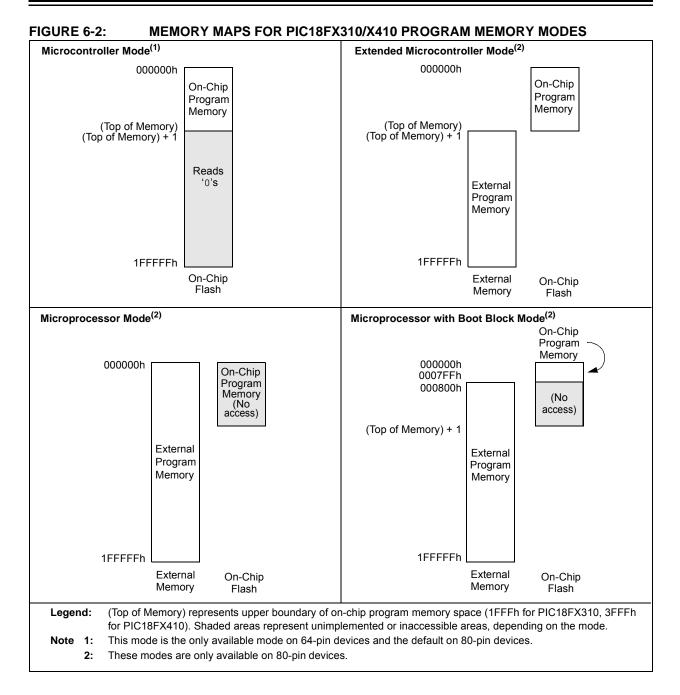
The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block (for RC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Entering power-managed Run mode, or switching from one power-managed mode to another, begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or ldle mode is being used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in Section 4.1.3 "Clock Transitions and Status Indicators" and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.


Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

	101121		MODLO						
Mada	OSCCON<	:7,1:0> Bits	Module	Clocking	Ausilable Cleak and Ossillator Source				
Mode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source				
Sleep	0	N/A	Off	Off	None – All clocks are disabled.				
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽²⁾ This is the normal Full-Power Execution mode				
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator				
RC_RUN	N/A	1x	Clocked	Clocked	Internal Oscillator Block ⁽²⁾				
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC				
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator				
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾				

TABLE 4-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

TABLE 6-1:	MEMORY ACCESS FOR PIC18F8310/8410 PROGRAM MEMORY MODES
------------	--

Organsting	Inter	nal Program Me	mory	External Program Memory				
Operating Mode	Execution From	Table Read From	Table Write To	Execution From	Table Read From	Table Write To		
Microcontroller	Yes	Yes	Yes	No Access	No Access	No Access		
Extended Microcontroller	Yes	Yes	Yes	Yes	Yes	Yes		
Microprocessor	No Access	No Access	No Access	Yes	Yes	Yes		
Microprocessor w/Boot Block	Yes	Yes	Yes	Yes	Yes	Yes		

© 2010 Microchip Technology Inc.

6.1.3.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.4 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
	•	
SUB1	•	
	RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.5 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.5.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the Return Address Stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		
	•		

6.1.5.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word while programming. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from the program memory. Data is transferred from program memory one byte at a time.

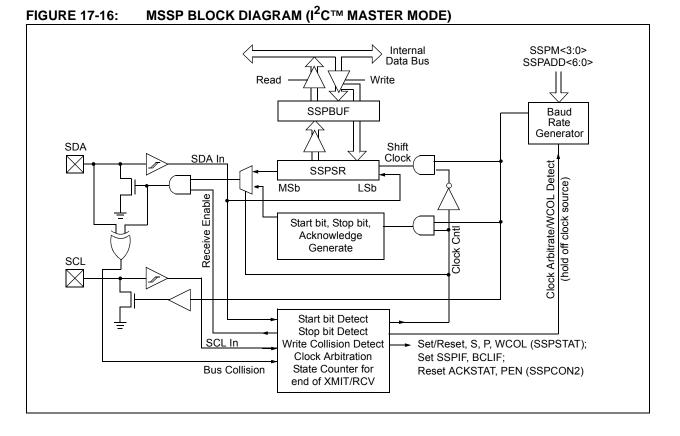
Table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

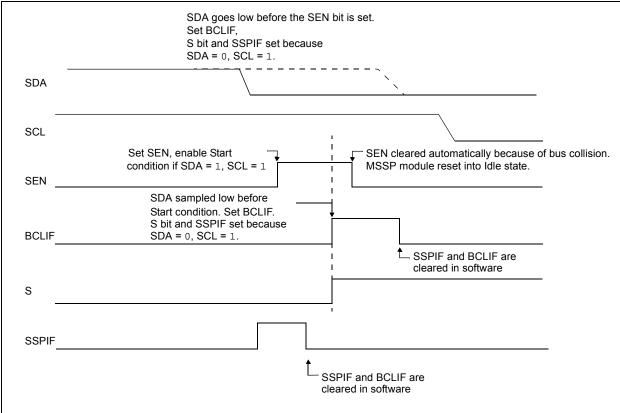
- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmit
- Repeated Start

17.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 17-26).
- b) SCL is sampled low before SDA is asserted low (Figure 17-27).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 17-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to '0' and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 17-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

R/W-0	R-1	R/W	-0		R/W-0	R/W-0		U-0	R/W-0	R/W-0	
ABDOVF	RCIDL	RXD	ΓP	٦	TXCKP	BRG16		_	WUE	ABDEN	
bit 7	I									bit	
Legend:											
R = Readable	bit	W = Wri	table	bit		U = Unimp	lement	ed bit. rea	ad as '0'		
-n = Value at		'1' = Bit is set				'0' = Bit is			x = Bit is unk	nown	
bit 7	1 = A BR0	Auto-Baud / G rollover ha RG rollover h	s oco	curre	d during		ate De	tect mode	e (must be cleare	ed in software	
bit 6	RCIDL: Re	eceive Opera	ation	Idle S	Status bi	t					
		ve operation ve operation									
bit 5	RXDTP : R	eceived Dat	a Pol	larity	Select b	it					
	1 = Receiv	<u>ious mode:</u> /e data (RXx /e data (RXx									
	<u>Synchrono</u> No affect.	ous mode:									
bit 4	TXCKP: C	lock and Da	ta Po	olarity	Select b	pit					
	1 = Idle sta	Asynchronous mode: . = Idle state for transmit (TXx) is a low level) = Idle state for transmit (TXx) is a high level									
		ous mode: ate for clock ate for clock									
bit 3	BRG16: 1	6-Bit Baud F	ate F	Regis	ter Enab	ole bit					
						GH1 and SP G1 only (Com		mode); S	PBRGH1 value	ignored	
bit 2	Unimplem	nented: Rea	d as	'0'							
bit 1	WUE: Wal	ke-up Enable	e bit								
	1 = EUSA hardw	nous mode: NRT will cont vare on follow pin not monit	ving	rising	edge	-	terrupt	generated	d on falling edge	e; bit cleared i	
	<u>Synchronous mode:</u> Unused in this mode.										
bit 0	ABDEN: A	uto-Baud D	etect	Enat	ole bit						
	1 = Enabl cleare 0 = Baud	ed in hardwa rate measur	re up	on co	ompletio	n.	acter. F	Requires r	eception of a Sy	nc field (55h	
	<u>Synchronc</u> Unused in	<u>bus mode:</u> this mode.									

REGISTER 18-3: BAUDCON1: BAUD RATE CONTROL REGISTER 1

					SYNC	= 0, BRGH	I = 0, BRG	G16 = 0				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_						_		_	_	_	
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51				
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12				
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_				
9.6	8.929	-6.99	6	—	_	_	—	_	_				
19.2	20.833	8.51	2	—	_	_	—	_	_				
57.6	62.500	8.51	0	—	_	_	—	_	_				
115.2	62.500	-45.75	0	—	_	—	_	—					

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	Rate % value Rate			% Error	value		% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	—	_	_	—	_	_	_	_	_	_	_	_		
1.2	—	—	—	—	—	—	—	—	—	—	—	—		
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207		
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—		

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	_		_	_	_	_	0.300	-0.16	207			
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51			
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25			
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_			
19.2	19.231	0.16	12	_	_	_	_	_	_			
57.6	62.500	8.51	3	—	_	_	—	_	_			
115.2	125.000	8.51	1	_	_	—	_	—	—			

18.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 18-6. The data is received on the RX1 pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

The RXDTP bit (BAUDCON<5>) allows the RX signal to be inverted (polarity reversed). Devices that buffer signals from RS-232 to TTL levels also perform an inversion of the signal (when RS-232 = positive, TTL = 0). Inverting the polarity of the RXx pin data by setting the RXDTP bit allows for the use of circuits that provide buffering without inverting the signal.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If the signal at the RXx pin is to be inverted, set the RXDTP bit.
- 4. If interrupts are desired, set enable bit, RCIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. Enable the reception by setting bit, CREN.
- Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing enable bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

18.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If the signal at the RXx pin is to be inverted, set the RXDTP bit. If the signal from the TXx pin is to be inverted, set the TXCKP bit.
- 4. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 5. Set the RX9 bit to enable 9-bit reception.
- 6. Set the ADDEN bit to enable address detect.
- 7. Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 9. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 10. Read RCREG to determine if the device is being addressed.
- 11. If any error occurred, clear the CREN bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

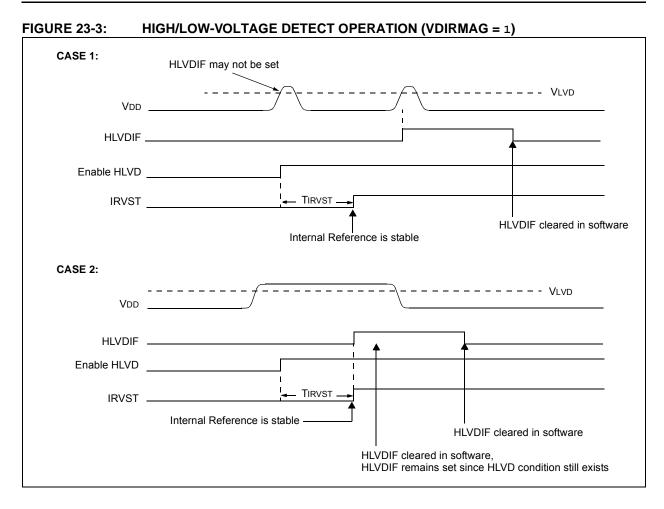
REGISTER 19-2: RCSTA2: AUSART2 RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7							bit			
Legend:										
R = Readabl		W = Writable		U = Unimpler						
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 7	SPEN: Seria	al Port Enable bi	it							
		oort is enabled (o oort is disabled (l			CKx pins as s	serial port pins)				
bit 6	RX9: 9-Bit F	Receive Enable I	bit							
		9-bit reception 8-bit reception								
bit 5	SREN: Sing	le Receive Enal	ole bit							
	<u>Asynchrono</u> Don't care.	<u>us mode</u> :								
	<u>Synchronou</u>	s mode – Maste	er:							
		s single receive								
		s single receive eared after rece		ete						
		s mode – Slave								
	Don't care.		<u>-</u>							
bit 4	CREN: Con	tinuous Receive	Enable bit							
	<u>Asynchrono</u>									
	1 = Enables									
	0 = Disable									
	<u>Synchronou</u>		oivo until ona	hla hit CREN i	e cleared (CE	EN overrides SF				
		s continuous red		DIE DIL, CINEN, I	s cleared (Cr	LIN OVERINGES OF	(LIN)			
bit 3	ADDEN: Address Detect Enable bit									
	Asynchronous mode 9-Bit (RX9 = 1):									
	1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> are set									
	0 = Disables address detection, all bytes are received and ninth bit can be used as a parity bit									
	Asynchrono Don't care.	us mode 9-Bit (F	RX9 = 0) :							
bit 2		ning Error bit								
		g error (can be ι	pdated by rea	ading RCREG1	register and r	eceiving next va	lid byte)			
bit 1		rrun Error bit								
	1 = Overru	n error (can be c	leared by clea	aring bit, CREN))					
		rrun error								
bit 0		rrun error bit of Received D)ata bit							

23.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F6310/6410/8310/8410 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

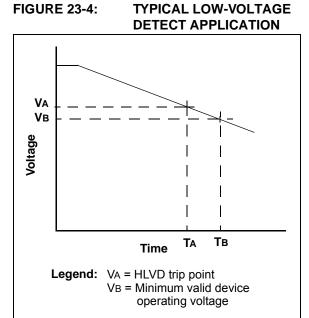
The High/Low-Voltage Detect Control register (Register 23-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.


The block diagram for the HLVD module is shown in Figure 23-1.

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	VDIRMA	G: Voltage Direction Magnit	ude Select bit				
	1 = Ever	nt occurs when voltage equal	ls or exceeds trip point (HLVD) s or falls below trip point (HLV				
bit 6	Unimple	emented: Read as '0'					
bit 5	IRVST: Internal Reference Voltage Stable Flag bit						
	0 = Indi		logic will not generate the inte	flag at the specified voltage ranger errupt flag at the specified voltage			
bit 4	1 = HLV	HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled					
bit 3-0	HLVDL<	:3:0>: Voltage Detection Limi	it bits ⁽¹⁾				
	1110 =	Maximum setting					
	•						
	•						
	• 0001 =						


Note 1: HLVDL<3:0> modes that result in a trip point, below the valid operating voltage of the device, are not tested.

23.5 Applications

In many applications, the ability to detect a drop below, or rise above, a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect USB attach or detach. This assumes the device is powered by a lower voltage source than the Universal Serial Bus (USB) when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

23.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
HLVDCON	VDIRMAG		IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	64
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR2	OSCFIF	CMIF	—	_	BCLIF	HLVDIF	TMR3IF	CCP2IF	65
PIE2	OCSFIE	CMIE	_	—	BCLIE	HLVDIE	TMR3IE	CCP2IE	65
IPR2	OSCFIP	CMIP	_	_	BCLIP	HLVDIP	TMR3IP	CCP2IP	65

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

25.0 INSTRUCTION SET SUMMARY

PIC18F6310/6410/8310/8410 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] device instruction sets, while maintaining an easy migration from these PIC device instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator, 'b', selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- · A program memory address (specified by 'n')
- The mode of the call or return instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip Assembler (MPASM[™]).

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

MUL	LW	Multip	Multiply literal with W					
Synta	ax:	MULLW	V I	K				
Oper	ands:	$0 \le k \le$	255					
Oper	ation:	(W) x k	\rightarrow F	PRODH:	PROE	DL		
Statu	s Affected:	None						
Enco	oding:	0000)	1101	kk}	ck	kkkk	
Desc	ription:	out betw 8-bit lite placed PRODE W is un None o Note th possible	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read literal 'k'		Proce Data		re Pl	Write gisters RODH: RODL	
Example:		MULLW	V	0C4h				
Before Instruction		on						
	W PRODH PRODL After Instructior	= = =	E2 ? ?	h				
	W PRODH PRODL	= = =	E2 AD 08	h				

MULWF	Multiply	Multiply W with f				
Syntax:	MULWF	f {,a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Operation:	(W) x (f) –	→ PRODH:PR	ODL			
Status Affected:	None					
Encoding:	0000	001a ff	ff ffff			
Description:	out betwee register file result is st register pa high byte. unchange None of th Note that r possible ir result is po If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates i Addressin	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95				
\A/e rele :	· · ·	e Section 25.2	2.3 for details.			
Words:	1 1					
Cycles:	I					
Q Cycle Activity:	02	03	04			
Q1 Decode	Q2 Read	Q3 Process	Q4 Write			
Decode			vviite			
	register 'f'	Data	registers PRODH: PRODL			
Example:	MULWF	REG, 1	PRODH:			
Example: Before Instru	MULWF		PRODH:			
	MULWF ction = C4 = B5 I = ? = ?	REG, 1 th 5h	PRODH:			

RET	FIE	Return fro	om Interrup	t	RET	LW	Return lit	eral to W	
Synta	ax:	RETFIE {	;}		Synt	ax:	RETLW k		
Oper	ands:	s ∈ [0,1]			Oper	ands:	$0 \leq k \leq 255$		
Oper	ation:	$(TOS) \rightarrow PC,$ 1 \rightarrow GIE/GIEH or PEIE/GIEL; if s = 1,		•		eration: $k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are u		unchanged	
		$(WS) \rightarrow W,$	OTATUO		Statu	is Affected:	None		
		(STATUSS) (BSRS) \rightarrow	\rightarrow STATUS, BSR.		Enco	oding:	0000	1100 kk	kk kkkk
		· · ·	CLATH are u	nchanged	Desc	cription:	W is loaded	with the eigh	nt-bit literal 'k'.
Statu	s Affected:	GIE/GIEH,	PEIE/GIEL.						oaded from the
Enco	oding:	0000	0000 00	01 000s			•	tack (the retu Idress latch (,
Desc	ription:	Return from	n interrupt. Sta	ck is popped			remains un	,	
		•	Stack (TOS) i		Word	ds:	1		
			errupts are en er the high or		Cycle	es:	2		
		-	•	t. If 's' = 1, the	QC	ycle Activity:			
			the shadow re	•		Q1	Q2	Q3	Q4
		STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update		their corresponding registers, W,		Decode	Read literal 'k'	Process Data	Pop PC from stack, Write to W
Word	1e.	1				No	No	No	No
Cycle		2				operation	operation	operation	operation
	vcle Activity:	2			_				
QC	Q1	Q2	Q3	Q4	Exar	<u>nple:</u>			
	Decode	No	No	Pop PC from		CALL TABLE	; W conta:		
		operation	operation	stack			; offset v ; W now ha		
				Set GIEH or GIEL			; table va		
	No	No	No	No					
	operation	operation	operation	operation	TABI	LE ADDWF PCL	; W = offs	set	
						RETLW k0	; Begin ta		
<u>Exan</u>	nple:	RETFIE 1	L			RETLW k1	;		
	After Interrupt				:				
	PC W BSR		= TOS = WS = BSRS			RETLW kn	; End of t	table	
	STATUS GIE/GIEI	H, PEIE/GIEL	= STATU = 1	188		Before Instruc	ction		
						W	= 07h		
						After Instruction	on		
						W	 value of 	^f kn	

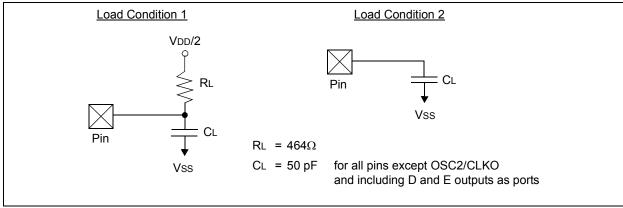
27.4 AC (Timing) Characteristics

27.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:	•	
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

27.4.2 TIMING CONDITIONS


The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-5 specifies the load conditions for the timing specifications.

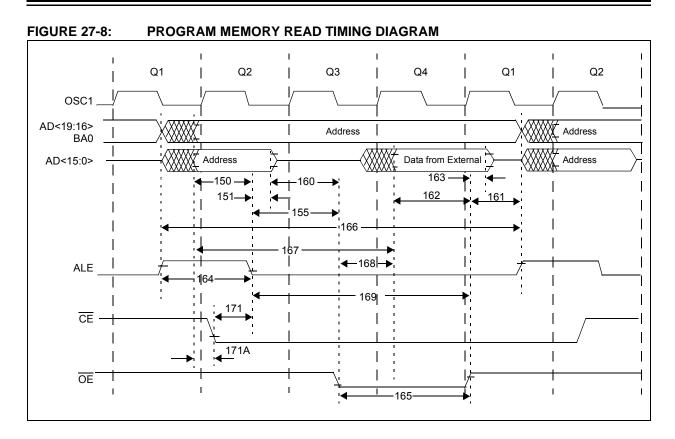

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F6310/6410/8310/8410 and PIC18LF6310/6410/8310/8410 families of devices specifically and only those devices.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec, Section 27.1 and				
	Section 27.3				
	LF parts operate for industrial temperatures only.				

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param. No	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10		_	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	10	0.125 Tcy	—	ns
160	TadZ2oeL	AD high-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	0	_	—	ns
161	ToeH2adD	OE ↑ to AD Driven	0.125 Tcy – 5	_	—	ns
162	TadV2oeH	LS Data Valid before \overline{OE} \uparrow (data setup time)	20	_	—	ns
163	ToeH2adl	\overline{OE} \uparrow to Data In Invalid (data hold time)	0	_	_	ns
164	TalH2alL	ALE Pulse Width	—	Тсү	—	ns
165	ToeL2oeH	OE Pulse Width	0.5 Tcy – 5	0.5 TCY	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	0.25 TCY	—	ns
167	Тасс	Address Valid to Data Valid	0.75 Tcy – 25		—	ns
168	Тое	$\overline{OE}\downarrow$ to Data Valid			0.5 TCY – 25	ns
169	TalL2oeH	ALE ↓ to OE ↑	0.625 Tcy – 10	_	0.625 Tcy + 10	ns
171	TalH2csL	Chip Enable Active to ALE \downarrow	0.25 Tcy – 20	_	—	ns
171A	TubL2oeH	AD Valid to Chip Enable Active	_	-	10	ns

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
	Name	
11011		
	Company Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Wou	d you like a reply?YN	
Devi	ce: PIC18F6310/6410/8310/8410	Literature Number: DS39635C
Ques	stions:	
1. V	Vhat are the best features of this document?	
-		
2. H	low does this document meet your hardware and softwa	are development needs?
_		
3. E	Do you find the organization of this document easy to fo	low? If not, why?
-		
4. V	Vhat additions to the document do you think would enha	ance the structure and subject?
-		
5. V	Vhat deletions from the document could be made witho	ut affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading information (what an	d where)?
-		
7. H	low would you improve this document?	
_		