

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Din Nome	Pin Number	Pin	Buffer	Deparintian			
Pin Name	TQFP	Туре	Туре	Description			
				PORTA is a bidirectional I/O port.			
RA0/AN0 RA0 AN0	30	I/O I	TTL Analog	Digital I/O. Analog Input 0.			
RA1/AN1 RA1 AN1	29	I/O I	TTL Analog	Digital I/O. Analog Input 1.			
RA2/AN2/VREF- RA2 AN2 VREF-	28	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.			
RA3/AN3/VREF+ RA3 AN3 VREF+	27	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.			
RA4/T0CKI RA4 T0CKI	34	I/O I	ST ST	Digital I/O. Timer0 external clock input.			
RA5/AN4/HLVDIN RA5 AN4 HLVDIN	33	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 4. High/Low-Voltage Detect input.			
RA6				See the OSC2/CLKO/RA6 pin.			
RA7				See the OSC1/CLKI/RA7 pin.			
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels ST = Schmitt Trigger input with CMOS levels							

- ST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= Power $I^2C = ST$ with I^2C^{TM} or SMB levels
- **Note 1:** Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).
 - 2: Default assignment for CCP2 in all operating modes (CCP2MX is set).
 - 3: Alternate assignment for CCP2 when CCP2MX is cleared (Microcontroller mode only).

Din Nome	Pin Number	Pin	Buffer	Description	
Fill Name	TQFP	Туре	Туре	Description	
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.	
RB0/INT0 RB0 INT0	58	I/O I	TTL ST	Digital I/O. External Interrupt 0.	
RB1/INT1 RB1 INT1	57	I/O I	TTL ST	Digital I/O. External Interrupt 1.	
RB2/INT2 RB2 INT2	56	I/O I	TTL ST	Digital I/O. External Interrupt 2.	
RB3/INT3/CCP2 RB3 INT3 CCP2 ⁽¹⁾	55	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 3. Capture 2 input/Compare 2 output/PWM2 output.	
RB4/KBI0 RB4 KBI0	54	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.	
RB5/KBI1 RB5 KBI1	53	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.	
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.	
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.	
Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog = Analog inputI = Input O = OutputP = Power I^2C = ST with I^2C^{TM} or SMB levels					

TABLE 1-3: PIC18F8310/8410 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for CCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for CCP2 when CCP2MX is cleared (Microcontroller mode only).

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
SPBRG1	EUSART1 Ba	EUSART1 Baud Rate Generator Low Byte									
RCREG1	EUSART1 Re	ceive Registe	r						0000 0000	65, 229	
TXREG1	EUSART1 Tra	ansmit Registe	er						xxxx xxxx	65, 226	
TXSTA1	CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D									65, 218	
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	65, 219	
IPR3	_	_	RC2IP	TX2IP	_	_	_	CCP3IP	111	65, 122	
PIR3	_	_	RC2IF	TX2IF	_		_	CCP3IF	000	65, 116	
PIE3	_	_	RC2IE	TX2IE	_		_	CCP3IE	000	65, 119	
IPR2	OSCFIP	CMIP	_	—	BCLIP	HLVDIP	TMR3IP	CCP2IP	11 1111	65, 121	
PIR2	OSCFIF	CMIF	_	—	BCLIF	HLVDIF	TMR3IF	CCP2IF	00 0000	65, 115	
PIE2	OSCFIE	CMIE	_	—	BCLIE	HLVDIE	TMR3IE	CCP2IE	00 0000	65, 118	
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	65, 120	
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	65, 114	
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	65, 117	
MEMCON ⁽²⁾	EBDIS		WAIT1	WAIT0			WM1	WM0	0-0000	65, 95	
OSCTUNE	INTSRC	PLLEN ⁽³⁾		TUN4	TUN3	TUN2	TUN1	TUN0	00-0 0000	39, 65	
TRISJ ⁽²⁾	PORTJ Data Direction Register									65, 147	
TRISH ⁽²⁾	PORTH Data Direction Register									65, 145	
TRISG	—	—	_	PORTG Data	Direction Reg	jister			1 1111	66, 143	
TRISF	PORTF Data Direction Register									66, 141	
TRISE	PORTE Data Direction Register									66, 139	
TRISD	PORTD Data Direction Register									66, 136	
TRISC	PORTC Data Direction Register									66, 133	
TRISB	PORTB Data	Direction Reg	ister						1111 1111	66, 130	
TRISA	TRISA7 ⁽⁵⁾	TRISA6 ⁽⁵⁾	PORTA Data	Direction Reg	ister				1111 1111	66, 127	
LATJ ⁽²⁾	LATJ Output	Latch Register	r						xxxx xxxx	66, 147	
LATH ⁽²⁾	LATH Output	Latch Registe	r						xxxx xxxx	66, 145	
LATG	—	—	—	LATG Output	Latch Registe	r			x xxxx	66, 143	
LATF	LATF Output	Latch Registe	r						xxxx xxxx	66, 141	
LATE	LATE Output	Latch Registe	r						xxxx xxxx	66, 139	
LATD	LATD Output	Latch Registe	r						xxxx xxxx	66, 136	
LATC	LATC Output	Latch Registe	r						xxxx xxxx	66, 133	
LATB	LATB Output	Latch Registe	r						xxxx xxxx	66, 130	
LATA	LATA7 ⁽⁵⁾	LATA6 ⁽⁵⁾	LATA Output	Latch Registe	r				xxxx xxxx	66, 127	
PORTJ ⁽²⁾	Read PORTJ	pins, Write Po	ORTJ Data La	itch					xxxx xxxx	66, 147	
PORTH ⁽²⁾	Read PORTH pins, Write PORTH Data Latch								xxxx xxxx	66, 145	
PORTG	—	—	RG5 ⁽⁴⁾	Read PORTO	6 pins<4:0>, W	/rite PORTG E	0ata Latch<4:0	>	xx xxxx	66, 143	
PORTF	Read PORTF	pins, Write P	ORTF Data La	atch					xxxx xxxx	66, 141	
PORTE	Read PORTE	pins, Write P	ORTE Data L	atch					XXXX XXXX	66, 139	
PORTD	Read PORTE) pins, Write P	ORTD Data L	atch					XXXX XXXX	66, 136	
PORTC	Read PORTO	C pins, Write P	ORTC Data L	atch					xxxx xxxx	66, 133	
PORTB	Read PORTE	pins, Write P	ORTB Data L	atch					xxxx xxxx	66, 130	
PORTA	RA7 ⁽⁵⁾	RA6 ⁽⁵⁾	Read PORTA	A pins, Write P	ORTA Data La	itch			xx0x 0000	66, 127	

TABLE 6-3:REGISTER FILE SUMMARY (PIC18F6310/6410/8310/8410) (CONTINUED)

 Legend:
 x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 64-pin devices, read as '0'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

4: The RG5 bit is only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: STKFUL and STKUNF bits are cleared by user software or by a POR.

7.2 Control Registers

Two control registers are used in conjunction with the TBLRD and TBLWT instructions: the TABLAT register and the TBLPTR register set.

7.2.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between the program memory space and data RAM.

7.2.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer register (TBLPTR) addresses a byte within the program memory. It is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). Only the lower six bits of TBLPTRU are used with TBLPTRH and TBLPTRL to form a 22-bit wide pointer.

The contents of TBLPTR indicate a location in program memory space. The low-order 21 bits allow the device to address the full 2 Mbytes of program memory space. The 22nd bit allows access to the configuration space, including the device ID, user ID locations and the Configuration bits.

The TBLPTR register set is updated when executing a TBLRD or TBLWT operation in one of four ways, based on the instruction's arguments. These are detailed in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

When a TBLRD or TBLWT is executed, all 22 bits of the TBLPTR determine which address in the program memory space is to be read or written to.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD*	TBI PTR is not modified
TBLWT*	
TBLRD*+	TBLPTR is incremented after the
TBLWT*+	read/write
TBLRD*-	TBLPTR is decremented after the
TBLWT*-	read/write
TBLRD+*	TBLPTR is incremented before the
TBLWT+*	read/write

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from the program memory space and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-2 shows the interface between the internal program memory and the TABLAT.

A typical method for reading data from program memory is shown in Example 7-1.

REGISTER 10-5:	PIR2: PERIPHERAL	INTERRUPT	REQUEST (F	LAG) REGISTER 2
----------------	------------------	-----------	-------------------	-----------------

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OSCFIF	CMIF		—	BCLIF	HLVDIF	TMR3IF	CCP2IF		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	OSCFIF: Osc	illator Fail Inter	rupt Flag bit	a abangod to l		he cleared in a	offworo)		
	1 = Device 0	ock operating		is changed to i	in 1030 (must		Jilwale)		
bit 6	CMIF: Compa	arator Interrupt	Flag bit						
	1 = Compara 0 = Compara	tor input has ch tor input has no	nanged (must ot changed	be cleared in	software)				
bit 5-4	Unimplement	Unimplemented: Read as '0'							
bit 3	BCLIF: Bus C	Collision Interru	ot Flag bit						
	1 = A bus col 0 = No bus co	lision occurred ollision occurre	(must be clea d	ared in softwar	e)				
bit 2	HLVDIF: High	/Low-Voltage E	Detect Interru	pt Flag bit					
	 1 = A low-voltage condition occurred (must be cleared in software) 0 = The device voltage is above the Low-Voltage Detect trip point 								
bit 1	TMR3IF: TMF	R3 Overflow Inte	errupt Flag bi	t					
	1 = TMR3 reg 0 = TMR3 reg	gister overflowe gister did not ov	ed (must be c /erflow	leared in softw	are)				
bit 0	CCP2IF: CCP	2 Interrupt Flag	g bit						
	<u>Capture mode</u> 1 = A TMR1/ 0 = No TMR1	<u>e:</u> TMR3 register /TMR3 registe	capture occu r capture occ	rred (must be c urred	cleared in softw	are)			
	<u>Compare mod</u> 1 = A TMR1/ 0 = No TMR1	<u>le:</u> TMR3 register /TMR3 registe	compare mat r compare ma	ch occurred (m atch occurred	nust be cleared	in software)			
	<u>PWM mode:</u> Unused in this	s mode.							

U-0	U-0	R-1	R-1	U-0	U-0	U-0	R/W-1
		RC2IP	TX21P	_	_		CCP3IP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	RC2IP: AUSA	ART Receive P	riority Flag bit	:			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 4	TX2IP: AUSA	RT Transmit Ir	nterrupt Priorit	y bit			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	CCP3IP: CCF	P3 Interrupt Pri	ority bit				
	1 – Lligh prio	rity					

REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

1 = High priority0 = Low priority

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description	
RF0/AN5	RF0	0	0	DIG	LATF<0> data output; not affected by analog input.	
		1	I	ST	PORTF<0> data input; disabled when analog input is enabled.	
	AN5	1	I	ANA	A/D Input Channel 5. Default configuration on POR.	
RF1/AN6/C2OUT	RF1	0	0	DIG	LATF<1> data output; not affected by analog input.	
		1	I	ST	PORTF<1> data input; disabled when analog input is enabled.	
	AN6	1	I	ANA	A/D Input Channel 6. Default configuration on POR.	
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.	
RF2/AN7/C1OUT	RF2	0	0	DIG	LATF<2> data output; not affected by analog input.	
		1	I	ST	PORTF<2> data input; disabled when analog input is enabled.	
	AN7	1	I	ANA	A/D Input Channel 7. Default configuration on POR.	
	C10UT	0	0	TTL	Comparator 1 output; takes priority over port data.	
RF3/AN8	RF3	0	0	DIG	LATF<3> data output; not affected by analog input.	
		1	I	ST	PORTF<3> data input; disabled when analog input is enabled.	
	AN8	1	I	ANA	A/D Input Channel 8 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.	
RF4/AN9	RF4	0	0	DIG	LATF<4> data output; not affected by analog input.	
		1	I	ST	PORTF<4> data input; disabled when analog input is enabled.	
	AN9	1	I	ANA	A/D Input Channel 9 and Comparator C2- input. Default input configuration on POR; does not affect digital output.	
RF5/AN10/CVREF	RF5	0	0	DIG	LATF<5> data output; not affected by analog input. Disabled when CVREF output is enabled.	
		1	I	ST	PORTF<5> data input; disabled when analog input is enabled. Disabled when CVREF output is enabled	
	AN10	1	I	ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.	
	CVREF	x	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.	
RF6/AN11	RF6	0	0	DIG	LATF<6> data output; not affected by analog input.	
		1	I	ST	PORTF<6> data input; disabled when analog input is enabled.	
	AN11	1	I	ANA	A/D Input Channel 11 and Comparator C1- input. Default input configuration on POR; does not affect digital output.	
RF7/SS	RF7	0	0	DIG	LATF<7> data output.	
		1	Ι	ST	PORTF<7> data input.	
	SS	1	I	TTL	Slave select input for MSSP (MSSP module).	

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-12:	SUMMARY	OF REGISTERS	ASSOCIATED	WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TRISF	PORTF Da		66						
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	66
LATF	LATF Outp	ut Latch Reg	gister						66
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	64
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	65
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	65

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTF.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description	
RG0/CCP3	RG0	0	0	DIG	LATG<0> data output.	
		1	I	ST	PORTG<0> data input.	
	CCP3	0	0	DIG	CCP3 compare and PWM output; takes priority over port data.	
		1	I	ST	CCP3 capture input.	
RG1/TX2/CK2	R21	0	0	DIG	LATG<1> data output.	
		1	I	ST	PORTG<1> data input.	
	TX2	1	0	DIG	Synchronous serial data output (AUSART module); takes priority over port data.	
	CK2	1	0	DIG	Synchronous serial data input (AUSART module). User must configure as an input.	
		1	I	ST	Synchronous serial clock input (AUSART module).	
RG2/RX2/DT2	RG2	0	0	DIG	LATG<2> data output.	
		1	I	ST	PORTG<2> data input.	
	RX2	1	I	ST	Asynchronous serial receive data input (AUSART module).	
	DT2	1	0	DIG	Synchronous serial data output (AUSART module); takes priority over port data.	
		1	I	ST	Synchronous serial data input (AUSART module). User must configure as an input.	
RG3	RG3	0	0	DIG	LATG<3> data output.	
		1	I	ST	PORTG<3> data input.	
RG4	RG4	0	0	DIG	LATG<4> data output.	
		1	I	ST	PORTG<4> data input.	
RG5/MCLR/VPP	RG5	(1)	Ι	ST	PORTG<5> data input; enabled when MCLRE Configuration bit is clear.	
	MCLR	_	Ι	ST	External Master Clear input; enabled when MCLRE Configuration bit is set.	
	Vpp	—	Ι	ANA	High-Voltage Detection; used for ICSP™ mode entry detection. Always available, regardless of pin mode.	

TABLE 11-13: PORTG FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RG5 does not have a corresponding TRISG bit.

TABLE 11-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
PORTG		_	RG5 ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	66
LATG	_	_	—	LATG Out	66				
TRISG		_	—	PORTG D	ata Directio	n Register			66

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTG.

Note 1: RG5 is available as an input only when \overline{MCLR} is disabled.

11.8 PORTH, LATH and TRISH Registers

Note:	PORTH	is	only	available	on
	PIC18F83	310/84	410 devi	ces.	

PORTH is an 8-bit wide, bidirectional I/O port. The corresponding Data Direction register is TRISH. Setting a TRISH bit (= 1) will make the corresponding PORTH pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISH bit (= 0) will make the corresponding PORTH pin an output (i.e., put the contents of the output latch on the selected pin).

The Output Latch register (LATH) is also memory mapped. Read-modify-write operations on the LATH register, read and write the latched output value for PORTH.

All pins on PORTH are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are								
configured as digital inputs.									

When the external memory interface is enabled, four of the PORTH pins function as the high-order address lines for the interface. The address output from the interface takes priority over other digital I/O. The corresponding TRISH bits are also overridden.

EXAMP	PLE 11-8:	INITIALIZING PORTH
CLRF	PORTH	; Initialize PORTH by
		; clearing output
		; data latches
CLRF	LATH	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISH	; Set RH3:RH0 as inputs
		; RH5:RH4 as outputs
		; RH7:RH6 as inputs

17.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, Clock = (Fosc/4) x (SSPADD + 1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

17.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit, SSPIF (PIR1<3>), is set. The BF bit is cleared by reading the SSPBUF register, while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing Parameter #100 and Parameter #101.

17.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit, R/W (SSPSTAT<2>), must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with Steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPIF, BF and UA (SSPSTAT<1>), are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit, UA, and releases the SCL line).
- 3. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (SSPIF, BF and UA bits are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit, UA.
- 6. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPIF and BF, are set).
- 9. Read the SSPBUF register (clears bit, BF) and clear flag bit, SSPIF.

17.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPCON<4>). See **Section 17.4.4** "**Clock Stretching**" for more details.

17.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin, RC3/SCK/SCL, is held low regardless of SEN (see **Section 17.4.4 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then, the RC3/SCK/SCL pin should be enabled by setting bit, CKP (SSPCON1<4>). The 8 data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 17-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin, RC3/SCK/SCL, must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

17.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 17-26).
- b) SCL is sampled low before SDA is asserted low (Figure 17-27).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 17-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to '0' and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 17-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

FIGURE 18-6: EUSART RECEIVE BLOCK DIAGRAM

FIGURE 18-7: ASYNCHRONOUS RECEPTION

18.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of Sleep or any Idle mode and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG1 register; if the RC1IE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCIE.
- 3. If the signal from the CKx pin is to be inverted, set the TXCKP bit.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. To enable reception, set enable bit, CREN.
- Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- 7. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	65
RCREG1	EUSART1	Receive Reo	gister						65
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	65
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	66
SPBRGH1	Baud Rate Generator Register High Byte								66
SPBRG1	Baud Rate	Generator F	Register Low	v Byte					65

TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

20.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 20-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 20-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 20-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

Chold	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 20-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 20-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/2048)) \bullet (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 20-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	befficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047)$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883)$ 1.05 μ s
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

GO [.]	го	Uncondit	ional Branc	h	INC	F	Incremen	tf			
Synt	ax:	GOTO k			Syn	tax:	INCF f{,c	INCF f {,d {,a}}			
Оре	rands:	$0 \le k \le 104$	$0 \leq k \leq 1048575$			erands:	$0 \le f \le 255$				
Оре	ration:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]				
Statu	us Affected:	None			One	eration.	$(f) + 1 \rightarrow de$	et			
Enco 1st v	oding: vord (k<7:0>)	1110	1111 k ₇ ł	kk kkkk ₀	Stat	us Affected:	(i) i i i ⇒ dd C, DC, N, (OV, Z			
2nd	word(k<19:8>)	1111	k ₁₉ kkk kk	kk kkkk ₈	Enc	oding:	0010	10da ff:	ff ffff		
Description:		GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.			Des	cription:	The conten incremente placed in W placed back If 'a' is '0', t If 'a' is '1', t	ts of register 'f d. If 'd' is '0', tl /. If 'd' is '1', th k in register 'f'. he Access Bai he BSR is use	" are he result is le result is nk is selected. d to select the		
Wor	ds:	2					GPR bank.	nd the extend	ad instruction		
Cycl	es:	2					set is enabl	ed, this instruc	ction operates		
QC	cycle Activity:						in Indexed	Literal Offset A	Addressing		
	Q1	Q2	Q3	Q4			mode when Section 25	ever $f \le 95$ (5l 2 3 for details	Fh). See		
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC	Woi	ds:	1				
	No	No	No	No		Vele Activity:	I				
	operation	operation	operation	operation	Q		02	03	04		
Exar	<u>nple:</u>	GOTO THE	RE			Decode	Read register 'f'	Process Data	Write to destination		
	PC =	Address (T	HERE)		Exa	mple:	INCF	CNT, 1, 0			
						Before Instruct CNT Z DC After Instructio CNT Z C DC	ttion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1				

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2004)

Original data sheet for PIC18F6310/6410/8310/8410 devices.

Revision B (May 2007)

Updated Electrical Characteristics and packaging diagrams.

Revision C (October 2010)

Changes to electricals in **Section 27.0 "Electrical Characteristics"** and minor text edits throughout document.

TABLE B-1: DEVICE DIFFERENCES

Features	PIC18F6310	PIC18F6410	PIC18F8310	PIC18F8410
Program Memory (Bytes)	8K	16K	8K	16K
Program Memory (Instructions)	4096	8192	4096	8192
External Memory Interface	No	No	Yes	Yes
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.