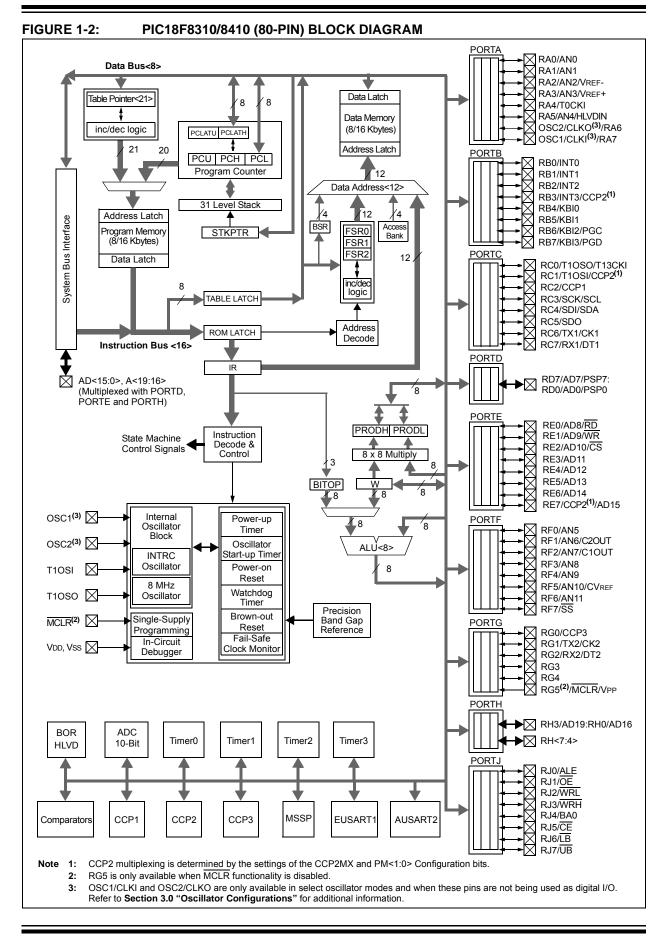


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6410t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Mana	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog Input 0.
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog Input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.
RA4/T0CKI RA4 T0CKI	28	I/O I	ST ST	Digital I/O. Timer0 external clock input.
RA5/AN4/HLVDIN RA5 AN4 HLVDIN	27	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 4. High/Low-Voltage Detect input.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.

TABLE 1-2:	PIC18F6310/6410 PINOUT I/O DESCRIPTIONS ((CONTINUED)	,

P = Power l^2C = ST with l^2C^{TM} or SMB levels **Note 1:** Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 24.2 "Watchdog Timer (WDT)" through Section 24.4 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device, or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a real-time clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 27.2 "DC Characteristics: Power-Down and Supply Current".

3.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (Parameter 33, Table 27-12). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval, TCSD (Parameter 38, Table 27-12), following POR while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

Oscillator Mode	OSC1 Pin	OSC2 Pin
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)
RCIO, INTIO2	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 3-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE⁽¹⁾

Note 1: See Table 5-2 in Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

8.0 EXTERNAL MEMORY INTERFACE

Note:	The ext	ernal	memo	ry	interface	is	not
	impleme	nted	on	ΡI	C18F6310		and
	PIC18F6	6410 (64-pin)	de	vices.		

The external memory interface allows the device to access external memory devices (such as Flash, EPROM, SRAM, etc.) as program or data memory. It is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals. A list of the pins and their functions is provided in Table 8-1.

As implemented here, the interface is similar to that introduced on PIC18F8X20 microcontrollers. The most notable difference is that the interface on PIC18F8310/8410 devices supports both 16-Bit and Multiplexed 8-Bit Data Width modes; it does not support the 8-Bit Demultiplexed mode. The Bus Width mode is set by the BW Configuration bit when the device is programmed and cannot be changed in software.

The operation of the interface is controlled by the MEMCON register (Register 8-1). Clearing the EBDIS bit (MEMCON<7>) enables the interface and disables the I/O functions of the ports, as well as any other multiplexed functions. Setting the bit disables the interface and enables the ports.

For a more complete discussion of the operating modes that use the external memory interface, refer to Section 8.1 "Program Memory Modes and the External Memory Interface".

REGISTER 8-1: MEMCON: MEMORY CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
WM0	WM1	_	_	WAIT0	WAIT1	_	EBDIS
bit 0							bit 7
							bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EBDIS: External Bus Disable bit
	 1 = External system bus disabled, all external bus drivers are mapped as I/O ports 0 = External system bus enabled, I/O ports are disabled
bit 6	Unimplemented: Read as '0'
bit 5-4	WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits
	11 = Table reads and writes will wait 0 TCY
	10 = Table reads and writes will wait 1 Tcy
	01 = Table reads and writes will wait 2 Tcy
	00 = Table reads and writes will wait 3 TCY
bit 3-2	Unimplemented: Read as '0'
bit 1-0	WM<1:0>: TBLWRT Operation with 16-Bit Bus Width bits
	1x = Word Write mode: TABLAT0 and TABLAT1 word output; WRH active when TABLAT1 is written
	01 = Byte Select mode: TABLAT data copied on both MSB and LSB; WRH and (UB or LB) will activate
	00 = Byte Write mode: TABLAT data copied on both MSB and LSB; WRH or WRL will activate

Note 1: If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'.

TABLE 8-1 :	PIC18F8310/8410 EXTERNAL BUS – I/O PORT FUNCTIONS
--------------------	---

Name	Port	Bit	Function			
RD0/AD0/PSP0	PORTD	0	Input/Output or System Bus Address bit 0 or Data bit 0 or Parallel Slave Port bit 0			
RD1/AD1/PSP1	PORTD	1	Input/Output or System Bus Address bit 1 or Data bit 1 or Parallel Slave Port bit 1			
RD2/AD2/PSP2	PORTD	2	Input/Output or System Bus Address bit 2 or Data bit 2 or Parallel Slave Port bit 2			
RD3/AD3/PSP3	PORTD	3	Input/Output or System Bus Address bit 3 or Data bit 3 or Parallel Slave Port bit 3			
RD4/AD4/PSP4	PORTD	4	Input/Output or System Bus Address bit 4 or Data bit 4 or Parallel Slave Port bit 4			
RD5/AD5/PSP5	PORTD	5	put/Output or System Bus Address bit 5 or Data bit 5 or Parallel Slave Port bit 5			
RD6/AD6/PSP6	PORTD	6	Input/Output or System Bus Address bit 6 or Data bit 6 or Parallel Slave Port bit 6			
RD7/AD7/PSP7	PORTD	7	Input/Output or System Bus Address bit 7 or Data bit 7 or Parallel Slave Port bit 7			
RE0/AD8/RD	PORTE	0	Input/Output or System Bus Address bit 8 or Data bit 8 or Parallel Slave Port Read Control pin			
RE1/AD9/WR	PORTE	1	Input/Output or System Bus Address bit 9 or Data bit 9 or Parallel Slave Port Write Control pin			
RE2/AD10/CS	PORTE	2	Input/Output or System Bus Address bit 10 or Data bit 10 or Parallel Slave Port Chip Select pin			
RE3/AD11	PORTE	3	Input/Output or System Bus Address bit 11 or Data bit 11			
RE4/AD12	PORTE	4	Input/Output or System Bus Address bit 12 or Data bit 12			
RE5/AD13	PORTE	5	Input/Output or System Bus Address bit 13 or Data bit 13			
RE6/AD14	PORTE	6	Input/Output or System Bus Address bit 14 or Data bit 14			
RE7/CCP2 ⁽¹⁾ /AD15	PORTE	7	Input/Output or Capture 2 Input/Compare 2 Output/PWM 2 Output pin or System Bus Address bit 15 or Data bit 15			
RH0/AD16	PORTH	0	Input/Output or System Bus Address bit 16			
RH1/AD17	PORTH	1	Input/Output or System Bus Address bit 17			
RH2/AD18	PORTH	2	Input/Output or System Bus Address bit 18			
RH3/AD19	PORTH	3	Input/Output or System Bus Address bit 19			
RJ0/ALE	PORTJ	0	Input/Output or System Bus Address Latch Enable (ALE) Control pin			
RJ1/OE	PORTJ	1	Input/Output or System Bus Output Enable (OE) Control pin			
RJ2/WRL	PORTJ	2	Input/Output or System Bus Write Low (WRL) Control pin			
RJ3/WRH	PORTJ	3	Input/Output or System Bus Write High (WRH) Control pin			
RJ4/BA0	PORTJ	4	Input/Output or System Bus Byte Address bit 0			
RJ5/CE	PORTJ	5	Input/Output or System Bus Chip Enable (CE) Control pin			
RJ6/LB	PORTJ	6	Input/Output or System Bus Lower Byte Enable (IB) Control pin			
RJ7/UB	PORTJ	7	Input/Output or System Bus Upper Byte Enable (UB) Control pin			

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).

8.1 Program Memory Modes and the External Memory Interface

As previously noted, PIC18F8310/8410 devices are capable of operating in any one of four program memory modes, using combinations of on-chip and external program memory. The functions of the multiplexed port pins depends on the program memory mode selected, as well as the setting of the EBDIS bit.

In **Microcontroller mode**, the bus is not active and the pins have their port functions only. Writes to the MEMCOM register are not permitted.

In **Microprocessor mode**, the external bus is always active and the port pins have only the external bus function.

In **Microprocessor with Boot Block** or **Extended Microcontroller mode**, the external program memory bus shares I/O port functions on the pins. When the device is fetching or doing table read/table write operations on the external program memory space, the pins will have the external bus function. If the device is fetching and accessing internal program memory locations only, the EBDIS control bit will change the pins from external memory to I/O port functions. When EBDIS = 0, the pins function as the external bus. When EBDIS = 1, the pins function as I/O ports.

If the device fetches or accesses external memory while EBDIS = 1, the pins will switch to external bus. If the EBDIS bit is set by a program executing from external memory, the action of setting the bit will be delayed until the program branches into the internal memory. At that time, the pins will change from external bus to I/O ports. NOTES:

12.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software-selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- · Dedicated 8-bit software-programmable prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 12-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 12-1. Figure 12-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr
bit 7	TMR00M	I: Timer0 On/Off Control bit		
	1 = Enat 0 = Stop	oles Timer0 s Timer0		
bit 6	T08BIT:	Timer0 8-Bit/16-Bit Control b	it	
		r0 is configured as an 8-bit ti r0 is configured as a 16-bit ti		
bit 5	T0CS : Ti	mer0 Clock Source Select bi	it	
		sition on T0CKI pin input edg nal clock (Fosc/4)	je	
bit 4	TOSE: Ti	mer0 Source Edge Select bit	t	
		ment on high-to-low transitio ment on low-to-high transitio	•	
bit 3	PSA: Tin	ner0 Prescaler Assignment b	vit	
			; Timer0 clock input bypasses ner0 clock input comes from p	
bit 2-0	T0PS<2:	0>: Timer0 Prescaler Select	bits	
	110 = 1: 101 = 1: 100 = 1: 011 = 1: 010 = 1: 010 = 1:	 256 Prescale value 128 Prescale value 64 Prescale value 32 Prescale value 16 Prescale value 8 Prescale value 4 Prescale value 2 Prescale value 		

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external), with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- · Module Reset on CCP Special Event Trigger

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCP modules (see **Section 16.1.1** "**CCP Modules and Timer Resources**" for more information).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:									
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	PD16. 16	Bit Read/Write Mode Enabl	le hit						
		es register read/write of Tim							
		es register read/write of Tim							
bit 6, 3	T3CCP<2:	1>: Timer3 and Timer1 to (CCPx Enable bits						
			ompare/capture of all CCP me	odules					
		er3 is the clock source for c		0000					
			ompare/capture of CCP1 and ompare/capture of CCP2 and						
		01 = Timer3 is the clock source for compare/capture of CCP2 and CCP3, Timer1 is the clock source for compare/capture of CCP1							
	00 = Timer1 is the clock source for compare/capture of all CCP modules								
bit 5-4	T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits								
	11 = 1:8 P	11 = 1:8 Prescale value							
		10 = 1:4 Prescale value							
	01 = 1:2 Prescale value 00 = 1:1 Prescale value								
bit 2			t Synchronization Control bit						
	T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the device clock comes from Timer1/Timer3.)								
	When TMR3CS = 1:								
		1 = Do not synchronize external clock input							
	0 = Synchronize external clock input								
	<u>When TMR3CS = 0:</u> This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.								
bit 1		•		0.					
DILI	TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the								
		Illing edge)		שווש בעשב מונבו נווב					
	0 = Internal clock (Fosc/4)								
bit 0	TMR3ON:	Timer3 On bit							
	1 = Enable	es Timer3							
	0 = Stops	Timer3							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	64
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
TRISB	PORTB Da	ta Direction I	Register						66
TRISC	PORTC Da	ta Direction	Register						66
TRISE	PORTE Data Direction Register							66	
TMR2	Timer2 Reg	gister							64
PR2	Timer2 Per	iod Register							64
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	64
CCPR1L	Capture/Co	ompare/PWN	Register 1	(LSB)					65
CCPR1H	Capture/Co	mpare/PWN	Register 1	(MSB)					65
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	65
CCPR2L	Capture/Compare/PWM Register 2 (LSB)							65	
CCPR2H	Capture/Compare/PWM Register 2 (MSB)						65		
CCP2CON		_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	65
CCPR3L	Capture/Compare/PWM Register 3 (LSB)							65	
CCPR3H	Capture/Compare/PWM Register 3 (MSB)							65	
CCP3CON		_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	65

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

NOTES:

17.3.8 SLEEP OPERATION

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

In most power-managed modes, a clock is provided to the peripherals. That clock should be from the primary clock source, the secondary clock (Timer1 oscillator at 32.768 kHz) or the INTOSC source. See **Section 3.7 "Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the devices wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/ Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.3.10 BUS MODE COMPATIBILITY

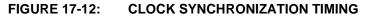
Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

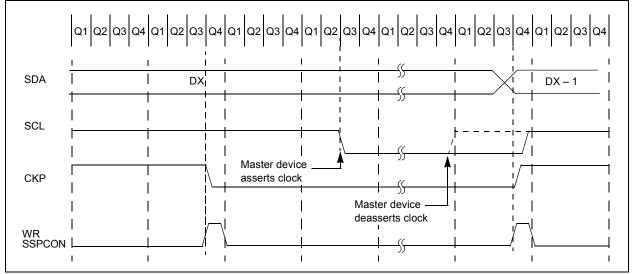
Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 17-1: SPI BUS MODES

There is also an SMP bit which controls when the data is sampled.

IADLE I/-	-2: REGISTERS ASSOCIATED WITH SPIOPERATION								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
TRISC	PORTC Da	ta Direction	Register						66
TRISF	PORTF Data Direction Register							66	
SSPBUF	Master Synchronous Serial Port Receive Buffer/Transmit Register							64	
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	64
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	64


TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION


Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

17.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 17-12).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	65
TXREG1	EUSART1	Transmit Re	gister						65
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	65
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	66
SPBRGH1	EUSART1 Baud Rate Generator Register High Byte							66	
SPBRG1	EUSART1	USART1 Baud Rate Generator Register Low Byte							
SPBRGH1									6 6

TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

19.2 AUSART Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTA2<4>). In this mode, the AUSART uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The AUSART transmits and receives the LSb first. The AUSART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH bit (TXSTA2<2>). Parity is not supported by the hardware but can be implemented in software and stored as the 9th data bit.

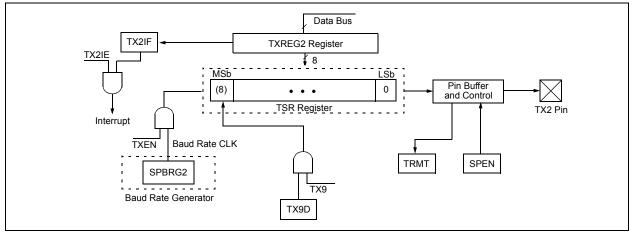
When operating in Asynchronous mode, the AUSART module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- · Asynchronous Transmitter
- · Asynchronous Receiver

19.2.1 AUSART ASYNCHRONOUS TRANSMITTER

The AUSART transmitter block diagram is shown in Figure 19-1. The heart of the transmitter is the Transmit (Serial) Shift register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG2. The TXREG2 register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG2 register (if available).

Once the TXREG2 register transfers the data to the TSR register (occurs in one Tcr), the TXREG2 register is empty and the TX2IF flag bit (PIR3<4>) is set. This


interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TX2IE (PIE3<4>). TX2IF will be set regardless of the state of TX2IE; it cannot be cleared in software. TX2IF is also not cleared immediately upon loading TXREG2, but becomes valid in the second instruction cycle following the load instruction. Polling TX2IF immediately following a load of TXREG2 will return invalid results.

While TX2IF indicates the status of the TXREG2 register, another bit, TRMT (TXSTA2<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory so it is not available to the user.
 - **2:** Flag bit, TX2IF, is set when enable bit, TXEN is set.

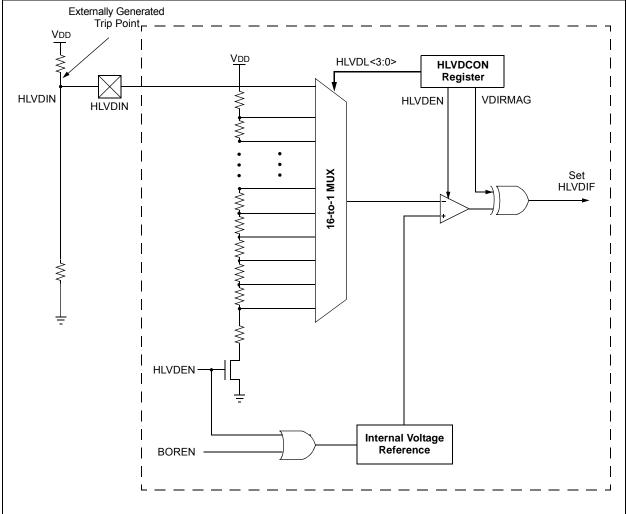
To set up an Asynchronous Transmission:

- 1. Initialize the SPBRG2 register for the appropriate baud rate. Set or clear the BRGH bit, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TX2IE.
- 4. If 9-bit transmission is desired, set transmit bit, TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit, TXEN, which will also set bit, TX2IF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREG2 register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 19-1: AUSART TRANSMIT BLOCK DIAGRAM

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.


23.1 Operation

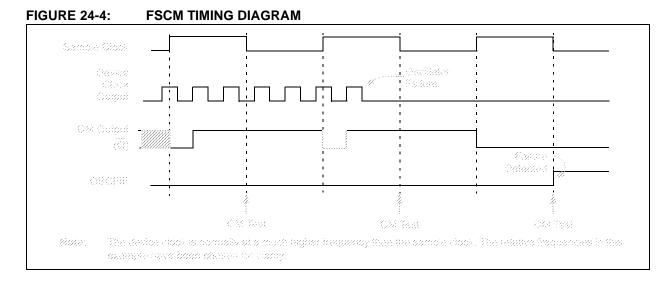
When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

REGISTER 24-4: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)

R/P-1	R/P-1	U-0	U-0	U-0	U-0	R/P-1	R/P-1
WAIT	BW	—	_	_	—	PM1	PM0
bit 7	•	•					bit 0
Legend:							


R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'				
-n = Value at erase bit	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7	WAIT: External Bus Data Wait Enable bit 1 = Wait selections are unavailable, device will not wait 0 = Wait is programmed by the WAIT1 and WAIT0 bits of the MEMCOM register (MEMCOM<5:4>)
bit 6	BW: External Bus Data Width Select bit
	 1 = 16-bit external bus data width 0 = 8-bit external bus data width
bit 5-2	Unimplemented: Read as '0'
bit 1-0	PM<1:0>: Processor Data Memory Mode Select bits
	 11 = Microcontroller mode 10 = Microprocessor mode⁽¹⁾ 01 = Microcontroller with Boot Block mode⁽¹⁾ 00 = Extended Microcontroller mode⁽¹⁾

Note 1: This mode is only available on PIC18F8310/8410 devices.

R/P-1	U-0	U-0	U-0	U-0	R/P-0	U-0	R/P-1				
MCLRE	—	—	_	_	LPT10SC	—	CCP2MX				
bit 7							bit 0				
Legend: R = Readabl	e hit	P = Programn	nahla hit	= Inimplei	mented bit, read	l as 'O'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown				
				0 2.1.0 0.0							
bit 7	MCLRE: MCL	R Pin Enable I	oit								
	$1 = \overline{MCLR} pin$	= MCLR pin is enabled; RG5 input pin is disabled									
	0 = RG5 input	t pin is enabled	; MCLR is dis	sabled							
bit 6-3	Unimplemen	ted: Read as ')'								
bit 2	LPT1OSC: Lo	ow-Power Time	r 1 Oscillator	Enable bit							
		configured for configured for									
bit 1	Unimplemen	ted: Read as ')								
bit 0	CCP2MX: CC	P2 MUX bit									
	1 = CCP2 inp	In Microcontroller Mode only (all devices): 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RE7									
	In Microprocessor, Extended Microcontroller and Microcontroller with Boot Block Modes (PIC18F8310/8410 devices only): 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RB3										

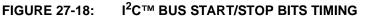
REGISTER 24-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

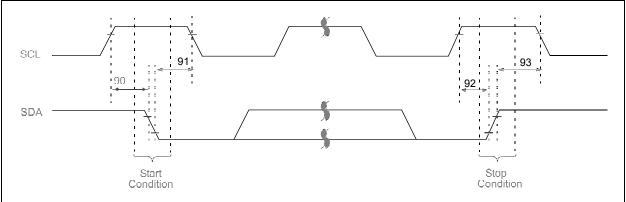
24.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Clock monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, the device will not exit the power-managed mode on oscillator failure. Instead, the device will continue to operate as before, but clocked by the INTOSC multiplexer. While in Idle mode, subsequent interrupts will cause the CPU to begin executing instructions while being clocked by the INTOSC multiplexer.


24.4.4 POR OR WAKE FROM SLEEP


The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is in EC, RC or INTRC modes, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the
	detection of the oscillator's failure to start
	at all following these events. This can be
	avoided by monitoring the OSTS bit and
	using a timing routine to determine if the
	oscillator is taking too long to start. Even
	so, no oscillator failure interrupt will be
	flagged.

As noted in **Section 24.3.1 "Special Considerations for Using Two-Speed Start-up"**, it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new powered-managed mode is selected, the primary clock is disabled.

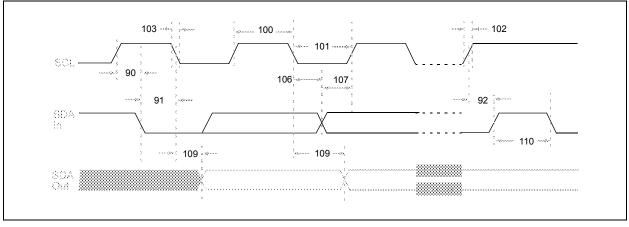


TABLE 27-19: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated Start condition
		Setup Time	400 kHz mode	600	_		
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold Time	400 kHz mode	600	—		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

FIGURE 27-19: I²C[™] BUS DATA TIMING

TBLRD	335
TBLWT	336
TSTFSZ	
XORLW	
XORWF	
Summary Table	
INTCON Register	
RBIF Bit	100
INTCON Registers	
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	
Adjustment	
INTIO Modes	
INTOSC Frequency Drift	
INTOSC Output Frequency	
OSCTUNE Register	
Internal RC Oscillator	
Use with WDT	290
Internet Address	
Interrupt Sources	
A/D Conversion Complete	
Context Saving During Interrupts	124
Interrupt-on-Change (RB7:RB4)	128
INTx Pin	
PORTB, Interrupt-on-Change	124
TMR0	
TMR0 Overflow	
TMR1 Overflow	155
TMR2 to PR2 Match (PWM)	
TMR3 Overflow	
Interrupts	109
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)	128
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	320
IORWF	320
IPR Registers	120
L	
LFSR	321
м	
Master Clear (MCLR)	
Master Synchronous Serial Port (MSSP). See MSSP	
Memory Organization	
Data Memory	
Program Memory	
Memory Programming Requirements	
Microchip Internet Web Site	
Migration from Baseline to Enhanced Devices	
Migration from High-End to Enhanced Devices	397

MSSP	
ACK Pulse	190, 191
Control Registers (general)	
I ² C Mode. See I ² C Mode.	
Module Overview	177
SPI Master/Slave Connection	
SPI Mode. See SPI Mode.	
SSPBUF	
SSPSR	
MULLW	
MULWF	
Ν	
NEGF	325
NOP	325
0	
0	
Oscillator	
Clock Sources	
Selecting the 31 kHz Source	
Selection Using OSCCON Register	
External Clock Input	36
RC	37
RCIO Mode	37
Switching	40
Transitions	41
Oscillator Configuration	35
EC	35
ECIO	35
HS	35
HSPLL	
Internal Oscillator Block	
INTIO1	
INTIO2	35
LP	35
RC	35
RCIO	35
XT	35
Oscillator Selection	281
Oscillator Start-up Timer (OST)	
Oscillator, Timer1	155, 165
Oscillator, Timer3	163
P	

Packaging	389
Details	390
Marking	
Parallel Slave Port (PSP)	
Associated Registers	
RE0/RD Pin	
RE1/WR Pin	
RE2/CS Pin	
Select (PSPMODE Bit)	
PIC18 Instruction Execution, Extended	
PIE Registers	
Pin Functions	
AVDD	30
AVDD	
AVss	
AVss	
OSC1/CLKI/RA7	
OSC2/CLKO/RA6	
RA0/AN0	,
RA1/AN1	,
RA2/AN2/VREF	- , -
RA3/AN3/VREF+	,
RAJANJ/VREFT	15, 23

MPLAB Integrated Development Environment