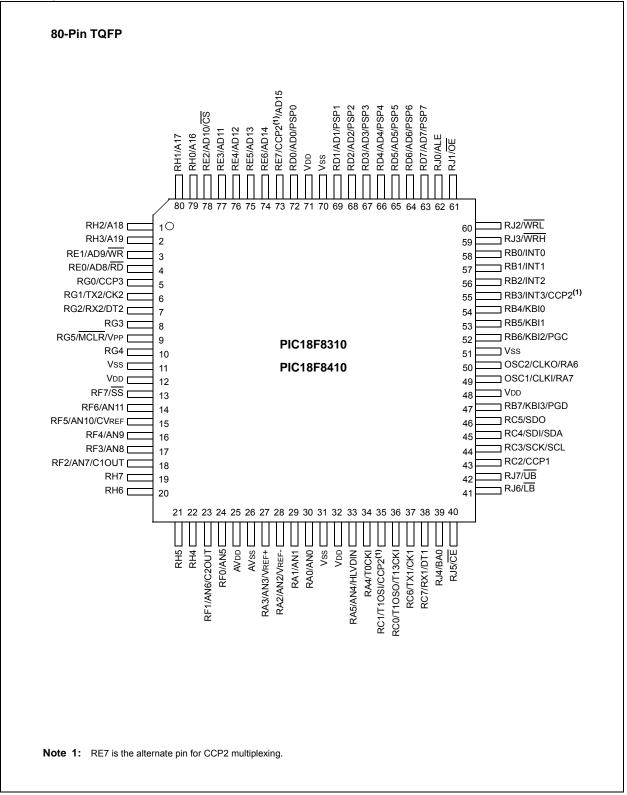


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

6.1.1 PIC18F8310/8410 PROGRAM MEMORY MODES

In addition to available on-chip Flash program memory, 80-pin devices in this family can also address up to 2 Mbytes of external program memory through an external memory interface. There are four distinct operating modes available to the controllers:

- Microprocessor (MP)
- Microprocessor with Boot Block (MPBB)
- Extended Microcontroller (EMC)
- Microcontroller (MC)

The program memory mode is determined by setting the two Least Significant bits of the CONFIG3L Configuration byte, as shown in Register 6-1. (See also **Section 24.1 "Configuration Bits**" for additional details on the device Configuration bits.)

The program memory modes operate as follows:

• The Microcontroller Mode accesses only on-chip Flash memory. Attempts to read above the physical limit of the on-chip Flash (3FFFh) causes a read of all '0's (a NOP instruction). The Microcontroller mode is also the only operating mode available to PIC18F6310 and PIC18F6410 devices.

- The Extended Microcontroller Mode allows access to both internal and external program memories as a single block. The device can access its entire on-chip Flash memory; above this, the device accesses external program memory up to the 2-Mbyte program space limit. As with Boot Block mode, execution automatically switches between the two memories as required.
- The Microprocessor Mode permits access only to external program memory; the contents of the on-chip Flash memory is ignored. The 21-bit program counter permits access to the entire 2-Mbyte linear program memory space.
- The Microprocessor with Boot Block Mode accesses on-chip Flash memory from addresses 000000h to 0007FFh. Above this, external program memory is accessed all the way up to the 2-Mbyte limit. Program execution automatically switches between the two memories as required.

In all modes, the microcontroller has complete access to data RAM.

Figure 6-2 compares the memory maps of the different program memory modes. The differences between on-chip and external memory access limitations are more fully explained in Table 6-1.

REGISTER 6-1: CONFIG3L: CONFIGURATION BYTE REGISTER LOW

R/P-1	R/P-1	U-0	U-0	U-0	U-0	R/P-1	R/P-1
WAIT	BW	—	—	_	—	PM1	PM0
bit 7		•				•	bit 0
Legend:							

Legena:										
R = Reada	able bit	P = Programmable bit	U = Unimplemented bit	, read as '0'						
-n = Value	after erase bit	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	WAIT: Exter	rnal Bus Data Wait Enable b	it							
1 = Wait selections unavailable, device will not wait 0 = Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>)										
bit 6	BW: Extern	al Bus Data Width Select bit								
	1 = 16-bit e	= 16-bit external bus data width								
	0 = 8-bit ext	ternal bus data width								
bit 5-2	Unimpleme	ented: Read as '0'								
bit 1-0	PM<1:0>: F	Processor Data Memory Moc	le Select bits							
		controller mode								
		processor mode ⁽¹⁾	(4)							
		controller with Boot Block mc	de ⁽¹⁾							
	00 = Extend	ded Microcontroller mode ⁽¹⁾								
Note 1:	This mode is ava	ailable only on PIC18F8410	devices.							

6.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 6.3.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

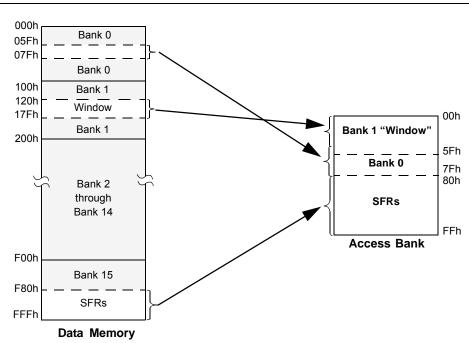
Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before.

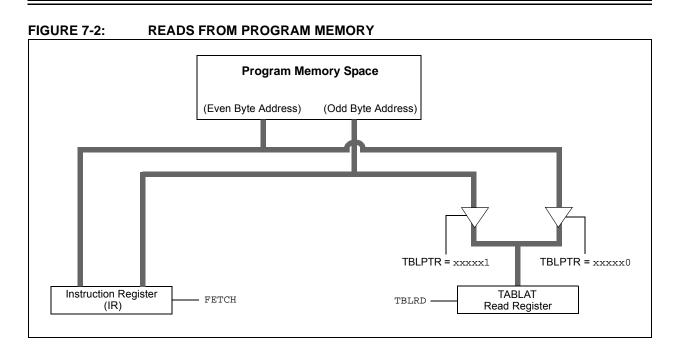
6.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set**".

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Example Situation:


ADDWF f, d, a FSR2H:FSR2L = 120h


Locations in the region from the FSR2 Pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh).

Locations in Bank 0 from 060h to 07Fh are mapped, as usual, to the middle of the Access Bank.

Special Function Registers at F80h through FFFh are mapped to 80h through FFh, as usual.

Bank 0 addresses below 5Fh can still be addressed by using the BSR.

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVF	WORD_ODD		

NOTES:

10.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP			
bit 7	·						bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7	PSPIP: Paral 1 = High prio 0 = Low prior	rity	Read/Write In	terrupt Priority I	bit					
bit 6	ADIP: A/D Co	onverter Interru	nverter Interrupt Priority bit							
	1 = High prio 0 = Low prior	•								
hit E	DCAID. FUC		town with Duioni	4 In 14						

	0 = Low priority
bit 5	RC1IP: EUSART Receive Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TX1IP: EUSART Transmit Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	SSPIP: Master Synchronous Serial Port Interrupt Priority bit
	1 = High priority
	0 = Low priority'
bit 2	CCP1IP: CCP1 Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1IP: TMR1 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority

U-0	U-0	R-1	R-1	U-0	U-0	U-0	R/W-1							
_	—	RC2IP	TX21P	—	—	—	CCP3IP							
bit 7							bit 0							
Legend:														
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'														
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown							
bit 7-6	Unimplemen	ted: Read as '	0'											
bit 5	RC2IP: AUSA	ART Receive P	riority Flag bit	t										
	1 = High prio													
	0 = Low prior	0 = Low priority												
bit 4	TX2IP: AUSA	RT Transmit Ir	nterrupt Priori	ty bit										
	1 = High prio	1 = High priority												
	0 = Low prior	ity												
bit 3-1	Unimplemen	ted: Read as '	0'											
bit 0	bit 0 CCP3IP: CCP3 Interrupt Priority bit													
	1 = High prio	ritv		1 = High priority										

REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

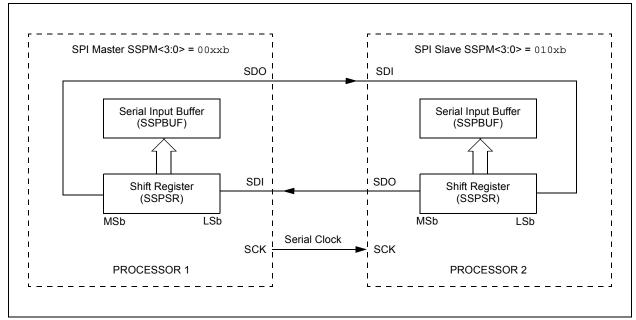
1 = High priority0 = Low priority

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	64
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
TRISB	PORTB Da	ta Direction I	Register						66
TRISC	PORTC Da	ta Direction	Register						66
TRISE	PORTE Data Direction Register								
TMR2	Timer2 Register								
PR2	Timer2 Per	iod Register							64
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	64
CCPR1L	Capture/Co	ompare/PWN	Register 1	(LSB)					65
CCPR1H	Capture/Co	mpare/PWN	Register 1	(MSB)					65
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	65
CCPR2L	Capture/Co	mpare/PWN	Register 2	(LSB)					65
CCPR2H	Capture/Co	mpare/PWN	Register 2	(MSB)					65
CCP2CON		_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	65
CCPR3L	Capture/Co	mpare/PWN	Register 3	(LSB)					65
CCPR3H	Capture/Co	mpare/PWN	Register 3	(MSB)					65
CCP3CON		_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	65

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

17.3.3 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- SDI must have TRISC<4> bit cleared
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISF<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

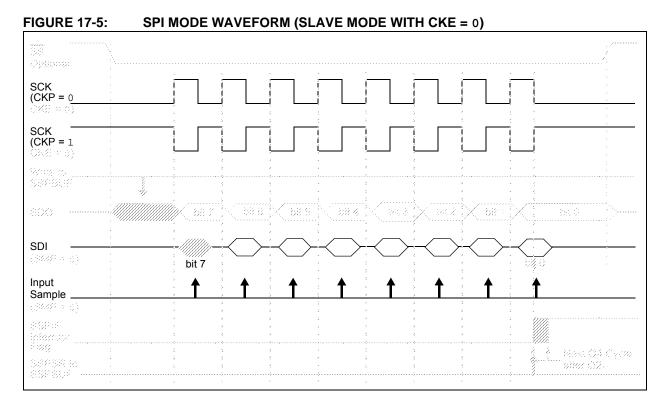

17.3.4 TYPICAL CONNECTION

Figure 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

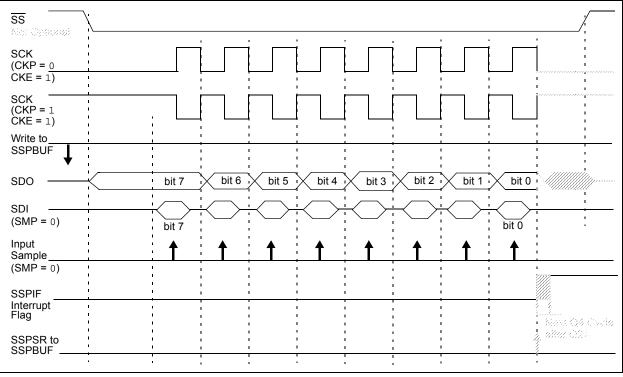
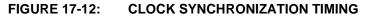
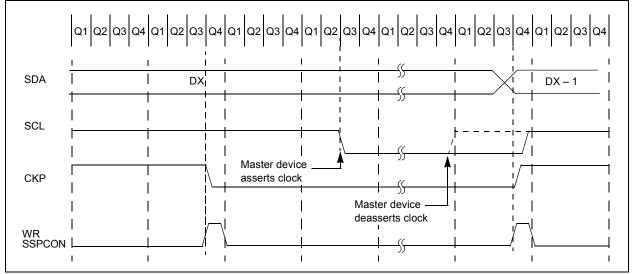

- Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 17-2: SPI MASTER/SLAVE CONNECTION

FIGURE 17-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)


	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾			
b	it 7							bit 0			
G	CEN: Ge	neral Call Er	able bit (Sla	ave mode on	ly)						
		interrupt wh I call addres		I call addres	s (0000h) is	received in	the SSPSR				
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)											
	 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave 										
		viedge was r cknowledge l			mode only)	(1)					
		knowledge	Jala Dil (ivia	SIEI RECEIVE	mode only)						
	= Acknov	•									
		cknowledge	-	-							
1		Acknowledge atically clear			d SCL pins a	ind transmit	ACKDT data	a bit;			
0		wledge sequ	•	ale							
		ceive Enable		mode only)(2	2)						
	= Enable = Receive	s Receive m e Idle	ode for I ² C								
Ρ	EN: Stop	Condition Er	nable bit (Ma	aster mode o	nly) ⁽²⁾						
		Stop condition Idle	on on SDA a	and SCL pins	; automatica	ally cleared I	oy hardware				
R	SEN: Rep	peated Start	Condition E	nable bit (Ma	ster mode o	nly) ⁽²⁾					
		Repeated S ted Start cor		n on SDA an	d SCL pins;	automatical	ly cleared by	hardware.			
S	EN: Start	Condition Er	nable/Stretcl	h Enable bit ⁽	2)						
	<u>Master n</u>						.				
		Start condition Idle	on on SDA a	and SCL pins	; automatica	ally cleared	by hardware				
	Slave mo										
		stretching is e		ooth slave tra	ansmit and s	lave receive	e (stretch ena	abled)			
:	Value that a receive	at will be tran	smitted whe	n the user in	itiates an Ac	knowledge	sequence at	the end of			
2:	If the I ² C	module is n		ode, this bit m le SSPBUF a			ing) and the	SSPBUF			


REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C[™] MODE)

17.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 17-12).

		SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_						_		_			_		
1.2	—	_	_	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103		
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51		
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12		
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_		
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	_	_	_		
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_		

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51			
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12			
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	_			
9.6	8.929	-6.99	6	—	_	_	_	_	_			
19.2	20.833	8.51	2	—	_	_	_	_	_			
57.6	62.500	8.51	0	—	_	_	—	_	_			
115.2	62.500	-45.75	0	_	—	_		—				

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	—	_	_	—	_	_	_	_	_	_	_	_	
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	_		_	_	_	_	0.300	-0.16	207				
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51				
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25				
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_				
19.2	19.231	0.16	12	_	_	_	_	_	_				
57.6	62.500	8.51	3	—	_	_	—	_	_				
115.2	125.000	8.51	1	_	_	—	_	—	—				

18.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK1 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

18.4.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the Sleep mode.

If two words are written to the TXREG1 and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG1 register.
- c) Flag bit, TX1IF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG1 register will transfer the second word to the TSR and flag bit, TX1IF, will now be set.
- e) If enable bit, TX1IE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If the signal from the CKx pin is to be inverted, set the TXCKP bit.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting enable bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 8. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	65
TXREG1	EUSART1	Transmit Reg	gister						65
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	65
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	66
SPBRGH1	EUSART1	Baud Rate G	enerator Re	egister High	Byte				66
SPBRG1	EUSART1	EUSART1 Baud Rate Generator Register Low Byte							65

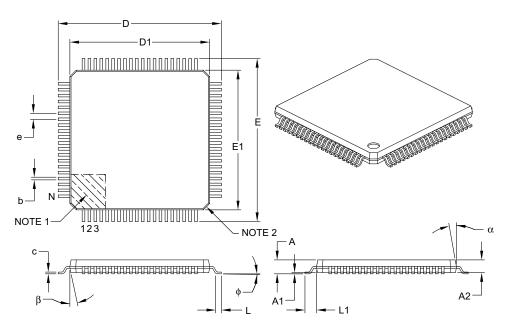
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

REGISTER 20-2: ADCONT: A/D CONTROL REGISTER I	REGISTER 20-2:	ADCON1: A/D CONTROL REGISTER 1
---	----------------	--------------------------------

U-0	U-0	R/	W-0	R/	W-0	R	/W-q		R/W-q		R/W-	-q	R/	W-q
_	—	VC	FG1	VC	FG0	PC	FG3	F	PCFG2		PCFC	G1	PC	FG0
bit 7														bit
Legend:														
R = Readabl	e bit	W = V	Vritable	bit		U = L	Jnimple	emente	ed bit, r	read as	s 'O'			
-n = Value at	POR	'1' = E	Bit is set	t		·0' =	Bit is cl	eared		х	= Bit is	s unkn	own	
bit 7-6	Unimplemen	ted: Re	ead as '	0'										
bit 5	Unimplemented: Read as '0' VCFG1: Voltage Reference Configuration bit (VREF- source):													
	1 = VREF- (AN2)													
	0 = AVss													
bit 4	VCFG0: Volta	ige Ref	erence	Config	uration	bit (VF	REF+ SC	ource):						
	1 = VREF+ (A	-		5		Ň		,						
	0 = AVDD	,												
bit 3-0	PCFG<3:0>:	A/D Po	rt Confi	iguratic	on Cont	rol bits	:							
	PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO	
	0000	A	А	A	A	A	Α	А	A	Α	Α	А	А	
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0010	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0011	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0100	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0101	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0110	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0111	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	
	1000	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	
	1001	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	
	1010	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	
	1011	D	D	D	D	D	D	D	D	Α	Α	Α	Α	
	1100	D	D	D	D	D	D	D	D	D	Α	А	Α	
	1101	D	D	D	D	D	D	D	D	D	D	Α	Α	
	1110	D	D	D	D	D	D	D	D	D	D	D	Α	
	-													
	1111	D	D	D	D	D	D	D	D	D	D	D	D	

BR	4	Uncondit	ional Branch	ı	BSF	
Synt	ax:	BRA n			Syntax:	
Ope	rands:	-1024 ≤ n ≤	1023		Operands:	
Ope	ration:	(PC) + 2 + 2	$2n \rightarrow PC$			
Statu	us Affected:	None			Operation	
Enco	oding:	1101	0nnn nnr	in nnnn	Operation: Status Affeo	
Deso	Description: Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.					
Wor	ds:	1				
Cycl	es:	2				
QC	Cycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	Write to PC	Words: Cycles:	
	No operation	No operation	No operation	No operation	Q Cycle Ad	
<u>Exar</u>	<u>mple:</u>	HERE	BRA Jump		Dec	
	Before Instruct PC After Instruction PC	= ad	dress (HERE)		<u>Example:</u> Before	
	PG	= ad	dress (Jump))	F After li	


BSF	Bit Set f					
Syntax:	BSF f, b {	,a}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$					
Operation:	$1 \rightarrow f \le b >$					
Status Affected:	None					
Encoding:	1000	bbba ff:	ff ffff			
Description:	tion: Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write register 'f'			
Example:	BSF F	LAG_REG, 7	, 1			
Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah						

GOTO	Uncondit	ional Branc	h	INC	F	Incremen	tf		
Syntax:	GOTO k			Synt	ax:	INCF f{,c	1 {,a}}		
Operands:	$0 \le k \le 104$	8575		Oper	rands:	$0 \leq f \leq 255$			
Operation:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]			
Status Affected:	None			Oper	ration:	(f) + 1 \rightarrow de	est		
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111 k ₇ kkk kkkk ₀ 1111 k ₁₉ kkk kkkk kkkk ₈		Statu	us Affected:	C, DC, N, OV, Z				
Description:	GOTO allov anywhere v 2-Mbyte me value 'k' is	vs an uncondit within entire emory range. T loaded into PC ways a two-cy	ional branch Fhe 20-bit C<20:1>.		cription:	The conten incremente placed in M placed back If 'a' is '0', t If 'a' is '1', t	ts of register 'f d. If 'd' is '0', t /. If 'd' is '1', tr k in register 'f he Access Bar he BSR is use	f' are he result is ne result is	
Words:	2					GPR bank.	nd the extend	ed instruction	
Cycles:	2							ction operates	
Q Cycle Activity:							Literal Offset A	•	
Q1	Q2	Q3	Q4				never f \leq 95 (5) .2.3 for details	,	
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC	Word		1			
No	No	No	No	Cycl		1			
operation	operation	operation	operation	QC	cycle Activity:	00	00	04	
Example: After Instruction	GOTO THE	RE			Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination	
PC =	Address (T	HERE)		Exar	nple:	INCF	CNT, 1, 0		
					Before Instruct CNT Z DC After Instruction CNT Z C DC	= FFh = 0 = ? = ?			

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		14.00 BSC	
Overall Length	D		14.00 BSC	
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1	12.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 1)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 2)
Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to PRI_IDLE Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode
Transition for Two-Speed Start-up
(INTOSC to HSPLL)
Transition for Wake From Idle to Run Mode
Transition for Wake From Sleep (HSPLL)
Transition From RC_RUN Mode to
PRI RUN Mode
Transition From SEC RUN Mode to
PRI_RUN Mode (HSPLL)47
Transition to RC_RUN Mode
USART Synchronous Receive (Master/Slave)
USART Synchronous Transmission
(Master/Slave)
Timing Diagrams and Specifications
A/D Conversion Requirements
AC Characteristics
Internal RC Accuracy
Capture/Compare/PWM Requirements
(All CCP Modules)
CLKO and I/O Requirements
Example SPI Mode Requirements
(Master Mode, CKE = 0)
Example SPI Mode Requirements
(Master Mode, CKE = 1)
Example SPI Mode Requirements
(Slave Mode, CKE = 0)
Example SPI Slave Mode
Requirements (CKE = 1)
External Clock Requirements
I ² C Bus Data Requirements (Slave Mode)
I ² C Bus Start/Stop Bits Requirements
(Slave Mode)

Master SSP I ² C Bus Data Requirements	385
Master SSP I ² C Bus Start/Stop Bits	000
Requirements	384
PLL Clock	
Program Memory Read Requirements	
Program Memory Write Requirements	
Reset, Watchdog Timer, Oscillator Start-up	374
•	
Timer, Power-up Timer and Brown-out	075
Reset Requirements	375
Timer0 and Timer1 External Clock	070
Requirements	
USART Synchronous Receive Requirements	386
USART Synchronous Transmission	
Requirements	
Top-of-Stack Access	70
TRISE Register	
PSPMODE Bit	
TSTFSZ	337
Two-Speed Start-up 2	81, 292
Two-Word Instructions	
Example Cases	74
TXSTA1 Register	
BRGH Bit	221
TXSTA2 Register	
BRGH Bit	244
V	
-	
Voltage Reference Specifications	366
W	
Watchdog Timer (WDT) 2	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	-
WCOL Status Flag 205, 206, 2	
WWW Address	409
WWW, On-Line Support	7
x	
XORLW	
XORWF	338