

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8310t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES						
Features	PIC18F6310	PIC18F6410	PIC18F8310	PIC18F8410		
Operating Frequency	DC – 40 MHz					
Program Memory (Bytes)	8K	16K	8K	16K		
Program Memory (Instructions)	4096	8192	4096	8192		
Data Memory (Bytes)	768	768	768	768		
External Memory Interface	No	No	Yes	Yes		
Interrupt Sources	22	22	22	22		
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J		
Timers	4	4	4	4		
Capture/Compare/PWM Modules	3	3	3	3		
Serial Communications	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART	MSSP, AUSART Enhanced USART		
Parallel Communications	PSP	PSP	PSP	PSP		
10-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	12 Input Channels	12 Input Channels		
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT					
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes		
Programmable Brown-out Reset	Yes	Yes	Yes	Yes		
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled					
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP		

TABLE 1-1: DEVICE FEATURES

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5 RF0 AN5	18	I/O I	ST Analog	Digital I/O. Analog Input 5.
RF1/AN6/C2OUT RF1 AN6 C2OUT	17	I/O I O	ST Analog —	Digital I/O. Analog Input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	16	I/O I O	ST Analog —	Digital I/O. Analog Input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	15	I/O I	ST Analog	Digital I/O. Analog Input 8.
RF4/AN9 RF4 AN9	14	I/O I	ST Analog	Digital I/O. Analog Input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	13	I/O I O	ST Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	12	I/O I	ST Analog	Digital I/O. Analog Input 11.
RF7/SS RF7 SS	11	I/O I	ST TTL	Digital I/O. SPI slave select input.
ST = Schr I = Inpu P = Pow	er	t with CN		CMOS = CMOS compatible input or output s Analog = Analog input O = Output I ² C = ST with I ² C™ or SMB levels ion bit CCP2MX is set

TABLE 1-2: PIC18F6310/6410 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

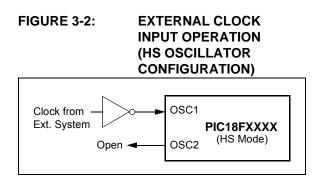
2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 3-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Typical Capacitor Values Tested:			
	Fieq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	1 MHz	33 pF	33 pF		
	4 MHz	27 pF	27 pF		
HS	4 MHz	27 pF	27 pF		
	8 MHz	22 pF	22 pF		
	20 MHz	15 pF	15 pF		

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

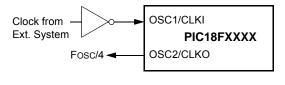

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Crystals Used:				
32 kHz	4 MHz			
200 kHz	8 MHz			
1 MHz	20 MHz			

- Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Rs may be required to avoid overdriving crystals with low drive level specification.
 - **5:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

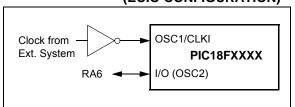
An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-2.



3.3 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows the pin connections for the EC Oscillator mode.



The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 3-4 shows the pin connections for the ECIO Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

Register		Applicable Power-on Reset, Devices Brown-out Reset		MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	6X10	8X10	0 0000	0 0000	0 uuuu (3)	
TOSH	6X10	8X10	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	6X10	8X10	0000 0000	0000 0000	uuuu uuuu ⁽³⁾	
STKPTR	6X10	8X10	uu-0 0000	00-0 0000	uu-u uuuu (3)	
PCLATU	6X10	8X10	0 0000	0 0000	u uuuu	
PCLATH	6X10	8X10	0000 0000	0000 0000	uuuu uuuu	
PCL	6X10	8X10	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	6X10	8X10	00 0000	00 0000	uu uuuu	
TBLPTRH	6X10	8X10	0000 0000	0000 0000	uuuu uuuu	
TBLPTRL	6X10	8X10	0000 0000	0000 0000	uuuu uuuu	
TABLAT	6X10	8X10	0000 0000	0000 0000	uuuu uuuu	
PRODH	6X10	8X10	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PRODL	6X10	8X10	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INTCON	6X10	8X10	0000 000x	0000 000u	սսսս սսսս (1)	
INTCON2	6X10	8X10	1111 1111	1111 1111	սսսս սսսս (1)	
INTCON3	6X10	8X10	1100 0000	1100 0000	uuuu uuuu (1)	
INDF0	6X10	8X10	N/A	N/A	N/A	
POSTINC0	6X10	8X10	N/A	N/A	N/A	
POSTDEC0	6X10	8X10	N/A	N/A	N/A	
PREINC0	6X10	8X10	N/A	N/A	N/A	
PLUSW0	6X10	8X10	N/A	N/A	N/A	
FSR0H	6X10	8X10	xxxx	uuuu	uuuu	
FSR0L	6X10	8X10	XXXX XXXX	uuuu uuuu	uuuu uuuu	
WREG	6X10	8X10	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INDF1	6X10	8X10	N/A	N/A	N/A	
POSTINC1	6X10	8X10	N/A	N/A	N/A	
POSTDEC1	6X10	8X10	N/A	N/A	N/A	
PREINC1	6X10	8X10	N/A	N/A	N/A	
PLUSW1	6X10	8X10	N/A	N/A	N/A	
FSR1H	6X10	8X10	xxxx	uuuu	uuuu	
FSR1L	6X10	8X10	XXXX XXXX	uuuu uuuu	uuuu uuuu	
BSR	6X10	8X10	0000	0000	uuuu	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits, 6 and 7 of PORTA, LATA and TRISA, are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 6.3.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

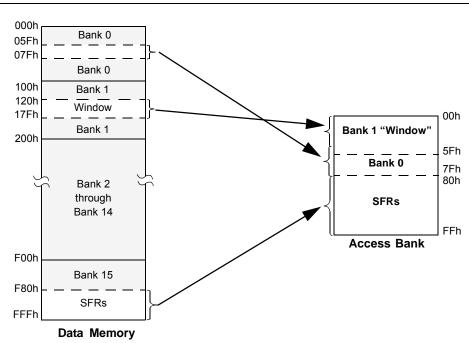
Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before.

6.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set**".

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Example Situation:

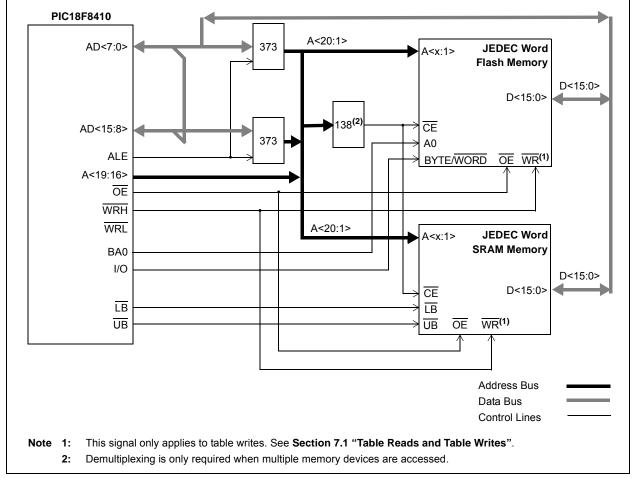

ADDWF f, d, a FSR2H:FSR2L = 120h

Locations in the region from the FSR2 Pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh).

Locations in Bank 0 from 060h to 07Fh are mapped, as usual, to the middle of the Access Bank.

Special Function Registers at F80h through FFFh are mapped to 80h through FFh, as usual.

Bank 0 addresses below 5Fh can still be addressed by using the BSR.

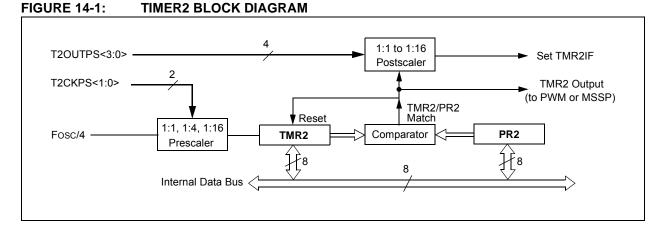


8.2.3 16-BIT BYTE SELECT MODE

Figure 8-3 shows an example of 16-Bit Byte Select mode. This mode allows table write operations to word-wide external memories with byte selection capability. This generally includes both word-wide Flash and SRAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH signal is strobed for each write cycle; the WRL pin is not used. The BA0 or UB/LB signals are used to select the byte to be written, based on the Least Significant bit of the TBLPTR register. Flash and SRAM devices use different control signal combinations to implement Byte Select mode. JEDEC standard Flash memories require that a controller I/O port pin be connected to the memory's BYTE/WORD pin to provide the select signal. They also use the BA0 signal from the controller as a byte address. JEDEC standard static RAM memories, on the other hand, use the UB or LB signals to select the byte.

14.2 Timer2 Interrupt


Timer2 also can generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

14.3 TMR2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 17.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP RC1IP TX1IP SSPIP CCP1IP TMR2IP TMR1IP					65		
TMR2	Timer2 Register							64	
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	64
PR2	Timer2 Period Register								64

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

17.3.6 SLAVE MODE

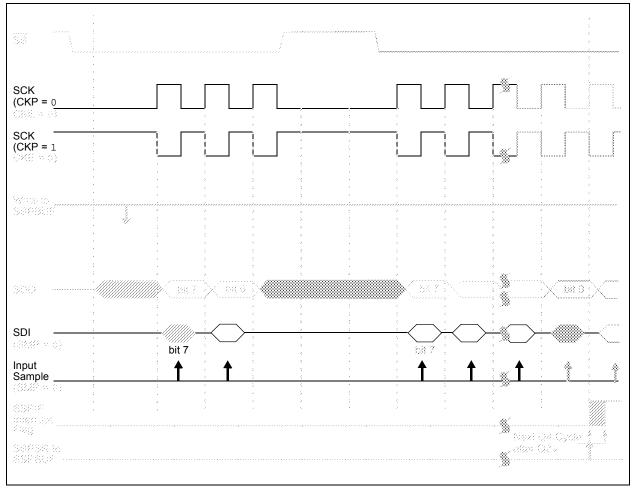
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven,


even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

18.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 18-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX1 signal, the RX1 signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value, 55h (ASCII "U", which is also the LIN/J2602 bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG1 begins counting up, using the preselected clock source on the first rising edge of RX1. After eight bits on the RX1 pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH1:SPBRG1 register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON1<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 18-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock can be configured by the BRG16 and BRGH bits. The BRG16 bit must be set to use both SPBRG1 and SPBRGH1 as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH1 register. Refer to Table 18-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RC1IF interrupt is set once the fifth rising edge on RX1 is detected. The value in the RCREG1 needs to be read to clear the RC1IF interrupt. The contents of RCREG1 should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.
 - **3:** To maximize baud rate range, it is recommended to set the BRG16 bit if the auto-baud feature is used.

TABLE 18-4: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

18.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG1 cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	65
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	65
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	65
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	65
TXREG1	EUSART1 Transmit Register						65		
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	65
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	66
SPBRGH1	BRGH1 EUSART1 Baud Rate Generator Register High Byte							66	
SPBRG1	SPBRG1 EUSART1 Baud Rate Generator Register Low Byte							65	

TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

18.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up, due to activity on the RX1/DT1 line while the EUSART is operating in Asynchronous mode.

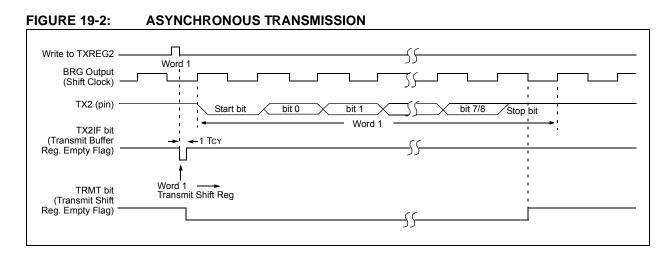
The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX1/DT1 is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX1/DT1 line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RC1IF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 18-8) and asynchronously, if the device is in Sleep mode (Figure 18-9). The interrupt condition is cleared by reading the RCREG1 register.

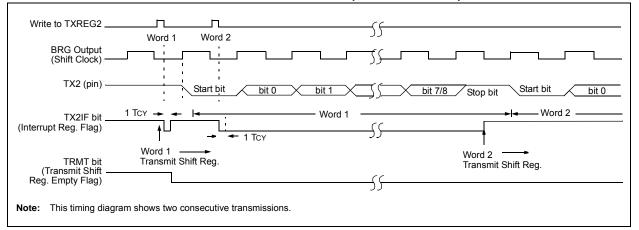
The WUE bit is automatically cleared once a low-to-high transition is observed on the RX1 line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

18.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX1/DT1, information with any state changes before the Stop bit may signal a false End-of-Character (EOC) and cause data or framing errors. Therefore, to work properly, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices, or 000h (12 bits) for the LIN/J2602 bus.


Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

18.2.4.2 Special Considerations Using the WUE Bit


The timing of WUE and RC1IF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RC1IF bit. The WUE bit is cleared after this when a rising edge is seen on RX1/DT1. The interrupt condition is then cleared by reading the RCREG1 register. Ordinarily, the data in RCREG1 will be dummy data and should be discarded.

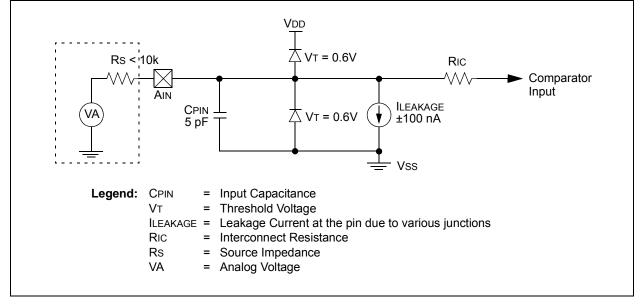
The fact that the WUE bit has been cleared (or is still set) and the RC1IF flag is set should not be used as an indicator of the integrity of the data in RCREG1. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 19-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 19-4: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR3		—	RC2IF	TX2IF	—	—	_	CCP3IF	65
PIE3	—	—	RC2IE	TX2IE	—	—	_	CCP3IE	65
IPR3		—	RC2IP	TX2IP	—	—	_	CCP3IP	65
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	66
TXREG2	AUSART2 Transmit Register						66		
TXSTA2	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	66
SPBRG2	AUSART2	Baud Rate (Generator R	legister					66


Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 21-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	65
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	65
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	63
PIR2	OSCFIF	CMIF		_	BCLIF	HLVDIF	TMR3IF	CCP2IF	65
PIE2	OCSFIE	CMIE	_	_	BCLIE	HLVDIE	TMR3IE	CCP2IE	65
IPR2	OSCFIP	CMIP	_	_	BCLIP	HLVDIP	TMR3IP	CCP2IP	65
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	66
LATF	LATF Outpu	ut Latch Regi	ster						66
TRISF	PORTF Dat	a Direction F	Register						66

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

24.0 SPECIAL FEATURES OF THE CPU

PIC18F6310/6410/8310/8410 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor
- · Two-Speed Start-up
- Code Protection
- · ID Locations
- In-Circuit Serial Programming (ICSP)

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 3.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F6310/6410/8310/8410 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits, or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, 300000h.

The user will note that address, 300000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads.

File	e Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_		BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H		_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300004h	CONFIG3L	WAIT	BW		—		_	PM1	PM0	1111
300005h	CONFIG3H	MCLRE	_				LPT10SC		CCP2MX	10-1
300006h	CONFIG4L	DEBUG	XINST	—	_	_	—	—	STVREN	101
300008h	CONFIG5L	—	—	_	—	_	—		CP	1
30000Ch	CONFIG7L ⁽¹⁾	_	_	_	—	_	_	_	EBTR	1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	11qx xxxx(2)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 qqlq (2)

TABLE 24-1: CONFIGURATION BITS AND DEVICE IDs

 $\label{eq:lagend: x = unknown, u = unchanged, - = unimplemented, q = value depends on individual device. Shaded cells are unimplemented, read as '0'.$

Note 1: Unimplemented in PIC18F6310/6410 devices; maintain this bit set.

2: See Register 24-9 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

BR	4	Uncondit	ional Branch	ı	BSF
Synt	ax:	BRA n			Syntax:
Ope	rands:	-1024 ≤ n ≤	1023		Operands:
Ope	ration:	(PC) + 2 + 2	$2n \rightarrow PC$		
Statu	us Affected:	None			Operation
Enco	oding:	1101	0nnn nnr	in nnnn	Operation:
Deso	cription:	Add the 2's the PC. Sin incremente instruction, PC + 2 + 2r two-cycle ir	I Status Affect Encoding: Description		
Wor	ds:	1			
Cycl	es:	2			
QC	Cycle Activity:				
	Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC	Words: Cycles:
	No operation	No operation	No operation	No operation	Q Cycle Ad
<u>Exar</u>	<u>mple:</u>	HERE	BRA Jump		Dec
	Before Instruct PC After Instruction PC	= ad	dress (HERE)		<u>Example:</u> Before
	PG	= ad	dress (Jump)	1	F After I

BSF	Bit Set f					
Syntax:	BSF f, b {	,a}				
Operands:	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Operation:	$1 \rightarrow f \le b >$					
Status Affected:	None					
Encoding:	1000	bbba ff:	ff ffff			
Description:	If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when	Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 for details.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write register 'f'			
Example:	BSF F	LAG_REG, 7	, 1			
Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah						

CLRF	Clear f			CLRWDT	Clear Wat	chdog Tim	er
Syntax:	CLRF f{,a	a}		Syntax:	CLRWDT		
Operands:	$0 \le f \le 255$			Operands:	None		
Operation:	a ∈ [0,1] 000h → f, 1 → Z			Operation:	$1 \rightarrow \overline{\text{TO}}$,	OT, OT postscaler	,
Status Affected:	Z				$1 \rightarrow \overline{PD}$		
Encoding:	0110	101a ff:	ff ffff	Status Affected:	TO, PD		
Description:	Clears the	contents of the	e specified	Encoding:	0000	0000 00	00 0100
	lf 'a' is '1', tl GPR bank.		nk is selected. d to select the	Description:	Watchdog 7	e WDT. Status	ets the resets <u>the</u> post- s bits, TO and
			ction operates	Words:	1		
		Literal Offset A	•	Cycles:	1		
		ever f \leq 95 (5) .2.3 for details	,	Q Cycle Activity	:		
Manda.		.z.3 IOI details	j.	Q1	Q2	Q3	Q4
Words: Cycles:	1			Decode	No operation	Process Data	No operation
	I				operation	Bata	operation
Q Cycle Activity: Q1	Q2	Q3	Q4	Example:	CLRWDT		
Decode	Read register 'f'	Process Data	Write register 'f'		Counter =	?	
Example: Before Instruc FLAG_R After Instructi FLAG_R	REG = 5A on		1		tion Counter = Postscaler = = =	00h 0 1 1	

LFS	R	Load FS	R		
Synta	ax:	LFSR f,	k		
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		
Oper	ation:	$k \rightarrow FSRf$			
Statu	s Affected:	None			
Enco	ding:	1110 1111	1110 0000	00ff k ₇ kkk	k ₁₁ kkk kkkk
Desc	ription:	The 12-bit file select			
Word	ls:	2			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k' MSB	Proce Data	a li	Write teral 'k' MSB to FSRfH
	Decode	Read literal 'k' LSB	Proce Data		rite literal to FSRfL
<u>Exan</u>	n <u>ple:</u> After Instructio FSR2H FSR2L	= 0	3ABh 3h Bh		

MOVF	Move f			
Syntax:	MOVF f{	,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$f \to \text{dest}$			
Status Affected:	N, Z			
Encoding:	0101	00da	ffff	ffff
	a destinatic status of 'd' placed in W placed back can be any If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed	. If 'd' is /. If 'd' is k in regis where in he Acces he BSR i nd the ex ed, this i	0', the res '1', the re- ter 'f'. Loc the 256-b ss Bank is s used to ktended in nstruction	sult is sult is ation 'f' yte bank. selected select the struction
	mode wher Section 25	ever f ≤	95 (5Fh).	•
Words:	mode wher	ever f ≤	95 (5Fh).	•
Words: Cycles:	mode wher Section 25	ever f ≤	95 (5Fh).	•
	mode wher Section 25 1	ever f ≤	95 (5Fh).	•
Cycles:	mode wher Section 25 1	ever f ≤	95 (5Fh). letails.	•
Cycles: Q Cycle Activity:	mode wher Section 25 1 1	ever f ≤ . 2.3 for d	95 (5Fh). letails. ss V	See
Cycles: Q Cycle Activity: Q1	mode wher Section 25 1 1 2 2 Read register 'f'	ever f ≤ .2.3 for c Q3 Proce	95 (5Fh). letails. ss V	See Q4
Cycles: Q Cycle Activity: Q1 Decode	mode wher Section 25 1 1 1 Q2 Read register 'f' MOVF Rition = 22 = FF	ever f ≤ .2.3 for c Q3 Proce Data EG, 0,	95 (5Fh). letails. ss V a	See Q4

SUBULNK

SUB	SUBFSR Subtract Literal from FSR							
Synta	ax:	SUBFSR	f, k					
Oper	ands:	$0 \le k \le 63$						
		f ∈ [0, 1,	2]					
Oper	ation:	FSRf – k	\rightarrow FSRf					
Statu	s Affected:	None						
Encoding: 1110 1001 ffkk kkkł				kkkk				
Desc	Description: The 6-bit literal 'k' is subtracted from the contents of the FSR specified by 'f'							
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode Read Process Write t register 'f' Data destinat							
			•					

Example:	SUBFSR 2, 23h
Before Instructio	n
FSR2 =	• 03FFh

03DCh

Synta	yntax: SUBULNK k								
Oper	ands:	$0 \leq k \leq 63$	$0 \le k \le 63$						
Oper	ation:	FSR2 – k	$FSR2 - k \rightarrow FSR2$						
		$(TOS) \rightarrow F$	PC						
Statu	s Affected:	None	None						
Enco	ding:	1110	1001 11k	k kkkk					
Desc	ription:	the content is then execute; a the second This may b case of the	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be though of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on ESP2						
Word	ls:	1							
Cycle	es:	2							
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read	Process Data	Write to destination					
		register 'f'							
	No	No	No	No					

and Return

Subtract Literal from FSR2

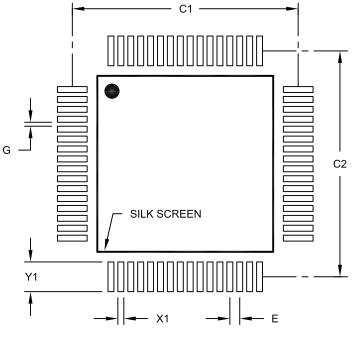
Example: SUBULNK 23h

Operation

Operation

Operation

Operation


Before Instruc	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	on	
FSR2	=	03DCh
PC	=	(TOS)

=

After Instruction FSR2

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

L

I/O Ports	125
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Associated Registers	
Baud Rate Generator	
Bus Collision	
During a Repeated Start Condition	
During a Start Condition	
During a Stop Condition	
Clock Arbitration	
Clock Stretching	
10-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Receive Mode (SEN = 1)	
Effect of a Reset	
General Call Address Support	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition	
Transmission	
Transmit Sequence	
Multi-Master Communication, Bus Collision	
and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Sleep Operation	
Stop Condition Timing	
Transmission	
ID Locations	281, 296
Idle Modes	F 4
PRI_IDLE	
INCFINCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP) Indexed Literal Offset Addressing	201, 290
and Standard PIC18 Instructions	344
Indexed Literal Offset Mode	96 344
Effect on Standard PIC18 Instructions	
Mapping the Access Bank	
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	
ADDEW	
ADDWF (Indexed Literal Offset mode)	
ADDWFC	
ADDWI C	
ANDUV	
BC	
BCF	
BN	
— ···	

)7
BNN	
BNOV	
BNZ	
BOV	
BRA	
BSF	
BSF (Indexed Literal Offset mode)	
BTFSC	
BTG	
BTG	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
CPFSLT	
DAW	6
DCFSNZ	7
DECF	6
DECFSZ	7
Extended Instructions	39
Syntax 33	39
General Format 29	
GOTO	
INCF	
INCFSZ	
INFSNZ	
IORLW	
IORWF	
LFSR	21
LFSR	21 21
LFSR	21 21 22
LFSR 32 MOVF 32 MOVFF 32 MOVFF 32 MOVLB 32	21 21 22 22
LFSR 32 MOVF 32 MOVFF 32 MOVFF 32 MOVLB 32 MOVLW 32	21 21 22 22 23
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32	21 22 22 23 23
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32	21 22 23 23 24
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32	21 22 23 23 24 24
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 MULF 32 MULF 32 MULWF 32 MULWF 32 MULWF 32 NEGF 32	21 22 23 24 25
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32	21 22 23 23 24 25 25
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29	21 22 23 23 24 24 25 28
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVWF 32 MULW 32 NEGF 32 NOP 32 Opcode Field Descriptions 29 POP 32	21 22 23 23 24 24 25 28 80 80
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29	21 22 22 23 23 24 24 25 25 86 26
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29 POP 32 PUSH 32	21 22 23 24 24 25 28 26 26 27
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVWF 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32	21 22 23 24 25 28 26 27 21 22 23 24 42 55 38 66 27 27
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32 RESET 32	21 22 23 24 45 25 86 67 7 8
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32 RESET 32 RETFIE 32	21 22 23 24 25 26 27 28
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETTUW 32	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETTIE 32 RETURN 32	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETLW 32 RETURN 32 RLCF 32	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 32 RLCF 33 RRNCF 33	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLOF 33 RRCF 33 RRNCF 33 SETF 33	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34	1122233445586667788899001115
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1 5 3
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETLW 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SUBFWB 33	1122233445586677889990011522
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RETFIE 32 RETT 32 RETFIE 32 RETFIE 32 RETLW 32 RETF 33 RETF 33 SETF 33 SETF 33 SUBFWB 33 SUBLW 33	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1 5 2 2 3
LFSR 32 MOVF 32 MOVF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULW 32 MULW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETFIE 32 RETFIE 32 RECF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34 SLEEP 33 SUBFWB 33 SUBFWF 33	11223344558667788990011152233
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RETFIE 32 RETT 32 RETFIE 32 RETFIE 32 RETLW 32 RETF 33 RETF 33 SETF 33 SETF 33 SUBFWB 33 SUBLW 33	112233445586677889900111522334