

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Din Nome	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP Type		Туре	Description			
				PORTG is a bidirectional I/O port.			
RG0/CCP3 RG0 CCP3	3	I/O I/O	ST ST	Digital I/O. Capture 3 input/Compare 3 output/PWM3 output.			
RG1/TX2/CK2 RG1 TX2 CK2	4	I/O O I/O	STDigital I/O.—AUSART2 asynchronous transmit.STAUSART2 synchronous clock (see related RX				
RG2/RX2/DT2 RG2 RX2 DT2	5	I/O I I/O	ST ST ST	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2).			
RG3	6	I/O	ST	Digital I/O.			
RG4	8	I/O	ST	Digital I/O.			
RG5				See RG5/MCLR/VPP pin.			
Vss	9, 25, 41, 56	Р	_	Ground reference for logic and I/O pins.			
Vdd	10, 26, 38, 57	Р	_	Positive supply for logic and I/O pins.			
AVss	20	Р	_	Ground reference for analog modules.			
AVDD	AVDD 19 P — Positive supply for analog modules.						
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output							

TABLE 1-2:	PIC18F6310/6410 PINOUT I/O DESCRIPTIONS ((CONTINUED))
			1

I = Input P = Power

 $I^2C = ST$ with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18F MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F6310/6410/8310/8410 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

© 2010 Microchip Technology Inc.

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive, or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended.

This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

On transitions from RC_RUN mode to PRI_RUN, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

TABLE 6-3:REGISTER FILE SUMMARY (PIC18F6310/6410/8310/8410) (CONTINUED)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
SPBRGH1	EUSART1 Ba	EUSART1 Baud Rate Generator High Byte						0000 0000	66, 221	
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	66, 220
SPBRG2	AUSART2 Baud Rate Generator 00							0000 0000	66, 234	
RCREG2	AUSART2 Receive Register 0000 0000 66, 5								66, 248	
TXREG2	AUSART2 Transmit Register xxxx xxxx							66, 246		
TXSTA2	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	66, 242
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	66, 243

 Legend:
 x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: These registers and/or bits are not implemented on 64-pin devices, read as '0'.

3: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

4: The RG5 bit is only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 reads as '0'. This bit is read-only.

5: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

6: STKFUL and STKUNF bits are cleared by user software or by a POR.

When the device is executing out of internal memory (EBDIS = 0) in Microprocessor with Boot Block mode or Extended Microcontroller mode, the control signals will NOT be active. They will go to a state where the AD<15:0> and A<19:16> are tri-state; the CE, OE, WRH, WRL, UB and LB signals are '1'; ALE and BA0 are '0'. Note that only those pins associated with the current address width are forced to tri-state; the other pins continue to function as I/O. In the case of a 16-bit address width, for example, only AD<15:0> (PORTD and PORTE) are affected; A<19:16> (PORTH<3:0>) continue to function as I/O. In all external memory modes, the bus takes priority over any other peripherals that may share pins with it. This includes the Parallel Slave Port and serial communications modules which would otherwise take priorityover the I/O port.

8.2 16-Bit Mode

In 16-bit mode, the external memory interface can be connected to external memories in three different configurations:

- 16-Bit Byte Write
- 16-Bit Word Write
- · 16-Bit Byte Select

The configuration to be used is determined by the WM<1:0> bits in the MEMCON register (MEMCON<1:0>). These three different configurations allow the designer maximum flexibility in using both 8-bit and 16-bit devices with 16-bit data.

For all 16-bit modes, the Address Latch Enable (ALE) pin indicates that the address bits, A<15:0>, are available on the external memory interface bus. Following the address latch, the Output Enable signal (\overline{OE}) will enable both bytes of program memory at once to form a 16-bit instruction word. The Chip Enable signal (\overline{CE}) is active at any time that the microcontroller accesses external memory, whether reading or writing; it is inactive (asserted high) whenever the device is in Sleep mode.

In Byte Select mode, JEDEC standard Flash memories will require BA0 for the byte address line and one I/O line to select between Byte and Word mode. The other 16-bit modes do not need BA0. JEDEC standard static RAM memories will use the $\overline{\text{UB}}$ or $\overline{\text{LB}}$ signals for byte selection.

8.2.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F8310/8410 devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories.

During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	It POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	PSPIF: P 1 = A rea 0 = No re	arallel Slave Port Read/Wri ad or a write operation has t ead or write has occurred	te Interrupt Flag bit aken place (must be cleared ir	n software)
bit 6	ADIF: A/ 1 = An A 0 = The	D Converter Interrupt Flag b /D conversion completed (n A/D conversion is not comp	it nust be cleared in software) lete	
bit 5	RC1IF: E 1 = The 0 = The	USART Receive Interrupt F EUSART receive buffer, RC EUSART receive buffer is e	lag bit REG1, is full (cleared when R mpty	CREG1 is read)
bit 4	TX1IF: E 1 = The 0 = The	USART Transmit Interrupt F EUSART transmit buffer, TX EUSART transmit buffer is f	lag bit (REG1, is empty (cleared whe ull	n TXREG1 is written)
bit 3	SSPIF: M 1 = The 0 = Wait	laster Synchronous Serial F transmission/reception is cc ing to transmit/receive	Port Interrupt Flag bit mplete (must be cleared in so	ftware)
bit 2	CCP1IF: <u>Capture</u> 1 = A TM 0 = No T <u>Compare</u>	CCP1 Interrupt Flag bit mode: /R1/TMR3 register capture /MR1/TMR3 register capture mode:	occurred (must be cleared in s	oftware)
	1 = A TM 0 = No T <u>PWM mc</u> Unused i	/R1/TMR3 register compare MR1/TMR3 register compa <u>de:</u> n this mode.	e match occurred (must be clea re match occurred	ared in software)
bit 1	TMR2IF: 1 = TMR 0 = No T	TMR2 to PR2 Match Interru 2 to PR2 match occurred (r MR2 to PR2 match occurre	ıpt Flag bit nust be cleared in software) d	
bit 0	TMR1IF: 1 = TMR 0 = TMR	TMR1 Overflow Interrupt Fl 1 register overflowed (must 1 register did not overflow	ag bit be cleared in software)	

10.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 10-13: RCON REGISTER

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN	—	RI	TO	PD	POR	BOR
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit
	For details of bit operation and Reset state, see Register 5-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 5-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 5-1.
bit 1	POR: Power-on Reset Status bit
	For details of bit operation, see Register 5-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-1.

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to nine ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Output Latch register)

The Output Latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Output Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. Pins, RA6 and RA7, are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with the analog VREF+ and VREF- inputs. The operation of pins, RA<5:0>, as A/D Converter inputs is selected by clearing or setting the PCFG<3:0> control bits in the ADCON1 register.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1. INTRALIZING FOR TA	EXAMPLE 11-1:	INITIALIZING PORTA
----------------------------------	---------------	--------------------

CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external), with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- · Module Reset on CCP Special Event Trigger

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCP modules (see **Section 16.1.1** "**CCP Modules and Timer Resources**" for more information).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:							
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	RD16: 16-Bit	Read/Write Mode Enable	bit				
	1 = Enables r 0 = Enables r	egister read/write of Time egister read/write of Time	r3 in one 16-bit operation r3 in two 8-bit operations				
bit 6, 3	T3CCP<2:1>	: Timer3 and Timer1 to CO	CPx Enable bits				
	 11 = Timer3 is the clock source for compare/capture of all CCP modules 10 = Timer3 is the clock source for compare/capture of CCP3, Timer1 is the clock source for compare/capture of CCP1 and CCP2 01 = Timer3 is the clock source for compare/capture of CCP2 and CCP3, Timer1 is the clock source for compare/capture of CCP1 00 = Timer1 is the clock source for compare/capture of all CCP modules 						
bit 5-4	T3CKPS<1:0	>: Timer3 Input Clock Pre	scale Select bits				
	11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	cale value cale value scale value scale value scale value					
bit 2	T3SYNC: Tin (Not usable if <u>When TMR30</u> 1 = Do not sy	ner3 External Clock Input the device clock comes fr <u>CS = 1:</u> (nchronize external clock i	Synchronization Control bit om Timer1/Timer3.) nput				
	When TMR30 This bit is ign	$\frac{2S = 0}{2S = 0}$	rnal clock when TMR3CS =	0.			
bit 1	TMR3CS: Tir 1 = External first fallin 0 = Internal of	ner3 Clock Source Select clock input from Timer1 or ig edge) clock (Fosc/4)	bit scillator or T13CKI (on the ris	sing edge after the			
bit 0	TMR3ON: Tir 1 = Enables ⁻ 0 = Stops Tin	ner3 On bit Fimer3 ner3					

17.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper 2 bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/Ā	Р	S	R/W	UA	BF			
bit 7				•			bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown			
hit 7	CMD. Comp	la hit								
	SDI Montor r									
	$\frac{SPI Master I}{1 = Input dat}$	noue. Ia sampled at e	nd of data out	tout time						
	0 = Input dat	ta sampled at r	hiddle of data	output time						
	SPI Slave m	ode:		•						
	SMP must b	e cleared when	SPI is used i	n Slave mode.						
bit 6	CKE: SPI CI	ock Edge Sele	ct bit							
	When CKP =	<u>= 0:</u>								
	1 = Data trar	1 = Data transmitted on rising edge of SCK								
	0 = Data trar	nsmitted on falli	ng edge of So	CK						
	<u>When CKP =</u>	<u>= 1:</u> pemitted on falli	na edge of Si	רא⊂ רא						
	0 = Data tra	nsmitted on risi	ng edge of SC	CK						
bit 5	D/A: Data/A	ddress bit	0 - 0							
	Used in I ² C I	mode only.								
bit 4	P: Stop bit	5								
	Used in I ² C ^T	[™] mode only. T	his bit is clear	ed when the M	SSP module is	disabled; SSPE	EN is cleared.			
bit 3	S: Start bit	2								
	Used in I ² C I	mode only.								
bit 2	R/W: Read/	Write bit Informa	ation							
	Used in I ² C I	mode only.								
bit 1	UA: Update	Address bit								
	Used in I ² C I	mode only.								
bit 0	BF: Buffer F	ull Status bit (R	eceive mode	only)						
	1 = Receive	complete, SSP	BUF is full							

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCO	L SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7						·	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	WCOL: Write 1 = The SSP software 0 = No collisi	Collision Deter BUF register is) ion	ct bit (Transm s written while	nit mode only) e it is still transn	nitting the previ	ous word (mus	t be cleared in
bit 6	SSPOV: Rec <u>SPI Slave mo</u> 1 = A new by overflow, the SSP software 0 = No overfl	eive Overflow In ode: yte is received the data in SS BUF, even if o). low	ndicator bit ⁽¹⁾ while the SS PSR is lost. (only transmit	PBUF register Overflow can or ting data, to a	is still holding nly occur in Sla avoid setting o	the previous da ve mode. The u verflow (must	ata. In case of iser must read be cleared in
bit 5	SSPEN: Mas 1 = Enables s 0 = Disables	ter Synchronou serial port and c serial port and	is Serial Port configures SC configures th	Enable bit ⁽²⁾ CK, SDO, SDI a ese pins as I/O	nd <u>SS</u> as seria port pins	l port pins	
bit 4	CKP: Clock F 1 = Idle state 0 = Idle state	Polarity Select b for clock is a hi for clock is a lo	it igh level w level				
bit 3-0	SSPM<3:0>: 0101 = SPI S 0100 = SPI S 0011 = SPI N 0010 = SPI N 0001 = SPI N 0000 = SPI N	Master Synchr Slave mode, clo Slave mode, clo Master mode, cl Master mode, cl Master mode, cl Master mode, cl	onous Serial ck = SCK pin ck = SCK pin ock = TMR2 ock = FOSC/6 ock = FOSC/1 ock = FOSC/4	Port Mode Sele , <u>SS</u> pin contro , SS pin contro output/2 4 6	ect bits ⁽³⁾ I disabled, SS d I enabled	can be used as	I/O pin
Note 1:	In Master mode, th writing to the SSPI	ne overflow bit i BUF register.	s not set, sin	ce each new re	ception (and tra	ansmission) is i	nitiated by
2.	When enabled the	oco nine must h	o proporty or	nfigured as inn	ute or outpute		

- **2:** When enabled, these pins must be properly configured as inputs or outputs.
- 3: Bit combinations not specifically listed here are either reserved or implemented in I²C[™] mode only.

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first 8 bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or 8 bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-20: REPEATED START CONDITION WAVEFORM

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

18.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up, due to activity on the RX1/DT1 line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX1/DT1 is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX1/DT1 line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RC1IF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 18-8) and asynchronously, if the device is in Sleep mode (Figure 18-9). The interrupt condition is cleared by reading the RCREG1 register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RX1 line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

18.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX1/DT1, information with any state changes before the Stop bit may signal a false End-of-Character (EOC) and cause data or framing errors. Therefore, to work properly, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices, or 000h (12 bits) for the LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

18.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RC1IF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RC1IF bit. The WUE bit is cleared after this when a rising edge is seen on RX1/DT1. The interrupt condition is then cleared by reading the RCREG1 register. Ordinarily, the data in RCREG1 will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RC1IF flag is set should not be used as an indicator of the integrity of the data in RCREG1. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

REGISTER 24-8: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	
—	—	—	_	—	—	_	EBTR ^(2,3)	
bit 7							bit 0	
Legend:								
R = Readable bit C = Clearable bit			e bit	U = Unimplemented bit, read as '0'				
-n = Value when device is unprogrammed bit			t	u = Unchang	ed from progran	nmed state		

bit 7-1 Unimplemented: Read as '0

bit 0 **EBTR:** Table Read Protection bit^(2,3)

- 1= Internal program memory block is not protected from table reads executed from external memory block
- 0= Internal program memory block is protected from table reads executed from external memory block
- Note 1: Unimplemented on PIC18F6310/6410 devices; maintain the bit set.

2: Valid for the entire internal program memory block in Extended Microcontroller mode and for only the boot block (0000h to 07FFh) in Microcontroller with Boot Block mode. This bit has no effect in Microcontroller and Microprocessor modes.

3: It is recommended to enable the CP bit to protect the block from external read operations.

25.1.1 STANDARD INSTRUCTION SET

ADD	DLW	ADD lite	ral to W						
Synta	ax:	ADDLW	k						
Oper	ands:	$0 \le k \le 25$	5						
Oper	ation:	(W) + k \rightarrow	W						
Statu	is Affected:	N, OV, C,	DC, Z						
Enco	oding:	0000	1111	kkkk	kkkk				
Desc	ription:	The conter 8-bit literal W.	nts of W a 'k' and th	are added e result is	to the placed in				
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	5	Q4				
	Decode	Read literal 'k'	Proce Data	ess Wr a	ite to W				
				·					
Exan	nple:	ADDLW	15h						

Example:	ADDLW	15

Before Instruction W = 10h

After Instruction

W = 25h

$\begin{array}{l} ADDWF\\ 0\leq f\leq 255\\ d\in [0,1]\\ a\in [0,1] \end{array}$	f {,d {,a}	}			
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
$(W) + (f) \rightarrow$	dest				
N, OV, C, E	DC, Z				
0010	01da	ffff	ffff		
result is sto result is sto If 'a' is '0', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher Section 25	result is stored in W. If d is 1, the result is stored back in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See				
1					
1					
Q2	Q3		Q4		
Read register 'f'	Proce Data	ss \ a de	Vrite to stination		
ADDWF	REG,	0, 0			
tion					
	$a \in [0, 1]$ (W) + (f) → N, OV, C, E 0010 Add W to raresult is storesult is storesult is storesult is storesult is storesult is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode where Section 25 1 1 Q2 Read register 'f' ADDWF tion	$a \in [0, 1]$ (W) + (f) → dest N, OV, C, DC, Z $\boxed{0010 01da}$ Add W to register 'f' result is stored in W result is stored back If 'a' is '0', the Access If 'a' is '1', the BSR i GPR bank. If 'a' is '0' and the ex set is enabled, this i in Indexed Literal Of mode whenever f ≤ 1 Section 25.2.3 for d 1 1 2 Q2 Q3 Read Proce register 'f' Data ADDWF REG, 4	$a \in [0, 1]$ $(W) + (f) \rightarrow dest$ N, OV, C, DC, Z $\boxed{0010 01da ffff}$ Add W to register 'f'. If 'd' is 'D' result is stored in W. If 'd' is 'D' result is stored back in register If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to GPR bank. If 'a' is '0' and the extended in set is enabled, this instruction in Indexed Literal Offset Addr mode whenever f ≤ 95 (5Fh). Section 25.2.3 for details. 1 1 2 2 2 2 3 Read Process V register 'f' Data details ADDWF REG, 0, 0 tion		

W	=	17h				
REG	=	0C2h				
After Instruction						
W	=	0D9h				
REG	=	0C2h				

27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 27-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	1	MHz	XT, RC Oscillator mode
			DC	25	MHz	HS Oscillator mode
			DC	31.25	kHz	LP Oscillator mode
			DC	40	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	25	MHz	HS Oscillator mode
			4	10	MHz	HS + PLL Oscillator mode
			5	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	1000	—	ns	XT, RC Oscillator mode
			40	—	ns	HS Oscillator mode
			32	—	μs	LP Oscillator mode
			25	—	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			0.25	10	μs	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			100	250	ns	HS + PLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc, Industrial
			160	—	ns	Tcy = 4/Fosc, Extended
3	TosL,	External Clock in (OSC1)	30	—	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	—	μs	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)		20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
			—	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 27-11:	PROGRAM MEMORY WRITE TIMING REQUIREMENTS
--------------	---

Param. No	Symbol	Characteristics	Min	Тур	Max	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10	_		ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	—		ns
153	TwrH2adl	WRn \uparrow to Data Out Invalid (data hold time)	5	—		ns
154	TwrL	WRn Pulse Width	0.5 TCY – 5	0.5 TCY	_	ns
156	TadV2wrH	Data Valid before WRn \uparrow (data setup time)	0.5 TCY – 10	—	_	ns
157	TbsV2wrL	Byte Select Valid before WRn \downarrow (byte select setup time)	0.25 TCY	_	_	ns
157A	TwrH2bsl	WRn ↑ to Byte Select Invalid (byte select hold time)	0.125 TCY – 5	—		ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	0.25 TCY	_	ns
171	TalH2csL	Chip Enable Active to ALE \downarrow	0.25 TCY – 20	—	_	ns
171A	TubL2oeH	AD Valid to Chip Enable Active	—	—	10	ns

FIGURE 27-22: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-23: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE)					
		Clock High to Data Out Valid	PIC18FXXXX	—	40	ns	
			PIC18LFXXXX	—	100	ns	VDD = 2.0V
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	PIC18FXXXX	—	20	ns	
			PIC18LFXXXX	—	50	ns	VDD = 2.0V
122	TDTRF	Data Out Rise Time and Fall Time	PIC18FXXXX	—	20	ns	
			PIC18LFXXXX	—	50	ns	VDD = 2.0V

FIGURE 27-23: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-24: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE) Data Hold before CKx \downarrow (DTx hold time)	10		ns	
126	TCKL2DTL	Data Hold after CKx \downarrow (DTx hold time)	15	_	ns	