

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6410-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Clock Sources and Oscillator Switching

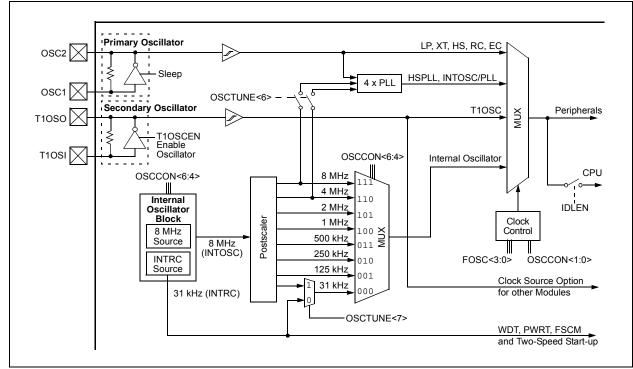
Like previous PIC18 devices, the PIC18F6310/6410/8310/8410 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F6310/6410/8310/8410 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC<3:0> Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F6310/6410/8310/8410 devices offer the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock (RTC).


Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI/CCP2 pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 13.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

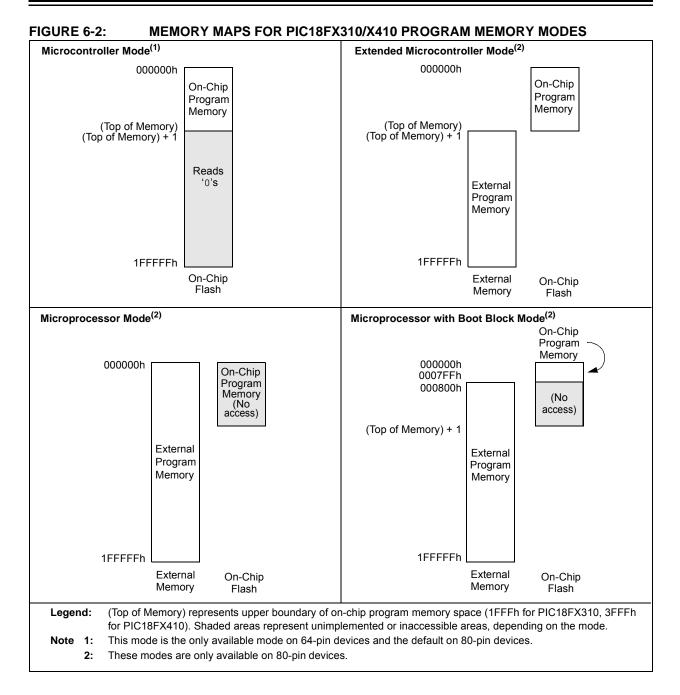
The clock sources for the PIC18F6310/6410/8310/8410 devices are shown in Figure 3-8. See **Section 24.0 "Special Features of the CPU"** for Configuration register details.

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive, or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended.

This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.


Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.

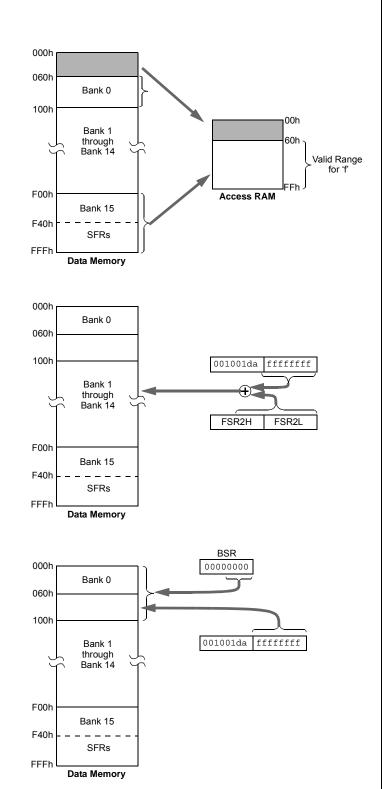
If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

On transitions from RC_RUN mode to PRI_RUN, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

TABLE 6-1:	MEMORY ACCESS FOR PIC18F8310/8410 PROGRAM MEMORY MODES
------------	--

Oneneting	Inter	nal Program Me	mory	External Program Memory			
Operating Mode	Execution From	Table Read From	Table Write To	Execution From	Table Read From	Table Write To	
Microcontroller	Yes	Yes	Yes	No Access	No Access	No Access	
Extended Microcontroller	Yes	Yes	Yes	Yes	Yes	Yes	
Microprocessor	No Access	No Access	No Access	Yes	Yes	Yes	
Microprocessor w/Boot Block	Yes	Yes	Yes	Yes	Yes	Yes	

© 2010 Microchip Technology Inc.


FIGURE 6-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When a = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and FFFh. This is the same as locations F60h to FFFh (Bank 15) of data memory.

Locations below 060h are not available in this addressing mode.

When a = 0 and $f \le 5Fh$:

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

When a = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

TABLE 7-2:	REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TBLPTRU			bit 21	Program Me	63				
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)						63		
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)						63		
TABLAT	Program I	Memory Ta	ble Latch						63

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

8.3 8-Bit Mode

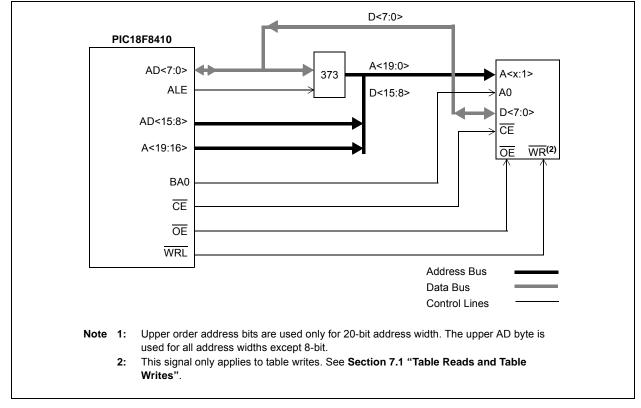

The external memory interface implemented in PIC18F8410 devices operates only in 8-Bit Multiplexed mode; data shares the 8 Least Significant bits of the address bus.

Figure 8-1 shows an example of 8-Bit Multiplexed mode for PIC18F8410 devices. This mode is used for a single 8-bit memory connected for 16-bit operation. The instructions will be fetched as two 8-bit bytes on a shared data/address bus. The two bytes are sequentially fetched within one instruction cycle (TcY). Therefore, the designer must choose external memory devices according to timing calculations based on 1/2 TcY (2 times the instruction rate). For proper memory speed selection, glue logic propagation delay times must be considered along with setup and hold times.

The Address Latch Enable (ALE) pin indicates that the address bits, A<15:0>, are available on the external memory interface bus. The Output Enable signal (\overline{OE}) will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The Least Significant bit of the address, BA0, must be connected to the memory devices in this mode. The Chip Enable signal (\overline{CE}) is active at any time that the microcontroller accesses external memory, whether reading or writing; it is inactive (asserted high) whenever the device is in Sleep mode.

This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories.

During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate level of the BA0 control line is strobed on the LSb of the TBLPTR.

FIGURE 8-7: 8-BIT MULTIPLEXED MODE EXAMPLE

10.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure that the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit	
	When IPEN = 0:	
	1 = Enables all unmasked interrupts	
	0 = Disables all interrupts	
	When IPEN = 1:	
	 1 = Enables all high-priority interrupts 0 = Disables all interrupts 	
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit	
	When IPEN = 0:	
	1 = Enables all unmasked peripheral interrupts	
	0 = Disables all peripheral interrupts	
	When IPEN = 1:	
	1 = Enables all low-priority peripheral interrupts	
L:1 F	0 = Disables all low-priority peripheral interrupts	
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit	
	 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt 	
bit 4	INTOIE: INTO External Interrupt Enable bit	
	1 = Enables the INTO external interrupt	
	0 = Disables the INT0 external interrupt	
bit 3	RBIE: RB Port Change Interrupt Enable bit	
	1 = Enables the RB port change interrupt	
	0 = Disables the RB port change interrupt	
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit	
	1 = TMR0 register has overflowed (must be cleared in software)	
	0 = TMR0 register did not overflow	
bit 1	INTOIF: INTO External Interrupt Flag bit	
	1 = The INT0 external interrupt occurred (must be cleared in software)	
	0 = The INTO external interrupt did not occur	
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾	
	 1 = At least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state 	
	0 - None of the ND>7.47 pins have changed state	

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7		arallel Slave Port Read/Writ		
		d or a write operation has ta ad or write has occurred	aken place (must be cleared i	n software)
bit 6) Converter Interrupt Flag bi	it	
			ust be cleared in software)	
		VD conversion is not compl		
bit 5	RC1IF: E	JSART Receive Interrupt F	lag bit	
		EUSART receive buffer, RC EUSART receive buffer is er	REG1, is full (cleared when R mpty	CREG1 is read)
bit 4	TX1IF: EU	JSART Transmit Interrupt F	lag bit	
		EUSART transmit buffer, TX EUSART transmit buffer is fi	REG1, is empty (cleared whe ull	en TXREG1 is written)
bit 3	SSPIF: M	aster Synchronous Serial P	ort Interrupt Flag bit	
		ransmission/reception is congression is congression receive	mplete (must be cleared in so	oftware)
bit 2	CCP1IF:	CCP1 Interrupt Flag bit		
			occurred (must be cleared in s	software)
	0 = No TI <u>PWM mo</u> o	R1/TMR3 register compare MR1/TMR3 register compar de:	match occurred (must be cle re match occurred	ared in software)
		this mode.		
bit 1		TMR2 to PR2 Match Interru		
		VR2 to PR2 match occurred (m	nust be cleared in software) d	
bit 0	TMR1IF:	TMR1 Overflow Interrupt Fla	ag bit	
		1 register overflowed (must 1 register did not overflow	be cleared in software)	

17.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

17.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I^2C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode

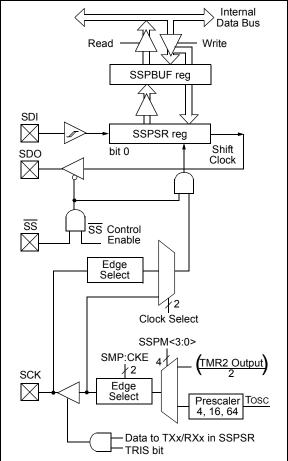
17.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

17.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:


- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS)

Figure 17-1 shows the block diagram of the MSSP module when operating in SPI mode.

17.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

17.4.15 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

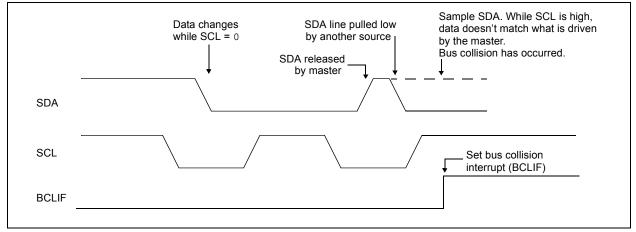
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

17.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 17-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

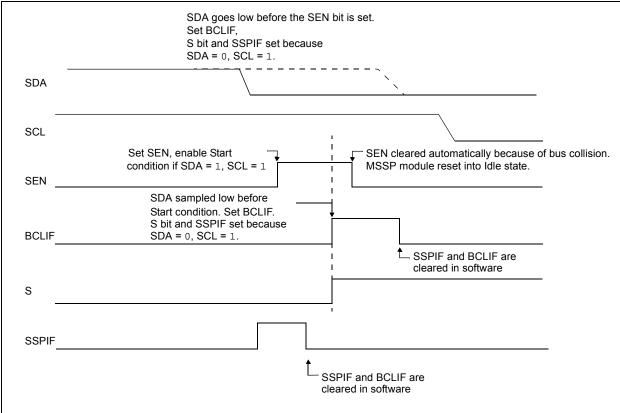
FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

17.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 17-26).
- b) SCL is sampled low before SDA is asserted low (Figure 17-27).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 17-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to '0' and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 17-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7							bit (
Legend:										
R = Readable		W = Writable		-	nented bit, rea	id as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	SPEN: Seria	al Port Enable bi	t							
		ort is enabled ort is disabled								
bit 6	RX9: 9-Bit F	Receive Enable I	oit							
		9-bit reception 8-bit reception								
bit 5	SREN: Sing	le Receive Enat	ole bit							
	<u>Asynchrono</u> Don't care.	<u>us mode</u> :								
	1 = Enables 0 = Disable This bit is cl	<u>s mode – Maste</u> s single receive s single receive eared after rece <u>s mode – Slave</u>	ption is comp	lete.						
bit 4	Don't care. CREN: Continuous Receive Enable bit									
	Asynchrono 1 = Enables 0 = Disable	<u>us mode:</u> s receiver								
		<u>s mode:</u> s continuous rec s continuous rec		ble bit, CREN,	is cleared (CR	EN overrides SI	REN)			
bit 3	ADDEN: Ad	dress Detect En	able bit							
	1 = Enables 0 = Disable	<u>us mode 9-Bit (F</u> s address detect s address detec us mode 8-Bit (F	ion, enables i tion, all bytes							
bit 2		ning Error bit g error (can be c ning error	leared by rea	ding RCREG1	register and re	eceiving next val	id byte)			
bit 1		rrun Error bit								
		n error (can be c	leared by clea	aring bit, CREN)					
bit 0		it of Received D	ata bit							

18.1 EUSART Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON1<3>) selects 16-bit mode.

The SPBRGH1:SPBRG1 register pair controls the period of a free running timer. In Asynchronous mode, bits, BRGH (TXSTA1<2>) and BRG16 (BAUDCON1<3>), also control the baud rate. In Synchronous mode, BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different EUSART modes that only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH1:SPBRG1 registers can be calculated using the formulas in Table 18-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 18-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 18-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

TABLE 18-1:BAUD RATE FORMULAS

Writing a new value to the SPBRGH1:SPBRG1 registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

Note:	The BRG value of '0' is not supported.

18.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG1 register pair.

18.1.2 SAMPLING

The data on the RXx pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RXx pin when SYNC is clear or when both BRG16 and BRGH are not set. The data on the RXx pin is sampled once when SYNC is set or when BRGH16 and BRGH are both set.

Co	onfiguration B	its	BRG/EUSART Mode	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kate Follilula		
0	0	0	8-bit/Asynchronous Fosc/[64 (n + 1)]			
0	0	1	8-bit/Asynchronous	$E_{0} = c/[16 (n + 1)]$		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n + 1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-bit/Synchronous			

Legend: x = Don't care, n = Value of SPBRGH1:SPBRG1 register pair

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

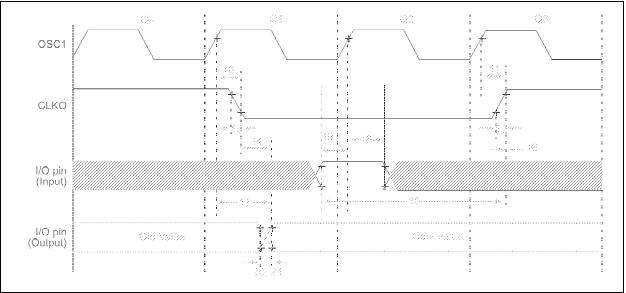
For a device with FOSC	of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate	= Fosc/(64 ([SPBRGH1:SPBRG1] + 1))
Solving for SPBRGH1:	SPBRG1:
Х	= ((Fosc/Desired Baud Rate)/64) – 1
:	= ((1600000/9600)/64) - 1
:	= [25.042] = 25
Calculated Baud Rate	= 1600000/(64(25+1))
:	= 9615
Error	 (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate
:	= (9615 - 9600)/9600 = 0.16%

TABLE 18-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	65
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	65
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	66
EUSART1 Baud Rate Generator Register High Byte				66				
EUSART1 Baud Rate Generator Register Low Byte			65					
	CSRC SPEN ABDOVF EUSART1	CSRCTX9SPENRX9ABDOVFRCIDLEUSART1BaudBaudRate	CSRC TX9 TXEN SPEN RX9 SREN ABDOVF RCIDL RXDTP EUSART1 Baud Rate	CSRCTX9TXENSYNCSPENRX9SRENCRENABDOVFRCIDLRXDTPTXCKPEUSART1BaudRateGenerator	CSRCTX9TXENSYNCSENDBSPENRX9SRENCRENADDENABDOVFRCIDLRXDTPTXCKPBRG16EUSART1BaudRateGeneratorRegister	CSRCTX9TXENSYNCSENDBBRGHSPENRX9SRENCRENADDENFERRABDOVFRCIDLRXDTPTXCKPBRG16—EUSART1 Baud RateGeneratorRegisterHigh Byte	CSRCTX9TXENSYNCSENDBBRGHTRMTSPENRX9SRENCRENADDENFERROERRABDOVFRCIDLRXDTPTXCKPBRG16—WUEEUSART1BaudRateGeneratorRegisterHighByte	CSRCTX9TXENSYNCSENDBBRGHTRMTTX9DSPENRX9SRENCRENADDENFERROERRRX9DABDOVFRCIDLRXDTPTXCKPBRG16—WUEABDENEUSART1Baud Rate Generator RegisterHigh Byte

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
15 12 11 0	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
Control operations CALL, GOTO and Branch operations	
CALL, GOTO and Branch operations	GOTO Label
CALL, GOTO and Branch operations15870	GOTO Label
CALL, GOTO and Branch operations15870OPCODEn<7:0> (literal)	GOTO Label
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0	GOTO Label
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1	GOTO Label
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 1 1	GOTO Label CALL MYFUNC
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0	
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1	
CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 15 8 7 0 0 0 15 8 7 0 0 0 15 8 7 0 0 0 15 12 11 0 0	
CALL, GOTO and Branch operations 15 8 7 0 OPCODE $n<7:0>$ (literal) 15 12 11 0 1111 $n<19:8>$ (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S $n<7:0>$ (literal) 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 S = Fast bit S = Fast bit	
CALL, GOTO and Branch operations 15 8 7 0 OPCODE $n<7:0>$ (literal) 15 12 11 0 15 12 11 0 1111 $n<19:8>$ (literal) n = 20-bit immediate value 15 8 7 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 1111 $n<19:8>$ (literal) 0 15 11 10 0	
CALL, GOTO and Branch operations15870 $OPCODE$ $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)n = 20-bit immediate value15870 $OPCODE$ S $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)S = Fast bit1511100 $OPCODE$ $n<10:0>$ (literal)	CALL MYFUNC
CALL, GOTO and Branch operations 15 8 7 0 OPCODE $n<7:0>$ (literal) 15 12 11 0 15 12 11 0 1111 $n<19:8>$ (literal) n = 20-bit immediate value 15 8 7 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 1111 $n<19:8>$ (literal) 0 15 11 10 0	CALL MYFUNC


RRNCF	Rotate Ri	ight f (no ca	ry)	
Syntax:	RRNCF f	f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$(f \le n >) \rightarrow d$ $(f \le 0 >) \rightarrow d$	est <n 1="" –="">, est<7></n>		
Status Affected:	N, Z			
Encoding:	0100	00da ff:	ff ffff	
Description:	The contents of register 'f' are rotate one bit to the right. If 'd' is '0', the resis placed in W. If 'd' is '1', the result is placed back in register 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. I' is '1', then the bank will be selected per the BSR value. If 'a' is '0' and the extended instructive set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 for details.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process Data	Write to destination	
Example 1: Before Instruc REG After Instructio REG	tion = 1101 (on	REG, 1, 0 0111 1011		
Example 2:	RRNCF	REG, 0, 0		
Before Instruc	tion			
W REG After Instructio	= ? = 1101 (0111		
W	= 1110 1	1011		
REG		0111		

SETF	Set f			
Syntax:	SETF f{,;	a}		
Operands:	$0 \leq f \leq 255$			
	a ∈ [0,1]			
Operation:	$FFh\tof$			
Status Affected:	None			
Encoding:	0110	100a :	fff	ffff
Description:	The conten are set to F If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when Section 25	Fh. he Access I he BSR is u nd the exte ed, this inst Literal Offse iever $f \le 95$	Bank is used to a nded in truction et Addre (5Fh).	selected. select the struction operates essing
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data		Write gister 'f'
Example:	SETF	REG,	1	
Before Instruc REG After Instructic REG	= 5A			

	.LW	Subroutir	e Call Usin	g WREG
Synta	ax:	CALLW		
Oper	ands:	None		
Oper	ration:	(PC + 2) → (W) → PCL (PCLATH) - (PCLATU) -	, → PCH,	
Statu	is Affected:	None		
Enco	oding:	0000	0000 00	01 0100
	rription	pushed ont contents of existing val contents of latched into respectively executed as new next in Unlike CAL	turn address (o the return st W are written ue is discarde PCLATH and PCH and PC /. The second s a NOP instru struction is fet L, there is no STATUS or BS	ack. Next, the to PCL; the d. Then, the PCLATU are U, cycle is ction while the ched. option to
Word	ds:	1		
Cycle	es:	2		
,	ycle Activity:			
,	ycle Activity: Q1	Q2	Q3	Q4
,	, j	Q2 Read WREG	Q3 Push PC to stack	Q4 No operation
,	Q1	Read	Push PC to	No
,	Q1 Decode No operation	Read WREG No	Push PC to stack No	No operation No
Q C Exan	Q1 Decode No operation	Read WREG No operation HERE tion = address = 10h	Push PC to stack No operation	No operation No

MO	VSF	Move Ind	exed to f						
Synt	ax:	MOVSF [z	<u>z_s],</u> f _d						
Oper	rands:		$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$						
Oper	ration:	((FSR2) + z	$((FSR2) + z_s) \rightarrow f_d$						
Statu	is Affected:	None							
1st w	oding: vord (source) word (destin.)	1110 1111		zzz fff	zzzz _s ffff _d				
	pription:	The contents of the source register a moved to destination register 'f _d '. The actual address of the source register determined by adding the 7-bit literal offset ' z_s ' in the first word to the value FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both address can be anywhere in the 4096-byte da space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points an indirect addressing register, the							
Word	1e.	2	ned will be 0	Jn.					
Cycle		2							
•	vcle Activity:	-							
QU	Q1	Q2	Q3		Q4				
	Decode	Determine	Determine		Read				
		source addr	source add		urce reg				
	Decode	No operation	No operation		Write gister 'f'				
		No dummy	oporation		(dest)				
		read							
Exar	nple:	MOVSF	[05h], REG	32					
	Before Instruc	tion							
	FSR2 Contents of 85h REG2	= 80 = 33 = 11	h						
	After Instruction FSR2 Contents	= 80	h						
	of 85h REG2	= 33 = 33							

FIGURE 27-7: CLKO AND I/O TIMING

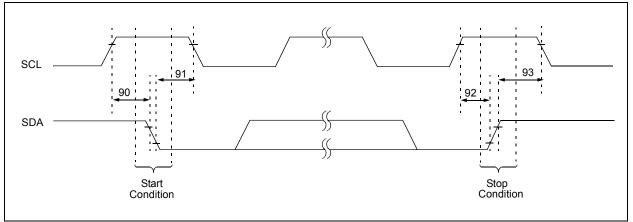
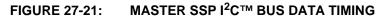
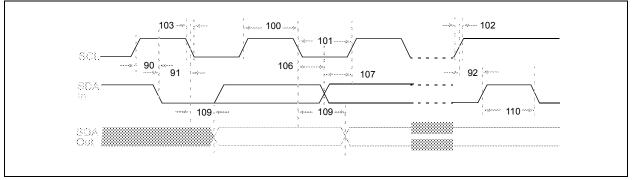

Param No.	Symbol	Characteri	stic	Min	Тур	Мах	Units	Conditions
10	TosH2cĸL	OSC1 ↑ to CLKO \downarrow		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		_	75	200	ns	(Note 1)
12	TCKR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	ТскF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid		_		0.5 Tcy + 20	ns	(Note 1)
15	ТюV2скН	Port In Valid before CLKC	D↑	0.25 Tcy + 25		_	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKO		0		_	ns	(Note 1)
17	TosH2IoV	OSC1 [↑] (Q1 cycle) to Por	t Out Valid	_	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to	PIC18FXXXX	100		_	ns	
18A		Port Input Invalid (I/O in hold time)	PIC18 LF XXXX	200	—		ns	VDD = 2.0V
19	TIOV20sH	Port Input Valid to OSC11	(I/O in setup time)	0		—	ns	
20	TIOR	Port Output Rise Time	PIC18FXXXX	—	10	25	ns	
20A			PIC18LFXXXX	_		60	ns	VDD = 2.0V
21	TIOF	Port Output Fall Time	PIC18FXXXX	—	10	25	ns	
21A			PIC18 LF XXXX	—		60	ns	VDD = 2.0V
22†	TINP	INTx pin High or Low Tim	e	Тсү		_	ns	
23†	Trbp	RB<7:4> Change INTx H	igh or Low Time	Тсү		_	ns	

TABLE 27-9: CLKO AND I/O TIMING REQU

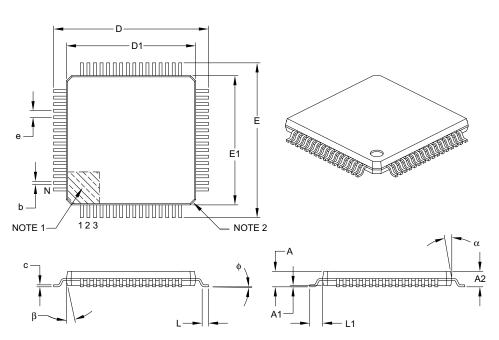
† These parameters are asynchronous events not related to any internal clock edges.


Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.


FIGURE 27-20: MASTER SSP I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
90	Tsu:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for Repeated Start
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			condition
91	Thd:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_		After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	Thd:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.



28.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	64			
Lead Pitch	е	0.50 BSC			
Overall Height	А	_	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

L

I/O Ports	125
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Associated Registers	
Baud Rate Generator	
Bus Collision	
During a Repeated Start Condition	
During a Start Condition	
During a Stop Condition	
Clock Arbitration	
Clock Stretching	
10-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Receive Mode (SEN = 1)	
Effect of a Reset	
General Call Address Support	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition	
Transmission	
Transmit Sequence	
Multi-Master Communication, Bus Collision	
and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Sleep Operation	
Stop Condition Timing	
Transmission	
ID Locations	281, 296
Idle Modes	F 4
PRI_IDLE	
INCFINCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP) Indexed Literal Offset Addressing	201, 290
and Standard PIC18 Instructions	344
Indexed Literal Offset Mode	96 344
Effect on Standard PIC18 Instructions	
Mapping the Access Bank	
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	
ADDEW	
ADDWF (Indexed Literal Offset mode)	
ADDWFC	
ADDWI C	
ANDUV	
BC	
BCF	
BN	
— ···	

)7
BNN	
BNOV	
BNZ	
BOV	
BRA	
BSF	
BSF (Indexed Literal Offset mode)	
BTFSC	
BTG	
BTG	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
CPFSLT	
DAW	6
DCFSNZ	7
DECF	6
DECFSZ	7
Extended Instructions	39
Syntax 33	39
General Format 29	
GOTO	
INCF	
INCFSZ	
INFSNZ	
IORLW	
IORWF	
LFSR	21
LFSR	21 21
LFSR	21 21 22
LFSR 32 MOVF 32 MOVFF 32 MOVFF 32 MOVLB 32	21 21 22 22
LFSR 32 MOVF 32 MOVFF 32 MOVFF 32 MOVLB 32 MOVLW 32	21 21 22 22 23
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32	21 22 22 23 23
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32	21 22 23 23 24
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32	21 22 23 23 24 24
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 MULF 32 MULF 32 MULWF 32 MULWF 32 MULWF 32	21 22 23 24 25
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32	21 22 23 23 24 25 25
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29	21 22 23 23 24 24 25 28
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVWF 32 MULW 32 NEGF 32 NOP 32 Opcode Field Descriptions 29 POP 32	21 22 23 23 24 24 25 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29	21 22 22 23 23 24 24 25 25 86 26
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVWF 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 NOP 32 Opcode Field Descriptions 29 POP 32 PUSH 32	21 22 23 24 24 25 28 26 26 27
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVWF 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32	21 22 23 24 25 28 26 27 21 22 23 24 42 55 38 66 27 27
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32 RESET 32	21 22 23 24 45 25 86 67 7 8
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RCALL 32 RESET 32 RETFIE 32	21 22 23 24 25 26 27 28
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETTUW 32	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETTURN 32	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NEGF 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETLW 32 RETURN 32 RLCF 32	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 NULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 32 RLCF 33 RRNCF 33	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLOF 33 RRCF 33 RRNCF 33 SETF 33	1 1 2 2 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34	1122233445586667788899001115
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETURN 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1 5 3
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RESET 32 RETFIE 32 RETLW 32 RLCF 33 RRCF 33 SETF 33 SETF 33 SUBFWB 33	1122233445586677889990011522
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RETFIE 32 RETT 32 RETFIE 32 RETFIE 32 RETLW 32 RETF 33 RETF 33 SETF 33 SETF 33 SUBFWB 33 SUBLW 33	1 1 2 2 3 3 4 4 5 5 8 6 6 7 7 8 8 9 9 0 0 1 1 5 2 2 3
LFSR 32 MOVF 32 MOVF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULW 32 MULW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 PUSH 32 RESET 32 RETFIE 32 RETFIE 32 RETFIE 32 RECF 33 SETF 33 SETF 33 SETF (Indexed Literal Offset mode) 34 SLEEP 33 SUBFWB 33 SUBFWF 33	11223344558667788990011152233
LFSR 32 MOVF 32 MOVFF 32 MOVLB 32 MOVLW 32 MOVWF 32 MULLW 32 MULWF 32 NOP 32 Opcode Field Descriptions 29 POP 32 RCALL 32 RETFIE 32 RETT 32 RETFIE 32 RETFIE 32 RETLW 32 RETF 33 RETF 33 SETF 33 SETF 33 SUBFWB 33 SUBLW 33	112233445586677889900111522334