
Microchip Technology - PIC18LF6410T-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6410t-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf6410t-i-pt-4428700
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F6310/6410/8310/8410
Table of Contents

1.0 Device Overview .. 9
2.0 Guidelines for Getting Started with PIC18F Microcontrollers ... 31
3.0 Oscillator Configurations .. 35
4.0 Power-Managed Modes ... 45
5.0 Reset .. 55
6.0 Memory Organization ... 67
7.0 Program Memory.. 89
8.0 External Memory Interface ... 95
9.0 8 x 8 Hardware Multiplier.. 107
10.0 Interrupts .. 109
11.0 I/O Ports ... 125
12.0 Timer0 Module ... 151
13.0 Timer1 Module ... 155
14.0 Timer2 Module ... 161
15.0 Timer3 Module ... 163
16.0 Capture/Compare/PWM (CCP) Modules ... 167
17.0 Master Synchronous Serial Port (MSSP) Module .. 177
18.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ... 217
19.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) ... 241
20.0 10-Bit Analog-to-Digital Converter (A/D) Module ... 255
21.0 Comparator Module.. 265
22.0 Comparator Voltage Reference Module... 271
23.0 High/Low-Voltage Detect (HLVD)... 275
24.0 Special Features of the CPU.. 281
25.0 Instruction Set Summary .. 297
26.0 Development Support... 347
27.0 Electrical Characteristics .. 351
28.0 Packaging Information.. 389
Appendix A: Revision History... 395
Appendix B: Device Differences... 395
Appendix C: Conversion Considerations ... 396
Appendix D: Migration from Baseline to Enhanced Devices.. 396
Appendix E: Migration from Mid-Range to Enhanced Devices .. 397
Appendix F: Migration from High-End to Enhanced Devices ... 397
Index .. 399
The Microchip Web Site ... 409
Customer Change Notification Service .. 409
Customer Support .. 409
Reader Response .. 410
PIC18F6310/6410/8310/8410 Product Identification System .. 411
DS39635C-page 6  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 66

LATC LATC Output Latch Register 66

TRISC PORTC Data Direction Register 66
 2010 Microchip Technology Inc. DS39635C-page 133

PIC18F6310/6410/8310/8410
17.3.8 SLEEP OPERATION

In SPI Master mode, module clocks may be operating
at a different speed than when in Full-Power mode; in
the case of the Sleep mode, all clocks are halted.

In most power-managed modes, a clock is provided to
the peripherals. That clock should be from the primary
clock source, the secondary clock (Timer1 oscillator at
32.768 kHz) or the INTOSC source. See Section 3.7
“Clock Sources and Oscillator Switching” for
additional information.

In most cases, the speed that the master clocks SPI
data is not important; however, this should be
evaluated for each system.

If MSSP interrupts are enabled, they can wake the con-
troller from Sleep mode, or one of the Idle modes, when
the master completes sending data. If an exit from
Sleep or Idle mode is not desired, MSSP interrupts
should be disabled.

If the Sleep mode is selected, all module clocks are
halted and the transmission/reception will remain in
that state until the devices wakes. After the device
returns to Run mode, the module will resume
transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in any power-managed
mode and data to be shifted into the SPI Transmit/
Receive Shift register. When all 8 bits have been
received, the MSSP interrupt flag bit will be set and if
enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the
standard SPI modes and the states of the CKP and
CKE control bits.

TABLE 17-1: SPI BUS MODES

There is also an SMP bit which controls when the data
is sampled.

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Standard SPI Mode
Terminology

Control Bits State

CKP CKE

0, 0 0 1

0, 1 0 0

1, 0 1 1

1, 1 1 0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 63

PIR1 PSPIF ADIF RC1IF TX1IF SSPIF CCP1IF TMR2IF TMR1IF 65

PIE1 PSPIE ADIE RC1IE TX1IE SSPIE CCP1IE TMR2IE TMR1IE 65

IPR1 PSPIP ADIP RC1IP TX1IP SSPIP CCP1IP TMR2IP TMR1IP 65

TRISC PORTC Data Direction Register 66

TRISF PORTF Data Direction Register 66

SSPBUF Master Synchronous Serial Port Receive Buffer/Transmit Register 64

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 64

SSPSTAT SMP CKE D/A P S R/W UA BF 64

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.
 2010 Microchip Technology Inc. DS39635C-page 185

PIC18F6310/6410/8310/8410
FIGURE 17-22: I2C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)

P
9

8
7

6
5

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S

A
7

A
6

A
5

A
4

A
3

A
2

A
1

S
D

A

S
C

L
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9
1

2
3

4

B
u

s
m

as
te

r
te

rm
in

a
te

s
tr

an
sf

e
r

A
C

K

R
e

ce
iv

in
g

 D
at

a
fr

o
m

 S
la

ve
R

e
ce

iv
in

g
D

a
ta

 fr
om

 S
la

ve

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
C

K

R
/W

 =
 1

T
ra

n
sm

it
A

d
d

re
ss

 t
o

 S
la

ve

S
S

P
IF

B
F

A
C

K
 is

 n
o

t s
e

n
t

W
rit

e
 to

 S
S

P
C

O
N

2
<

0
>

(S
E

N
 =

 1
)

W
ri

te
 to

 S
S

P
B

U
F

 o
cc

ur
s

h
e

re
A

C
K

 fr
o

m
 S

la
veM

a
st

e
r

co
n

fig
u

re
d

a
s

a
 r

e
ce

iv
e

r
by

 p
ro

g
ra

m
m

in
g

 S
S

P
C

O
N

2
<

3
>

 (
R

C
E

N
 =

 1
)

P
E

N
 b

it
=

 1
w

ri
tt

en
 h

e
re

D
a

ta
 s

hi
fte

d
 in

 o
n

fa
lli

n
g

 e
dg

e
 o

f C
L

K

C
le

a
re

d
 in

 s
of

tw
ar

e

S
ta

rt
 X

M
IT

S
E

N
 =

 0

S
S

P
O

V

S
D

A
 =

 0
,

S
C

L
=

 1
w

hi
le

 C
P

U

(S
S

P
S

TA
T

<
0>

)

A
C

K

C
le

a
re

d
 in

 s
o

ftw
a

re
C

le
a

re
d

in
 s

o
ftw

a
re

S
et

 S
S

P
IF

 in
te

rr
u

p
t

a
t

e
nd

 o
f

re
ce

iv
e

S
e

t
P

 b
it

(S
S

P
S

TA
T

<
4

>
)

a
nd

 S
S

P
IF

C
le

a
re

d
in

so
ftw

ar
e

A
C

K
 f

ro
m

 M
as

te
r

S
e

t
S

S
P

IF
 a

t
e

nd

S
e

t
S

S
P

IF
 in

te
rr

u
pt

a
t e

n
d

 o
f

A
ck

n
o

w
le

d
g

e
se

q
u

e
n

ce

S
e

t
S

S
P

IF
 in

te
rr

u
p

t
a

t
en

d
 o

f A
ck

n
ow

-
le

d
g

e
se

q
u

en
ce

of
 r

e
ce

iv
e

S
e

t
A

C
K

E
N

,
st

a
rt

 A
ck

n
o

w
le

d
ge

 s
e

q
ue

n
ce

S
D

A
 =

 A
C

K
D

T
 =

 1

R
C

E
N

 c
le

a
re

d
au

to
m

a
tic

al
ly

R
C

E
N

 =
 1

,
st

ar
t

ne
xt

 r
e

ce
iv

e

W
ri

te
 t

o
S

S
P

C
O

N
2

<
4

>
to

 s
ta

rt
 A

ck
no

w
le

dg
e

se
qu

en
ce

S
D

A
 =

 A
C

K
D

T
 (

S
S

P
C

O
N

2
<

5
>

)
=

 0

R
C

E
N

 c
le

a
re

d
au

to
m

a
tic

al
ly

re
sp

o
nd

s
to

 S
S

P
IF

A
C

K
E

NB
e

g
in

 S
ta

rt
 C

o
n

di
tio

n

C
le

a
re

d
 in

 s
of

tw
ar

e

S
D

A
 =

 A
C

K
D

T
 =

 0

S
S

P
O

V
 is

 s
e

t
b

e
ca

u
se

S
S

P
B

U
F

 is
 s

til
l f

u
ll

La
st

 b
it

is
 s

hi
fte

d
in

to
 S

S
P

S
R

 a
nd

co
nt

e
n

ts
 a

re
 u

n
lo

ad
e

d
 in

to
 S

S
P

B
U

F

 2010 Microchip Technology Inc. DS39635C-page 209

PIC18F6310/6410/8310/8410
TABLE 17-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 63

PIR1 PSPIF ADIF RC1IF TX1IF SSPIF CCP1IF TMR2IF TMR1IF 65

PIE1 PSPIE ADIE RC1IE TX1IE SSPIE CCP1IE TMR2IE TMR1IE 65

IPR1 PSPIP ADIP RC1IP TX1IP SSPIP CCP1IP TMR2IP TMR1IP 65

TRISC PORTC Data Direction Register 66

SSPBUF Master Synchronous Serial Port Receive Buffer/Transmit Register 64

SSPADD Master Synchronous Serial Port Receive Buffer/Transmit Register 64

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 64

SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 64

SSPSTAT SMP CKE D/A P S R/W UA BF 64

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in I2C mode.
DS39635C-page 216  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
18.2.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of
sending the special Break character sequences that are
required by the LIN/J2602 bus standard. The Break
character transmit consists of a Start bit, followed by
twelve ‘0’ bits and a Stop bit. The Frame Break character
is sent whenever the SENDB and TXEN bits
(TXSTA<3> and TXSTA<5>) are set while the Transmit
Shift register is loaded with data. Note that the value of
data written to TXREG1 will be ignored and all ‘0’s will be
transmitted.

The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN/J2602 specification).

Note that the data value written to the TXREG1 for the
Break character is ignored. The write simply serves the
purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is
active or Idle, just as it does during normal transmis-
sion. See Figure 18-10 for the timing of the Break
character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame
header made up of a Break, followed by an Auto-Baud
Sync byte. This sequence is typical of a LIN/J2602 bus
master.

1. Configure the EUSART for the desired mode.

2. Set the TXEN and SENDB bits to set up the
Break character.

3. Load the TXREG1 with a dummy character to
initiate transmission (the value is ignored).

4. Write ‘55h’ to TXREG1 to load the Sync
character into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is
reset by hardware. The Sync character now
transmits in the preconfigured mode.

When the TXREG1 becomes empty, as indicated by the
TX1IF bit, the next data byte can be written to TXREG1.

18.2.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break
character in two ways.

The first method forces configuration of the baud rate
at a frequency of 9/13 the typical speed. This allows for
the Stop bit transition to be at the correct sampling
location (13 bits for Break versus Start bit and 8 data
bits for typical data).

The second method uses the auto-wake-up feature
described in Section 18.2.4 “Auto-Wake-up on Sync
Break Character”. By enabling this feature, the
EUSART will sample the next two transitions on
RX1/DT1, cause an RC1IF interrupt and receive the
next data byte followed by another interrupt.

Note that following a Break character, the user will
typically want to enable the Auto-Baud Rate Detect
feature. For both methods, the user can set the ABD bit
once the TX1IF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

Write to TXREG1

BRG Output
(Shift Clock)

Start bit bit 0 bit 1 bit 11 Stop bit

Break

TX1IF bit
(Transmit Buffer

Reg. Empty Flag)

TX1 (pin)

TRMT bit
(Transmit Shift

Reg. Empty Flag)

SENDB
(Transmit Shift

Reg. Empty Flag)

SENDB sampled here Auto-Cleared

Dummy Write
DS39635C-page 234  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 63

PIR1 PSPIF ADIF RC1IF TX1IF SSPIF CCP1IF TMR2IF TMR1IF 65

PIE1 PSPIE ADIE RC1IE TX1IE SSPIE CCP1IE TMR2IE TMR1IE 65

IPR1 PSPIP ADIP RC1IP TX1IP SSPIP CCP1IP TMR2IP TMR1IP 65

RCSTA1 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 65

TXREG1 EUSART1 Transmit Register 65

TXSTA1 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 65

BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN 66

SPBRGH1 EUSART1 Baud Rate Generator Register High Byte 66

SPBRG1 EUSART1 Baud Rate Generator Register Low Byte 65

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.

RC7/RX1/DT1 pin

RC6/TX1/CK1 pin

Write to
TXREG1 Reg

TX1IF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit
DS39635C-page 236  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
19.0 ADDRESSABLE UNIVERSAL
SYNCHRONOUS
ASYNCHRONOUS RECEIVER
TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchro-
nous Receiver Transmitter (AUSART) module is very
similar in function to the Enhanced USART module,
discussed in the previous chapter. It is provided as an
additional channel for serial communication with
external devices, for those situations that do not require
Auto-Baud Detection (ABD) or LIN/J2602 bus support.

The AUSART can be configured in the following
modes:

• Asynchronous (full-duplex)

• Synchronous – Master (half-duplex)

• Synchronous – Slave (half-duplex)

The pins of the AUSART module are multiplexed with
the functions of PORTG (RG1/TX2/CK2 and
RG2/RX2/DT2, respectively). In order to configure
these pins as an AUSART:

• SPEN bit (RCSTA2<7>) must be set (= 1)

• TRISG<2> bit must be set (= 1)

• TRISG<1> bit must be cleared (= 0) for
Asynchronous and Synchronous Master modes

• TRISG<1> bit must be set (= 1) for Synchronous
Slave mode

The operation of the Addressable USART module is
controlled through two registers: TXSTA2 and
RXSTA2. These are detailed in Register 19-1 and
Register 19-2 respectively.

Note: The USART control will automatically
reconfigure the pin from input to output as
needed.
 2010 Microchip Technology Inc. DS39635C-page 241

PIC18F6310/6410/8310/8410

REGISTER 19-2: RCSTA2: AUSART2 RECEIVE STATUS AND CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-x

SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SPEN: Serial Port Enable bit

1 = Serial port is enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)
0 = Serial port is disabled (held in Reset)

bit 6 RX9: 9-Bit Receive Enable bit

1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5 SREN: Single Receive Enable bit

Asynchronous mode:
Don’t care.

Synchronous mode – Master:
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.

Synchronous mode – Slave:
Don’t care.

bit 4 CREN: Continuous Receive Enable bit

Asynchronous mode:
1 = Enables receiver
0 = Disables receiver

Synchronous mode:
1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)
0 = Disables continuous receive

bit 3 ADDEN: Address Detect Enable bit

Asynchronous mode 9-Bit (RX9 = 1):
1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> are set
0 = Disables address detection, all bytes are received and ninth bit can be used as a parity bit

Asynchronous mode 9-Bit (RX9 = 0):
Don’t care.

bit 2 FERR: Framing Error bit

1 = Framing error (can be updated by reading RCREG1 register and receiving next valid byte)
0 = No framing error

bit 1 OERR: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit, CREN)
0 = No overrun error

bit 0 RX9D: 9th bit of Received Data bit

This can be address/data bit or a parity bit and must be calculated by user firmware.
 2010 Microchip Technology Inc. DS39635C-page 243

PIC18F6310/6410/8310/8410

REGISTER 20-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified
0 = Left justified

bit 6 Unimplemented: Read as ‘0’

bit 5-3 ACQT<2:0>: A/D Acquisition Time Select bits

111 = 20 TAD

110 = 16 TAD

101 = 12 TAD

100 = 8 TAD

011 = 6 TAD

010 = 4 TAD

001 = 2 TAD

000 = 0 TAD(1)

bit 2-0 ADCS<2:0>: A/D Conversion Clock Select bits

111 = FRC (clock derived from A/D RC oscillator)(1)
110 = FOSC/64
101 = FOSC/16
100 = FOSC/4
011 = FRC (clock derived from A/D RC oscillator)(1)

010 = FOSC/32
001 = FOSC/8
000 = FOSC/2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D
clock starts. This allows the SLEEP instruction to be executed before starting a conversion.
 2010 Microchip Technology Inc. DS39635C-page 257

PIC18F6310/6410/8310/8410
NOTES:
DS39635C-page 270  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
23.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate
during Sleep. If the device voltage crosses the trip
point, the HLVDIF bit will be set and the device will
wake-up from Sleep. Device execution will continue
from the interrupt vector address if interrupts have
been globally enabled.

23.7 Effects of a Reset

A device Reset forces all registers to their Reset state.
This forces the HLVD module to be turned off.

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page

HLVDCON VDIRMAG — IRVST HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0 64

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 63

PIR2 OSCFIF CMIF — — BCLIF HLVDIF TMR3IF CCP2IF 65

PIE2 OCSFIE CMIE — — BCLIE HLVDIE TMR3IE CCP2IE 65

IPR2 OSCFIP CMIP — — BCLIP HLVDIP TMR3IP CCP2IP 65

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module.
 2010 Microchip Technology Inc. DS39635C-page 279

PIC18F6310/6410/8310/8410
24.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the
latency period from oscillator start-up to code execution
by allowing the microcontroller to use the INTRC
oscillator as a clock source until the primary clock
source is available. It is enabled by setting the IESO
Configuration bit.

Two-Speed Start-up should be enabled only if the
primary oscillator mode is LP, XT, HS or HSPLL
(Crystal-Based modes). Other sources do not require a
OST start-up delay; for these, Two-Speed Start-up
should be disabled.

When enabled, Resets and wake-ups from Sleep mode
cause the device to configure itself to run from the inter-
nal oscillator block as the clock source, following the
time-out of the Power-up Timer after a Power-on Reset
is enabled. This allows almost immediate code
execution while the primary oscillator starts and the
OST is running. Once the OST times out, the device
automatically switches to PRI_RUN mode.

To use a higher clock speed on wake-up, the INTOSC or
postscaler clock sources can be selected to provide a
higher clock speed by setting bits, IRCF<2:0>, immedi-
ately after Reset. For wake-ups from Sleep, the INTOSC
or postscaler clock sources can be selected by setting
the IRCF<2:0> bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up
is not used. The device will be clocked by the currently
selected clock source until the primary clock source
becomes available. The setting of the IESO bit is
ignored.

24.3.1 SPECIAL CONSIDERATIONS FOR
USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed
Start-up, the device still obeys the normal command
sequences for entering power-managed modes,
including serial SLEEP instructions (refer to
Section 4.1.2 “Entering Power-Managed Modes”).
In practice, this means that user code can change
the SCS<1:0> bits setting or issue SLEEP
instructions before the OST times out. This would
allow an application to briefly wake-up, perform
routine “housekeeping” tasks and return to Sleep
before the device starts to operate from the primary
oscillator.

User code can also check if the primary clock source is
currently providing the device clocking by checking the
status of the OSTS bit (OSCCON<3>). If the bit is set,
the primary oscillator is providing the clock. Otherwise,
the internal oscillator block is providing the clock during
wake-up from Reset or Sleep mode.

FIGURE 24-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

Q1 Q3 Q4

OSC1

Peripheral

Program PC PC + 2

INTOSC

PLL Clock

Q1

PC + 6

Q2

Output

Q3 Q4 Q1

CPU Clock

PC + 4

Clock

Counter

Q2 Q2 Q3

Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.

Wake from Interrupt Event

TPLL(1)

1 2 n-1 n

Clock

OSTS bit Set

Transition

Multiplexer

TOST(1)
DS39635C-page 292  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
FIGURE 25-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

15 10 9 8 7 0

d = 0 for result destination to be WREG register

OPCODE d a f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank

Bit-oriented file register operations

15 12 11 9 8 7 0

OPCODE b (BIT #) a f (FILE #)

b = 3-bit position of bit in file register (f)

Literal operations

15 8 7 0

 OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15 12 11 0

OPCODE f (Source FILE #)

CALL, GOTO and Branch operations

15 8 7 0

OPCODE n<7:0> (literal)

n = 20-bit immediate value

a = 1 for BSR to select bank
f = 8-bit file register address

a = 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

15 12 11 0

1111 n<19:8> (literal)

15 12 11 0

 1111 f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

15 8 7 0

OPCODE n<7:0> (literal)

15 12 11 0

1111 n<19:8> (literal)

CALL MYFUNC

15 11 10 0

 OPCODE n<10:0> (literal)

S = Fast bit

BRA MYFUNC

15 8 7 0

OPCODE n<7:0> (literal) BC MYFUNC

S

 2010 Microchip Technology Inc. DS39635C-page 299

PIC18F6310/6410/8310/8410

BCF Bit Clear f

Syntax: BCF f, b {,a}

Operands: 0  f  255
0  b  7
a [0,1]

Operation: 0  f

Status Affected: None

Encoding: 1001 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is cleared.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BCF FLAG_REG, 7, 0

Before Instruction
FLAG_REG = C7h

After Instruction
FLAG_REG = 47h

BN Branch if Negative

Syntax: BN n

Operands: -128  n  127

Operation: if Negative bit is ‘1’,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0110 nnnn nnnn

Description: If the Negative bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BN Jump

Before Instruction
PC = address (HERE)

After Instruction
If Negative = 1;

PC = address (Jump)
If Negative = 0;

PC = address (HERE + 2)
DS39635C-page 306  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410

LFSR Load FSR

Syntax: LFSR f, k

Operands: 0  f  2
0  k  4095

Operation: k  FSRf

Status Affected: None

Encoding: 1110
1111

1110
0000

00ff
k7kkk

k11kkk
kkkk

Description: The 12-bit literal ‘k’ is loaded into the
file select register pointed to by ‘f’.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘k’ MSB

Process
Data

Write
literal ‘k’
MSB to
FSRfH

Decode Read literal
‘k’ LSB

Process
Data

Write literal
‘k’ to FSRfL

Example: LFSR 2, 3ABh

After Instruction
FSR2H = 03h
FSR2L = ABh

MOVF Move f

Syntax: MOVF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: f  dest

Status Affected: N, Z

Encoding: 0101 00da ffff ffff

Description: The contents of register ‘f’ are moved to
a destination dependent upon the
status of ‘d’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’. Location ‘f’
can be anywhere in the 256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write W

Example: MOVF REG, 0, 0

Before Instruction
REG = 22h
W = FFh

After Instruction
REG = 22h
W = 22h
 2010 Microchip Technology Inc. DS39635C-page 321

PIC18F6310/6410/8310/8410

CALLW Subroutine Call Using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2)  TOS,
(W)  PCL,
(PCLATH)  PCH,
(PCLATU)  PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.
Unlike CALL, there is no option to
update W, STATUS or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
WREG

Push PC to
stack

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

MOVSF Move Indexed to f

Syntax: MOVSF [zs], fd

Operands: 0  zs  127
0  fd  4095

Operation: ((FSR2) + zs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1110
1111

1011
ffff

0zzz
ffff

zzzzs
ffffd

Description: The contents of the source register are
moved to destination register ‘fd’. The
actual address of the source register is
determined by adding the 7-bit literal
offset ‘zs’ in the first word to the value of
FSR2. The address of the destination
register is specified by the 12-bit literal
‘fd’ in the second word. Both addresses
can be anywhere in the 4096-byte data
space (000h to FFFh).
The MOVSF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
If the resultant source address points to
an indirect addressing register, the
value returned will be 00h.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Determine
source addr

Determine
source addr

Read
source reg

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVSF [05h], REG2

Before Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 11h

After Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 33h
 2010 Microchip Technology Inc. DS39635C-page 341

PIC18F6310/6410/8310/8410
25.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset addressing (Section 6.5.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank
(a = 0) or in a GPR bank designated by the BSR
(a = 1). When the extended instruction set is enabled
and a = 0, however, a file register argument of 5Fh or
less is interpreted as an offset from the pointer value in
FSR2 and not as a literal address. For practical
purposes, this means that all instructions that use the
Access RAM bit as an argument – that is, all
byte-oriented and bit-oriented instructions, or almost
half of the core PIC18 instructions – may behave
differently when the extended instruction set is
enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 25.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset mode can be very
useful for dynamic stack and pointer manipulation, it
can also be very annoying if a simple arithmetic
operation is carried out on the wrong register. Users
who are accustomed to the PIC18 programming must
keep in mind that, when the extended instruction set is
enabled, register addresses of 5Fh or less are used for
Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
mode are provided on the following page to show how
execution is affected. The operand conditions shown in
the examples are applicable to all instructions of these
types.

25.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument ‘f’ in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value ‘k’. As already noted, this occurs only when f is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled), when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
assembler.

The destination argument ‘d’ functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option /y, or the PE directive in the
source listing.

25.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications writ-
ten to PIC18 assembler. This is because instructions in
the legacy code may attempt to address registers in the
Access Bank below 5Fh. Since these addresses are
interpreted as literal offsets to FSR2 when the
instruction set extension is enabled, the application
may read or write to the wrong data addresses.

When porting an application to the
PIC18F6310/6410/8310/8410, it is very important to
consider the type of code. A large, re-entrant applica-
tion that is written in C and would benefit from efficient
compilation will do well when using the instruction set
extensions. Legacy applications that heavily use the
Access Bank will most likely not benefit from using the
extended instruction set.

Note: Enabling the PIC18 instruction set exten-
sion may cause legacy applications to
behave erratically or fail entirely.
DS39635C-page 344  2010 Microchip Technology Inc.

PIC18F6310/6410/8310/8410
26.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:

• Integrated Development Environment

- MPLAB® IDE Software

• Compilers/Assemblers/Linkers

- MPLAB C Compiler for Various Device
Families

- HI-TECH C for Various Device Families

- MPASMTM Assembler

- MPLINKTM Object Linker/
MPLIBTM Object Librarian

- MPLAB Assembler/Linker/Librarian for
Various Device Families

• Simulators

- MPLAB SIM Software Simulator

• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator

• In-Circuit Debuggers

- MPLAB ICD 3

- PICkit™ 3 Debug Express

• Device Programmers

- PICkit™ 2 Programmer

- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards,
Evaluation Kits, and Starter Kits

26.1 MPLAB Integrated Development
Environment Software

The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®

operating system-based application that contains:

• A single graphical interface to all debugging tools

- Simulator

- Programmer (sold separately)

- In-Circuit Emulator (sold separately)

- In-Circuit Debugger (sold separately)

• A full-featured editor with color-coded context

• A multiple project manager

• Customizable data windows with direct edit of
contents

• High-level source code debugging

• Mouse over variable inspection

• Drag and drop variables from source to watch
windows

• Extensive on-line help

• Integration of select third party tools, such as
IAR C Compilers

The MPLAB IDE allows you to:

• Edit your source files (either C or assembly)

• One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)

• Debug using:

- Source files (C or assembly)

- Mixed C and assembly

- Machine code

MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
 2010 Microchip Technology Inc. DS39635C-page 347

PIC18F6310/6410/8310/8410
26.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.

26.8 MPLAB REAL ICE In-Circuit
Emulator System

MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.

The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with in-
circuit debugger systems (RJ11) or with the new high-
speed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers
significant advantages over competitive emulators
including low-cost, full-speed emulation, run-time
variable watches, trace analysis, complex breakpoints, a
ruggedized probe interface and long (up to three meters)
interconnection cables.

26.9 MPLAB ICD 3 In-Circuit Debugger
System

MPLAB ICD 3 In-Circuit Debugger System is Micro-
chip's most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Sig-
nal Controller (DSC) and microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcon-
trollers and dsPIC® DSCs with the powerful, yet easy-
to-use graphical user interface of MPLAB Integrated
Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is con-
nected to the design engineer's PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.

26.10 PICkit 3 In-Circuit Debugger/
Programmer and
PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and program-
ming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected
to the design engineer's PC using a full speed USB
interface and can be connected to the target via an
Microchip debug (RJ-11) connector (compatible with
MPLAB ICD 3 and MPLAB REAL ICE). The connector
uses two device I/O pins and the reset line to imple-
ment in-circuit debugging and In-Circuit Serial Pro-
gramming™.

The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
 2010 Microchip Technology Inc. DS39635C-page 349

