

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for program memory are rated to last for approximately a thousand erase/write cycles. Data retention without refresh is conservatively estimated to be greater than 100 years.
- External Memory Interface: For those applications where more program or data storage is needed, the PIC18F8310/8410 devices provide the ability to access external memory devices. The memory interface is configurable for both 8-bit and 16-bit data widths and uses a standard range of control signals to enable communication with a wide range of memory devices. With their 21-bit program counters, the 80-pin devices can access a linear memory space of up to 2 Mbytes.
- Extended Instruction Set: The

PIC18F6310/6410/8310/8410 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages such as 'C'.

- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN/J2602 bus protocol. Other enhancements include Automatic Baud Rate Detection (ABD) and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world, without using an external crystal (or its accompanying power requirement).
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and thus, reduces code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing a time-out range from 4 ms to over 2 minutes that is stable across operating voltage and temperature.

1.3 Details on Individual Family Members

Devices in the PIC18F6310/6410/8310/8410 family are available in 64-pin (PIC18F6310/8310) and 80-pin (PIC18F6410/8410) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2, respectively.

The devices are differentiated from each other in three ways:

- 1. Flash Program Memory: 8 Kbytes in PIC18FX310 devices, 16 Kbytes in PIC18FX410 devices.
- 2. I/O Ports: 7 bidirectional ports on 64-pin devices, 9 bidirectional ports on 80-pin devices.
- 3. External Memory Interface: present on 80-pin devices only.

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F6310/6410/8310/8410 family are available as both standard and low-voltage devices. Standard devices with Flash memory, designated with an "F" in the part number (such as PIC18F6310), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6410), function over an extended VDD range of 2.0V to 5.5V.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18F MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F6310/6410/8310/8410 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

© 2010 Microchip Technology Inc.

3.6.5.1 Compensating with the AUSART

An adjustment may be required when the AUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSTUNE to increase the clock frequency.

3.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

3.6.5.3 Compensating with the Timers

A CCP module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, then the internal oscillator block is running too fast; to compensate, decrement the OSTUNE register. If the measured time is much less than the calculated time, then the internal oscillator block is running too slow; to compensate, increment the OSTUNE register.

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	INTSRC: Int	ternal Oscillator Low-Frequency Source Select bit	
	1 = 31.25 k	Hz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)	
	0 = 31 kHz	device clock derived directly from INTRC internal oscillator	
bit 6	PLLEN: Fre	equency Multiplier PLL for INTOSC Enable bit ⁽¹⁾	
	1 = PLL ena	abled for INTOSC (4 MHz and 8 MHz only)	
	0 = PLL dis	abled	
bit 5	Unimpleme	ented: Read as '0'	
bit 4-0	TUN<4:0>:	Frequency Tuning bits	
	01111 = Ma	aximum frequency	
	•	•	
	•	•	
	00001		
	00000 = Ce	enter frequency. Oscillator module is running at the calibrated frequency.	
	11111		
	•	•	
	•	•	
	10000 = Mi	inimum frequency	

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes" for details.

5.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 Extended MCU devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F6310/6410/8310/8410 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See Section 11.7 "PORTG, TRISG and LATG Registers" for more information.

5.3 **Power-on Reset (POR)**

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the MCLR pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (Parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overline{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

RESET CIRCUIT (FOR SLOW VDD POWER-UP)

6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontroller devices:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Program Memory"**.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F6310 and PIC18F8310 each have 8 Kbytes of Flash memory and can store up to 4,096 single-word instructions. The PIC18F6410 and PIC18F8410 each have 16 Kbytes of Flash memory and can store up to 8,192 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for the PIC18F6310/6410/8310/8410 devices are shown in Figure 6-1.

FIGURE 6-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F6310/6410/8310/8410 DEVICES

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-4.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	Tcy2	TCY3	TCY4	Tcy5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (1	Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addres	ss SUB_1				Fetch SUB_1	Execute SUB_1
All is structions and simple						

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

8.3.1 8-BIT MODE TIMING

The presentation of control signals on the external memory bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-4 through Figure 8-6.

FIGURE 8-9: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7		B Pull-up Enal	ole bit				
	$0 = PORTB \mu$	oull-ups are ena	abled by indiv	idual port latch	values		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Sele	ct bit			
	1 = Interrupt	on rising edge	-				
	0 = Interrupt	on falling edge					
bit 5	INTEDG1: Ex	ternal Interrupt	1 Edge Sele	ct bit			
	1 = Interrupt 0 = Interrupt	on rising edge on falling edge					
bit 4	INTEDG2: Ex	ternal Interrupt	2 Edge Sele	ct bit			
	1 = Interrupt 0 = Interrupt	on rising edge on falling edge					
bit 3	INTEDG3: Ex	ternal Interrupt	3 Edge Sele	ct bit			
	1 = Interrupt o 0 = Interrupt o	on rising edge on falling edge	-				
bit 2	TMR0IP: TM	R0 Overflow Int	errupt Priority	/ bit			
	1 = High prio 0 = Low prior	rity rity					
bit 1	INT3IP: INT3	External Interr	upt Priority bit	t			
	1 = High prio	rity					
h:1 0		rity nt Ohan na Inter		:1			
DIEU	1 - High prio	rt Change Inter	rupt Priority b	JI			
	0 = Low prior	rity					
Note: In er ar	terrupt flag bits a nable bit or the gl re clear prior to e	are set when a lobal interrupt e nabling an inte	n interrupt co nable bit. Use rrupt. This fea	ndition occurs, er software sho ature allows for	regardless of to buld ensure the software pollin	the state of its of appropriate into g.	corresponding errupt flag bits

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA1<5>), or the Continuous Receive Enable bit, CREN (RCSTA1<4>). Data is sampled on the RX1 pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. Ensure bits, CREN and SREN, are clear.

- 4. If the signal from the CKx pin is to be inverted, set the TXCKP bit.
- 5. If interrupts are desired, set enable bit, RCIE.
- 6. If 9-bit reception is desired, set bit, RX9.
- 7. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 8. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 9. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If any error occurred, clear the error by clearing bit, CREN.
- 12. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Q2Q3Q4	4 Q1 Q2 Q3 Q4 Q1 Q2	Q3Q4Q1Q2Q3	24 21 22 23 24	Q1 Q2 Q3 Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
RC7/RX1/DT1 pin	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	
RC6/TX1/CK1 pin (TXCKP = 0)	÷ · · · · ·		÷	<u>.</u>					
RC6/TX1/CK1 pin (TXCKP = 1)									
Write to SREN bit	i i	1 1 1	• • •	1 1 1	1 1 1	 		, , ,	
SREN bit	· · ·	1	1 1		ı				ı ı ı <u> </u> ı
CREN bit '0'	<u>.</u>	1		1 1 	1 1	1 1			<u>'0'</u>
RC1IF bit (Interrupt)———	· · · ·	1 1 1		, , ,	! ! !				
Read RCREG1 ———		1 1 	 	1 1 1 1	 	 			
Note: Timing diagram of	demonstrates Sync	Master mode v	vith SREN bit	= 1 and BRG	GH bit = 0.				

FIGURE 18-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

REGISTER 20-2: ADCO)N1: A/D (CONTROL F	REGISTER 1
---------------------	------------	-----------	------------

U-0	U-0	R/	W-0	R/	W-0	R	/W-q		R/W-q		R/W	-q	R/	W-q
—	—	VC	FG1	VC	FG0	PC	FG3	F	PCFG2		PCFC	G1	PC	FG0
bit 7														bit C
Legend:														
R = Readat	ble bit	W = V	Vritable	bit		U = l	Jnimple	emente	ed bit, r	read as	s '0'			
-n = Value a	at POR	'1' = E	Bit is set	t		'0' =	Bit is c	leared		Х	= Bit is	s unkn	own	
bit 7-6	Unimplemen	ted: Re	ead as '	0'										
bit 5	VCFG1: Volta	age Ref	erence	Config	uration	bit (VF	REF- SO	urce):						
	1 = VREF- (AN	1 2)												
	0 = AVss													
bit 4	VCFG0: Volta	age Ref	erence	Config	uration	bit (VF	REF+ SC	ource):						
	1 = VREF+ (A	N3)												
	0 = AVDD													
bit 3-0	PCFG<3:0>:	A/D Po	ort Confi	guratio	on Cont	rol bits	:							
	PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO	
	0000	А	А	А	Α	Α	Α	Α	Α	А	Α	А	А	
	0001	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0010	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0011	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0100	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0101	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0110	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0111	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	
	1000	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	
	1001	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	
	1010	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	
	1011	D	D	D	D	D	D	D	D	Α	Α	Α	Α	
	1100	D	D	D	D	D	D	D	D	D	Α	Α	Α	
	1101	D	D	D	D	D	D	D	D	D	D	Α	Α	
	1110	D	D	D	D	D	D	D	D	D	D	D	Α	
	1111	D	D	D	D	D	D	D	D	D	D	D	D	
	A = Analog ir	nput				D = D) Jigital I/	0						

24.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 24-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 24-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.2 "Entering Power-Managed Modes" and Section 24.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

24.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed, and decreasing the likelihood of an erroneous time-out.

24.4.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

24.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Clock monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, the device will not exit the power-managed mode on oscillator failure. Instead, the device will continue to operate as before, but clocked by the INTOSC multiplexer. While in Idle mode, subsequent interrupts will cause the CPU to begin executing instructions while being clocked by the INTOSC multiplexer.

24.4.4 POR OR WAKE FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is in EC, RC or INTRC modes, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscillator failure interrupts on POR, or
	wake from Sleep, will also prevent the
	detection of the oscillator's failure to start
	at all following these events. This can be
	avoided by monitoring the OSTS bit and
	using a timing routine to determine if the
	oscillator is taking too long to start. Even
	so, no oscillator failure interrupt will be
	flagged.

As noted in **Section 24.3.1 "Special Considerations for Using Two-Speed Start-up"**, it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new powered-managed mode is selected, the primary clock is disabled.

INCF	⁼SZ	Increment	Increment f, skip if 0							
Synta	ax:	INCFSZ f	INCFSZ f {,d {,a}}							
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Oper	ation:	(f) + 1 \rightarrow de skip if result	(f) + 1 \rightarrow dest, skip if result = 0							
Statu	s Affected:	None	None							
Enco	ding:	0011	0011 11da ffff ffff							
Desc	ription:	ts of register 'f d. If 'd' is '0', th '. If 'd' is '1', th is '0', the next eady fetched, s executed ins e instruction. The Access Bar the BSR is used and the extended ed, this instruct Literal Offset A ever $f \le 95$ (5f 2.3 for details	are ne result is e result is instruction, is discarded stead, making nk is selected. d to select the ed instruction operates addressing Fh). See							
Word	s:	1								
Cycle	es:	1(2) Note: 3 cy by a	vcles if skip an a 2-word instru	d followed iction.						
QC	ycle Activity:									
1	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process Data	Write to destination						
lf sk	ip:	-		<u>. </u>						
	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
lf sk	ip and followe	d by 2-word ins	struction:	04						
ĺ	Q1	Q2	Q3	Q4						
	operation	operation	operation	operation						
	No	No	No	No						
	operation	operation	operation	operation						
Exan	nple:	HERE I NZERO : ZERO :	INCFSZ CN	T, 1, 0						
	PC PC After Instructic CNT	tion = Address on = CNT + 1	(HERE)							
	If CNT PC If CNT	= 0; = Address ≠ 0;	(ZERO)							
	PC	= Address	(NZERO)							

INFS	INFSNZ Increment f, skip if not 0								
Synta	ax:	INFSNZ f {,d {,a}}							
Oper	ands:	$0 \le f \le 255 d \in [0,1] a \in [0,1] (b) + 1 = dept$							
Oper	ation:	(f) + 1 \rightarrow dest, skip if result \neq 0							
Statu	s Affected:	None							
Enco	ding:	0100	10da ff	ff ffff					
Dest	прион.	The contents of register T are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See							
Word	s:	1							
Cycle Q C	es: vcle Activity:	1(2) Note: 3 cy by a	/cles if skip a a 2-word instr	nd followed uction.					
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	Write to destination					
lf sk	ip:		•						
	Q1	Q2 Q3 Q4							
No No No No No peration operation									
lf sk	ip and followe	d by 2-word in	struction:	•					
	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					

No

operation

Before Instruction PC

After Instruction

REG If REG PC If REG PC

Example:

No

operation

HERE

ZERO NZERO

=

=

≠ = = =

No

operation

Address (HERE)

Address (NZERO) 0; Address (ZERO)

REG + 1

0;

INFSNZ REG, 1, 0

No

operation

RE	FIE	Return fro	om Interrupt	t	RET	LW	Return lite	eral to W	
Synt	ax:	RETFIE {s	;}		Synta	ax:	RETLW k		
Оре	rands:	$s \in [0,1]$			Oper	ands:	$0 \leq k \leq 255$		
Ope	ration:	$(TOS) \rightarrow P(1)$ 1 \rightarrow GIE/GI if s = 1,	C, EH or PEIE/G	iIEL;	Oper	ation:	$k \rightarrow W$, (TOS) $\rightarrow P$ PCLATU, P	C, CLATH are ι	inchanged
		$(WS) \rightarrow W,$ (STATUSS)	→ STATUS		Statu	is Affected:	None		
		$(BSRS) \rightarrow I$	BSR,		Enco	oding:	0000	1100 kł	kk kkkk
		PCLATU, P	CLATH are ur	nchanged	Desc	ription:	W is loaded	I with the eig	ht-bit literal 'k'.
Status Affected:		GIE/GIEH,	GIE/GIEH, PEIE/GIEL.			The program counter is loaded to the stack (the return add			
Enco	oding:	0000 0000 0001 000s				The high address latch (PCLATH)			
Des	cription:	Return from	interrupt. Sta	ck is popped			remains un	changed.	
		the PC. Inte	errupts are ena	abled by	Word	ls:	1		
		setting eithe	er the high or l	ow-priority	Cycle	es:	2		
		global interr	upt enable bit	If 's' = 1, the	QC	ycle Activity:			
		STATUSS a	and BSRS, are	e loaded into		Q1	Q2	Q3	Q4
		their corres STATUS an	ponding regist d BSR. If 's' = uisters occurs	ers, W, 0, no update		Decode	Read literal 'k'	Process Data	Pop PC from stack, Write to W
Wor	de.	1				No	No	No	No
Cvcl	es.	2				operation	operation	operation	operation
00	vcle Activity	_			Evon	nnlo:			
~ ~	Q1	Q2	Q3	Q4		<u>lipie.</u>			
	Decode	No operation	No operation	Pop PC from stack Set GIEH or GIEL		CALL TABLE	; W contai ; offset w ; W now ha ; table va	ins table value as alue	
	No	No	No	No	TABI	LE			
	operation	operation	operation	operation		ADDWF PCL RETLW k0	; W = offs ; Begin ta	set able	
Exa	<u>mple:</u>	RETFIE 1	L			RETLW kl	;		
	After Interrupt PC W BSR STATUS		= TOS = WS = BSRS = STATI	ISS	:	RETLW kn	; End of t	able	
	GIE/GIE	H, PEIE/GIEL	= 1			Before Instruc	tion		
						W After Instructiv	= 07h		
						W	= value of	kn	

27.3 DC Characteristics: PIC18F6310/6410/8310/8410 (Industrial, Extended) PIC18LF6310/6410/8310/8410 (Industrial)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V	
D031A		RC3 and RC4	Vss	0.3 Vdd	V	I ² C [™] enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 Vdd	V	RC, EC modes ⁽¹⁾
D033B		OSC1	Vss	0.3	V	XT, LP modes
D034			Vss	0.3	V	
	VIH	Input High Voltage				
D040		I/O Ports:				
D040			0.25 VDD + 0.8V	VDD		VDD < 4.5V
D040A			2.0	VDD		$4.5V \leq VDD \leq 5.5V$
D041		With Schmitt Trigger Buffer		VDD		1 ² C anablad
D041A		RC3 and RC4		VDD		I-C enabled
D041B			2.1	VDD		Sivibus enabled
D042		MCLR		VDD		
D043		USC1		VDD		HS, HSPLL modes
D043A			0.8 VDD 0.9 VDD	VDD VDD		EC mode RC mode ⁽¹⁾
D043C		OSC1	1.6	VDD	v	XT, LP modes
D044		T13CKI	1.6	Vdd	V	
	lı∟	Input Leakage Current ^(2,3)				
D060		I/O Ports	—	±200	nA	VDD < 5.5V
				±50	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance } \\ VDD < 3V \\ VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance } \end{array}$
D061		MCLR	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

27.3 DC Characteristics: PIC18F6310/6410/8310/8410 (Industrial, Extended) PIC18LF6310/6410/8310/8410 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O Ports	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O Ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D092		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
		Capacitive Loading Specs on Output Pins					
D100	COSC2	OSC2 pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	_	400	pF	I ² C [™] Specification	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
100	Тироц	Clock High Time	100 kHz modo	$2(T_{OCO})(PPC + 1)$				
100	THIGH			2(10SC)(BRG + 1)		ms		
				2(10SC)(BRG + 1)		ms		
101	Trank	Ole als Laws Times		2(10SC)(BRG + 1)		ms		
101	ILOW	Clock Low Time	100 KHZ mode	2(IOSC)(BRG + 1)		ms		
			400 kHz mode	2(IOSC)(BRG + 1)		ms		
			1 MHz mode	2(Tosc)(BRG + 1)		ms		
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
103	TF	SDA and SCL	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
90	TSU:STA	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start condition	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	1	
106	THD:DAT	Data Input	100 kHz mode	0	—	ns		
106 Thd:dat	Hold Time	400 kHz mode	0	0.9	ms			
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)	
		Setup Time	400 kHz mode	100	_	ns		
92	Tsu:sto	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
109	ΤΑΑ	Output Valid	100 kHz mode		3500	ns		
		from Clock	400 kHz mode		1000	ns		
			1 MHz mode ⁽¹⁾	_	_	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free	
			400 kHz mode	1.3	—	ms	before a new transmission can start	
D102	Св	Bus Capacitive L	oading	—	400	pF		

TABLE 27-22: MASTER SSP I ² C™ BUS DATA REQUIREMEN

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, Parameter #102 + Parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before the SCL line is released.

L

I/O Ports	125
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	210
Associated Registers	
Baud Rate Generator	
Bus Collision	014
During a Repeated Start Condition	
During a Start Condition	215
Clock Arbitration	204
Clock Stretching	196
10-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Receive Mode (SEN = 1)	
Effect of a Reset	
General Call Address Support	
I ² C Clock Rate w/BRG	
Master Mode	201
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition	
Transmission	
Transmit Sequence	
Multi-Master Communication, Bus Collision	
and Arbitration	211
Multi-Master Mode	211
Operation	190
Read/Write Bit Information (R/W Bit)	. 190, 191
Registers	186
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Sleep Operation	
	201 206
Ide Modes	. 201, 290
PRI IDI F	51
	318
INCESZ	319
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	.281.296
Indexed Literal Offset Addressing	- ,
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	86, 344
Effect on Standard PIC18 Instructions	
Mapping the Access Bank	
Indirect Addressing	85
INFSNZ	
Initialization Conditions for all Registers	63–66
Instruction Cycle	73
Clocking Scheme	73
Instruction Flow/Pipelining	73
Instruction Set	
ADDLW	
ADDWF (Indexed Literal Offset mode)	
	200
	306
B 10	

BNC	307
BNN	307
BNOV	308
BNZ	308
BOV	311
BRA	309
BSF	309
BSF (Indexed Literal Offset mode)	345
	310
	210
P7	212
	312
	312
	313
COME	314
CPESEO	314
CPESGT	315
CPESLT	315
DAW	316
DCESNZ	317
DECE	316
DECESZ	317
Extended Instructions	339
Svntax	339
General Format	299
GOTO	318
INCE	318
INCESZ	319
INFSNZ	319
IORI W	320
IORWE :	320
	320 321
LFSR	320 321 321
IORWF	320 321 321 321
IORWF	320 321 321 322 322
IORWF LFSR MOVF MOVF MOVFF MOVLB MOVLB	320 321 321 322 322 322 323
IORWF LFSR MOVF MOVFF MOVLB MOVLB MOVLW	 320 321 321 322 322 323 323 323
IORWF LFSR MOVF MOVFF MOVLB MOVLB MOVLW MOVWF MULLW	 320 321 321 322 322 323 323 324
IORWF LFSR MOVF MOVFF MOVLB MOVLB MOVLW MOVWF MULLW MULWF	 320 321 321 322 322 323 323 324 324
IORWF LFSR MOVF MOVFF MOVLB MOVLB MOVLW MOVWF MULLW MULWF NEGF	 320 321 321 322 322 323 323 324 324 325
IORWF	 320 321 321 322 322 323 323 324 324 325 325 325
IORWF	 320 321 321 322 322 323 323 324 324 324 325 325 298
IORWF	 320 321 321 322 322 323 323 324 324 324 325 325 328 326
IORWF	320 321 321 322 322 323 323 323 324 324 325 325 325 325 298 326 326
IORWF	 320 321 321 322 323 323 324 324 325 325 298 326 326 327
IORWF	 320 321 321 322 323 323 324 325 326 326 327 327
IORWF	 320 321 321 322 323 323 324 325 325 298 326 326 327 327 328
IORWF	 320 321 321 322 322 323 323 324 325 325 326 326 326 327 328 328
IORWF	320 321 321 322 322 323 323 323 324 324 324 325 325 298 326 326 327 328 327 328 328 329
IORWF LFSR MOVF MOVFF MOVLW MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RETURN RLCF	320 321 321 322 322 323 323 323 323 324 324 324 325 325 325 326 326 327 328 327 328 329 329
IORWF	320 321 321 322 322 323 323 323 323 323 323
IORWF LFSR MOVF MOVFF MOVLW MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RLCF RLOF	320 321 321 322 322 322 323 324 324 324 325 325 326 326 327 328 328 329 329 329 329 330
IORWF	320 321 321 322 322 323 323 324 324 325 325 298 326 327 328 326 327 328 329 329 329 329 330 3330
IORWF LFSR MOVF MOVFF MOVLB MOVWF MULW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RLCF RLNCF RRNCF SETF	320 321 321 322 322 323 323 323 324 324 325 325 298 326 327 328 326 327 328 329 330 330 330 331
IORWF LFSR MOVF MOVF MOVF MOVLB MOVLB MOVWF MULW MULW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETFIE RETFIE RETTW RETURN RETURN RLCF RLNCF RRCF RRCF SETF SETF [Indexed Literal Offset mode]	320 321 321 322 322 323 323 323 324 324 325 325 298 326 326 327 328 329 330 331 331 331
IORWF LFSR MOVF MOVF MOVFF MOVLB MOVUW MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RETURN RLCF RETLW RETURN RLCF RRCF RRCF SETF SETF SETF (Indexed Literal Offset mode) SLEEP	320 321 321 322 322 323 323 324 324 325 325 325 326 327 328 327 328 329 330 330 331 331 335
IORWF LFSR MOVF MOVF MOVF MOVLB MOVLB MOVWF MULW MULW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETFIE RETFIE RETTR RETURN RLCF RLNCF RLNCF RRCF SETF SETF (Indexed Literal Offset mode) SLEEP SUBFWB	320 321 321 322 322 323 323 324 324 325 325 325 325 326 327 328 327 328 329 330 331 331 331 332
IORWF LFSR MOVF MOVF MOVFF MOVLB MOVUW MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RETURN RLCF RETLW RETURN RLCF RRCF RRCF SETF SETF SETF SETF SETF SETF SETF SET	320 321 321 322 322 323 324 324 325 325 325 325 325 326 327 328 329 330 331 331 331 331 332 332
IORWF LFSR MOVF MOVF MOVF MOVLB MOVUB MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RETURN RLCF RETLW RETURN RLCF RLNCF RRCF SETF SETF SETF SETF SETF SETF SETF SET	320 321 321 322 322 323 322 323 324 324 325 325 325 325 325 326 327 328 329 330 331 331 331 332 333 333
IORWF LFSR MOVF MOVF MOVF MOVLB MOVUB MOVWF MULLW MULWF NEGF NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE RETLW RETURN RLCF RETLW RETURN RLCF RLNCF RRCF SETF SETF SETF SETF (Indexed Literal Offset mode) SLEEP SUBFWB SUBLW SUBWF SUBWF SUBWF	320 321 322 322 322 323 324 324 325 325 325 325 326 327 328 329 330 331 331 332 333 333 333