Welcome to **E-XFL.COM** ### **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 10200 | | Total RAM Bits | 282624 | | Number of I/O | 195 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BGA | | Supplier Device Package | 256-FPBGA (17x17) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/lfec10e-3f256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # LatticeECP/EC Family Data Sheet Architecture September 2012 Data Sheet ## **Architecture Overview** The LatticeECP-DSP and LatticeEC architectures contain an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR), as shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks, as shown in Figure 2-2. There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks. Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM. The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeECP/EC architecture provides up to four PLLs per device. Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™ port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage. **Polarity Control Logic** #### **Modes of Operation** Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes | | Logic | Ripple | RAM | ROM | |-----------|--------------------|-----------------------|---------|-------------| | PFU Slice | LUT 4x2 or LUT 5x1 | 2-bit Arithmetic Unit | SPR16x2 | ROM16x1 x 2 | | PFF Slice | LUT 4x2 or LUT 5x1 | 2-bit Arithmetic Unit | N/A | ROM16x1 x 2 | **Logic Mode:** In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices. **Ripple Mode:** Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice: - · Addition 2-bit - Subtraction 2-bit - Add/Subtract 2-bit using dynamic control - Up counter 2-bit - Down counter 2-bit - · Ripple mode multiplier building block - · Comparator functions of A and B inputs - A greater-than-or-equal-to B - A not-equal-to B - A less-than-or-equal-to B Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices. **RAM Mode:** In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information about using RAM in LatticeECP/EC devices, please see the list of technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM | | SPR16x2 | DPR16x2 | |------------------|---------|---------| | Number of slices | 1 | 2 | Note: SPR = Single Port RAM, DPR = Dual Port RAM