

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	19700
Total RAM Bits	434176
Number of I/O	400
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfec20e-4fn672c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. Slice Diagram

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Secondary Clock Sources

LatticeECP/EC devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-7.

Figure 2-7. Secondary Clock Sources

Clock Routing

The clock routing structure in LatticeECP/EC devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-8 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-9. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-10.

Figure 2-8. Per Quadrant Primary Clock Selection

Figure 2-9. Per Quadrant Secondary Clock Selection

Figure 2-10. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signal to the feedback divider: from CLKOP (PLL Internal), from clock net (CLKOP) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro-

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

Figure 2-15 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

Figure 2-15. sysMEM EBR Primitives

The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-16.

IPexpress[™]

The user can access the sysDSP block via the IPexpress configuration tool, included with the ispLEVER design tool suite. IPexpress has options to configure each DSP module (or group of modules) or through direct HDL instantiation. Additionally Lattice has partnered Mathworks to support instantiation in the Simulink tool, which is a Graphical Simulation Environment. Simulink works with ispLEVER and dramatically shortens the DSP design cycle in Lattice FPGAs.

Optimized DSP Functions

Lattice provides a library of optimized DSP IP functions. Some of the IPs planned for LatticeECP DSP are: Bit Correlators, Fast Fourier Transform, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/ Decoder, Turbo Encoder/Decoders and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IPs.

Resources Available in the LatticeECP Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP family. Table 2-10 shows the maximum available EBR RAM Blocks in each of the LatticeECP family. EBR blocks, together with Distributed RAM can be used to store variables locally for the fast DSP operations.

Device	DSP Block 9x9 Multiplier 18x18 M		18x18 Multiplier	36x36 Multiplier
LFECP6	4	32	16	4
LFECP10	5	40	20	5
LFECP15	6	48	24	6
LFECP20	7	56	28	7
LFECP33	8	64	32	8

Table 2-9. Number of DSP Blocks in LatticeECP Family

Table 2-10. Embedded SRAM in LatticeECP Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
LFECP6	10	92
LFECP10	30	276
LFECP15	38	350
LFECP20	46	424
LFECP33	54	498

DSP Performance of the LatticeECP Family

Table 2-11 lists the maximum performance in millions of MAC operations per second (MMAC) for each member of the LatticeECP family.

 Table 2-11. DSP Block Performance of LatticeECP Family

Device	DSP Block	DSP Performance MMAC
LFECP6	4	3680
LFECP10	5	4600
LFECP15	6	5520
LFECP20	7	6440
LFECP33	8	7360

Figure 2-28. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-29 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-30 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeECP/EC family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysl/O buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysl/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysl/O Buffer Banks

LatticeECP/EC devices have eight sysl/O buffer banks; each is capable of supporting multiple I/O standards. Each sysl/O bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-34 shows the eight banks and their associated supplies.

In the LatticeECP/EC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeECP/EC devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeECP/EC devices, some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Oscillator

Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 2-15 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Clock frequency.
- 2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)		
2.5*	13	45		
4.3	15	51		
5.4	20	55		
6.9	26	60		
8.1	30	130		
9.2	34	—		
10.0	41	—		

Table 2-15. Selectable Maste	r Clock (CCLK)	Frequencies	During	Configuration
------------------------------	----------------	-------------	--------	---------------

Density Shifting

The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeECP/EC devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in

Figure 3-1 is one possible solution for point-to-point signals.

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{OH}	Output high voltage	1.42	V
V _{OL}	Output low voltage	1.08	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	3⁄4

LatticeECP/EC Family Data Sheet Pinout Information

September 2012

Data Sheet

Signal Descriptions

Signal Name	I/O	Description
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.
		Some of these user-programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.
		During configuration the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
GSRN	Ι	Global RESET signal (active low). Any I/O pin can be GSRN.
NC	_	No connect.
GND		Ground. Dedicated pins.
V _{CC}	_	Power supply pins for core logic. Dedicated pins.
V _{CCAUX}		Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}		Power supply pins for I/O bank x. Dedicated pins.
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.
XRES		10K ohm +/-1% resistor must be connected between this pad and ground.
V _{CCPLL}	_	Power supply pin for PLL.pApplicable to ECP/EC33 device.
PLL and Clock Functions (Used as user	progra	ammable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN_A	Ι	Reference clock (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.
[LOC][num]_PLL[T, C]_FB_A	Ι	Optional feedback (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.
PCLK[T, C]_[n:0]_[3:0]	I	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0,1,2,3 within bank.
[LOC]DQS[num]	Ι	DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output.
Test and Programming (Dedicated pins)		
TMS	Ι	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.
тск	Ι	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins		
D[Edgo] [n 4]	A	DQ		
	В	DQ		
P[Edge] [n-3]	A	DQ		
	В	DQ		
P[Edge] [n-2]	A	DQ		
	В	DQ		
P[Edge] [n-1]	А	DQ		
	В	DQ		
P[Edge] [n]	А	[Edge]DQSn		
	В	DQ		
P[Edge] [n+1]	A	DQ		
	В	DQ		
P[Edge] [n 2]	А	DQ		
i [Euge] [ii+2]	В	DQ		
P[Edge] [n+3]	A	DQ		
i [⊏oge] [ii⊤o]	В	DQ		

Notes:

1. "n" is a Row/Column PIC number

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.

LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)

	LFECP6/LFEC6			LFECP	10/LFE	C10		
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function
43	PL24A	6	Т	LDQS24	PL33A	6	Т	LDQS33
44	PL24B	6	С		PL33B	6	С	
45	PL25A	6	Т		PL34A	6	Т	
46	PL25B	6	С		PL34B	6	С	
47	PL26A	6	Т		PL35A	6	Т	
48	PL26B	6	С		PL35B	6	С	
49	PL27A	6	Т	VREF1_6	PL36A	6	Т	VREF1_6
50	PL27B	6	С	VREF2_6	PL36B	6	С	VREF2_6
51	VCCIO6	6			VCCIO6	6		
52*	GND5 GND6	-			GND5 GND6	-		
53	VCCIO5	5			VCCIO5	5		
54	PB2A	5	Т		PB2A	5	Т	
55	PB2B	5	С		PB2B	5	С	
56	PB3A	5	Т		PB3A	5	Т	
57	PB3B	5	С		PB3B	5	С	
58	PB4A	5	Т		PB4A	5	Т	
59	PB4B	5	С		PB4B	5	С	
60	PB5A	5	Т		PB5A	5	Т	
61	PB5B	5	С		PB5B	5	С	
62	PB6A	5	Т	BDQS6	PB6A	5	Т	BDQS6
63	PB6B	5	С		PB6B	5	С	
64	VCCIO5	5			VCCIO5	5		
65	PB10A	5	Т		PB18A	5	Т	
66	PB10B	5	С		PB18B	5	С	
67	PB11A	5	Т		PB19A	5	Т	
68	PB11B	5	С		PB19B	5	С	
69	PB12A	5	Т		PB20A	5	Т	
70	PB12B	5	С		PB20B	5	С	
71	PB13A	5	Т		PB21A	5	Т	
72	GND5	5			GND5	5		
73	PB13B	5	С		PB21B	5	С	
74	VCCIO5	5			VCCIO5	5		
75	PB14A	5	Т	BDQS14	PB22A	5	Т	BDQS22
76	PB14B	5	С		PB22B	5	С	
77	PB15A	5	Т		PB23A	5	Т	
78	PB15B	5	С		PB23B	5	С	
79	PB16A	5	Т	VREF2_5	PB24A	5	Т	VREF2_5
80	PB16B	5	С	VREF1_5	PB24B	5	С	VREF1_5
81	PB17A	5	Т	PCLKT5_0	PB25A	5	Т	PCLKT5_0
82	GND5	5			GND5	5		
83	PB17B	5	С	PCLKC5_0	PB25B	5	С	PCLKC5_0
84	VCCAUX	-			VCCAUX	-		

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

1	LFECP2	20/LFE	C20		LFECP/LFEC33				
			LVD				_ .	LVD	
Ball Number	Ball Function	Bank	S	Dual Function	Ball Number	Ball Function	Bank	S	Dual Function
V2	PL41B	6	<u>с</u> т	LLMO_PLLC_IN_A	V2	PL53B	6		LLMO_PLLC_IN_A
03	PL42A	6		LLINO_PLLI_FB_A	03	PL34A	6		LLIMO PLLI_FB_A
V3	PL42B	6	<u>т</u>		V3	PL34B	6	т	
04 V5	PL43A	6	г С		04 V5	PLSSA	6		
V3 W/1	PL43D	6	<u>т</u>		V3 \\\/1	PL56A	6	т	
GND		6			GND	GND6	6	-	
W/2		6	<u> </u>		W2	PI 56B	6	C	
V12	PI 454	6	<u>т</u>		V1	PI 57A	6	т	
V2	PL 45R	6			¥2	PI 57B	6		LDQ007
ΔΔ1	PL 464	6	<u>т</u>		ΔΔ1	PI 584	6	т	
	PL/6B	6	- -		AA1 AA2	PI 58B	6		
		6	<u>т</u>			PI 59A	6	т	
V/4	PL 47B	6			V4 V4	PI 59B	6	C	
W/3		6	<u>т</u>	VREE1 6	W/3	PI 68A	6	т	VBEE1 6
V3	PL 48B	6		VBEF2_6	¥3	PL 68B	6	C	VBEE2_6
GND	GND6	6	0		GND	GND6	6	-	
GND	GND5	5			GND	GND6	6		
GND	-	5			GND	GND6	6		
GND	-				GND	GND5	5		
GND	GND5	5			GND	GND5	5		
V7	PB104	5	т		V7	PB104	5	т	
T6	PB10R	5	С		T6	PB10R	5	C	
V8	PB11A	5	T		V8	PB11A	5	т	
U7	PB11B	5	C		U7	PB11B	5	C	
W5	PB12A	5	т		W5	PB12A	5	Т	
U6	PB12B	5	C		U6	PB12B	5	C	
AA3	PB13A	5	T		AA3	PB13A	5	Т	
GND	GND5	5			GND	GND5	5		
AB3	PB13B	5	С		AB3	PB13B	5	С	
Y6	PB14A	5	Т	BDQS14	Y6	PB14A	5	Т	BDQS14
V6	PB14B	5	С		V6	PB14B	5	С	
AA5	PB15A	5	Т		AA5	PB15A	5	Т	
W6	PB15B	5	С		W6	PB15B	5	С	
Y5	PB16A	5	Т		Y5	PB16A	5	Т	
Y4	PB16B	5	С		Y4	PB16B	5	С	
AA4	PB17A	5	Т		AA4	PB17A	5	Т	
GND	GND5	5			GND	GND5	5		
AB4	PB17B	5	С		AB4	PB17B	5	С	
Y7	PB18A	5	Т		Y7	PB18A	5	Т	
W8	PB18B	5	С		W8	PB18B	5	С	
W7	PB19A	5	Т		W7	PB19A	5	Т	
U8	PB19B	5	С		U8	PB19B	5	С	
W9	PB20A	5	Т		W9	PB20A	5	Т	

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

LFECP20/LFEC20					LFECP/LFEC33				
Dell Number	Dell Function	Denk	LVD	Duel Function	Dell Number	Bell Eurotion	Denk	LVD	Duel Function
AB1		вапк	2	Dual Function	AB1		вапк	5	Dual Function
AB22	GND	-			AB22	GND	-		
H15	GND	-			H15	GND	-		
H8	GND	-			H8	GND	-		
J10	GND	-			J10	GND	-		
J11	GND	-			J11	GND	-		
J12	GND	-			J12	GND	-		
J13	GND	-			J13	GND	-		
J14	GND	-			J14	GND	-		
J9	GND	-			J9	GND	-		
K10	GND	-			K10	GND	-		
K11	GND	-			K11	GND	-		
K12	GND	-			K12	GND	-		
K13	GND	-			K13	GND	-		
K14	GND	-			K14	GND	-		
K9	GND	-			K9	GND	-		
L10	GND	-			L10	GND	-		
L11	GND	-			L11	GND	-		
L12	GND	-			L12	GND	-		
L13	GND	-			L13	GND	-		
L14	GND	-			L14	GND	-		
L9	GND	-			L9	GND	-		
M10	GND	-			M10	GND	-		
M11	GND	-			M11	GND	-		
M12	GND	-			M12	GND	-		
M13	GND	-			M13	GND	-		
M14	GND	-			M14	GND	-		
M9	GND	-			M9	GND	-		
N10	GND	-			N10	GND	-		
N11	GND	-			N11	GND	-		
N12	GND	-			N12	GND	-		
N13	GND	-			N13	GND	-		
N14	GND	-			N14	GND	-		
N9	GND	-			N9	GND	-		
P10	GND	-			P10	GND	-		
P11	GND	-			P11	GND	-		
P12	GND	-			P12	GND	-		
P13	GND	-			P13	GND	-		
P14	GND	-			P14	GND	-		
P9	GND	-			P9	GND	-		
H15	GND	-			H15	GND	-		
H8	GND	-			H8	GND	-		
J16	VCC	-			J16	VCC	-		
J7	VCC	-			J7	VCC	-		

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33					
Ball Number	Ball Function	Bank	LVD S	Dual Function	Ball Number	Ball Function	Bank	LVD S	Dual Function	
L7	VCCIO7	7			L7	VCCIO7	7			
L8	VCCIO7	7			L8	VCCIO7	7			
G15	VCCAUX	-			G15	VCCAUX	-			
G16	VCCAUX	-			G16	VCCAUX	-			
G7	VCCAUX	-			G7	VCCAUX	-			
G8	VCCAUX	-			G8	VCCAUX	-			
H16	VCCAUX	-			H16	VCCAUX	-			
H7	VCCAUX	-			H7	VCCAUX	-			
R16	VCCAUX	-			R16	VCCAUX	-			
R7	VCCAUX	-			R7	VCCAUX	-			
T15	VCCAUX	-			T15	VCCAUX	-			
T16	VCCAUX	-			T16	VCCAUX	-			
Τ7	VCCAUX	-			Τ7	VCCAUX	-			
Т8	VCCAUX	-			Т8	VCCAUX	-			
J6	VCC ¹	-			J6	VCCPLL	-			
J17	VCC ¹	-			J17	VCCPLL	-			
P6	VCC ¹	-			P6	VCCPLL	-			
P17	VCC ¹	-			P17	VCCPLL	-			
A2	NC	-			A2	NC	-			
AB2	NC	-			AB2	NC	-			
A21	NC	-			A21	NC	-			
1. Tied to V _{CCP}	LL.				•					

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA

	LF	EC20/L	FECP2	0	LFECP/EC33				
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
GND	GND7	7			GND	GND7	7		
E3	PL2A	7	Т	VREF2_7	E3	PL2A	7	Т	VREF2_7
E4	PL2B	7	С	VREF1_7	E4	PL2B	7	С	VREF1_7
E5	NC	-			E5	PL6A	7	Т	LDQS6
D5	NC	-			D5	PL6B	7	С	
F4	NC	-			F4	PL7A	7	Т	
F5	NC	-			F5	PL7B	7	С	
C3	NC	-			C3	PL8A	7	Т	
D3	NC	-			D3	PL8B	7	С	
C2	NC	-			C2	PL9A	7	Т	
-	-	-			GND	GND7	7		
B2	NC	-			B2	PL9B	7	С	
B1	PL3A	7	Т		B1	PL10A	7	Т	
C1	PL3B	7	С		C1	PL10B	7	С	
F3	PL4A	7	Т		F3	PL11A	7	Т	
G3	PL4B	7	С		G3	PL11B	7	С	
D2	PL5A	7	Т		D2	PL12A	7	Т	
E2	PL5B	7	С		E2	PL12B	7	С	
-	-	-			GND	GND7	7		
D1	PL6A	7	Т	LDQS6	D1	PL14A	7	Т	LDQS14
E1	PL6B	7	С		E1	PL14B	7	С	
F2	PL7A	7	Т		F2	PL15A	7	Т	
G2	PL7B	7	С		G2	PL15B	7	С	
F6	PL8A	7	Т	LUM0_PLLT_IN_A	F6	PL16A	7	Т	LUM0_PLLT_IN_A
G6	PL8B	7	С	LUM0_PLLC_IN_A	G6	PL16B	7	С	LUM0_PLLC_IN_A
H4	PL9A	7	Т	LUM0_PLLT_FB_A	H4	PL17A	7	Т	LUM0_PLLT_FB_A
GND	GND7	7			GND	GND7	7		
G4	PL9B	7	С	LUM0_PLLC_FB_A	G4	PL17B	7	С	LUM0_PLLC_FB_A
H6	NC	-			H6	PL19A	7	Т	
J7	NC	-			J7	PL19B	7	С	
G5	NC	-			G5	PL20A	7	Т	
H5	NC	-			H5	PL20B	7	С	
H3	NC	-			H3	PL21A	7	Т	
J3	NC	-			J3	PL21B	7	С	
H2	NC	-			H2	PL22A	7	Т	
-	-	-			GND	GND7	7		
J2	NC	-			J2	PL22B	7	С	
J4	PL11A	7	Т		J4	PL23A	7	Т	LDQS23
J5	PL11B	7	С		J5	PL23B	7	С	
K4	PL12A	7	Т		K4	PL24A	7	Т	
K5	PL12B	7	С		K5	PL24B	7	С	
J6	PL13A	7	Т		J6	PL25A	7	Т	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

LFEC20/LFECP20					LFECP/EC33				
Ball	Ball	Bank		Dual Eurotian	Ball	Ball	Ponk		Dual
Number	FUNCTION	Бапк	LVDS	Dual Function	Number		Бапк	LVDS	Function
P5	PL32B	0			P5	PL44B	6		
P6	PL33A	6	1		P6	PL45A	6	1	
R5	PL33B	6	C T		R5	PL45B	6	C T	
01	PL34A	6	I		01	PL46A	6	1	
02	PL34B	6	C		02	PL46B	6	C	
T3	PL35A	6	Т		Т3	PL47A	6	Т	
GND	GND6	6			GND	GND6	6		
T4	PL35B	6	С		T4	PL47B	6	С	
R6	PL36A	6	Т	LDQS36	R6	PL48A	6	Т	LDQS48
T5	PL36B	6	С		T5	PL48B	6	С	
T6	PL37A	6	Т		T6	PL49A	6	Т	
U5	PL37B	6	С		U5	PL49B	6	С	
U3	PL38A	6	Т		U3	PL50A	6	Т	
U4	PL38B	6	С		U4	PL50B	6	С	
V1	PL39A	6	Т		V1	PL51A	6	Т	
GND	GND6	6			GND	GND6	6		
V2	PL39B	6	С		V2	PL51B	6	С	
U7	ТСК	6			U7	TCK	6		
V4	TDI	6			V4	TDI	6		
V5	TMS	6			V5	TMS	6		
V3	TDO	6			V3	TDO	6		
U6	VCCJ	6			U6	VCCJ	6		
W1	PL41A	6	Т	LLM0_PLLT_IN_A	W1	PL53A	6	Т	LLM0_PLLT_IN_A
W2	PL41B	6	С	LLM0_PLLC_IN_A	W2	PL53B	6	С	LLM0_PLLC_IN_A
V6	PL42A	6	Т	LLM0_PLLT_FB_A	V6	PL54A	6	Т	LLM0_PLLT_FB_A
W6	PL42B	6	С	LLM0_PLLC_FB_A	W6	PL54B	6	С	LLM0_PLLC_FB_A
Y1	PL43A	6	Т		Y1	PL55A	6	Т	
Y2	PL43B	6	С		Y2	PL55B	6	С	
W3	PL44A	6	Т		W3	PL56A	6	Т	
GND	GND6	6			GND	GND6	6		
W4	PL44B	6	С		W4	PL56B	6	С	
AA1	PL45A	6	Т	LDQS45	AA1	PL57A	6	Т	LDQS57
AB1	PL45B	6	С		AB1	PL57B	6	С	
Y4	PL46A	6	Т		Y4	PL58A	6	Т	
Y3	PL46B	6	С		Y3	PL58B	6	С	
AC1	PL47A	6	Т		AC1	PL59A	6	Т	
AB2	PL47B	6	С		AB2	PL59B	6	С	
AA2	NC	-	_		AA2	PL60A	6	Т	
-	-	-			GND	GND6	6		
AA3	NC	-			AA3	PL60B	6	С	
W5	NC	-			W5	PI 61A	6	T	
Y5	NC	-			Y5	PI 61R	6	C C	
15					15		0	0	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	EC20/L	FECP2)			LFECP	/EC33	
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
A21	PT51A	1	Т		A21	PT51A	1	Т	
E17	PT50B	1	С		E17	PT50B	1	С	
B17	PT50A	1	Т		B17	PT50A	1	Т	
C17	PT49B	1	С		C17	PT49B	1	С	
GND	GND1	1			GND	GND1	1		
D17	PT49A	1	Т		D17	PT49A	1	Т	
F17	PT48B	1	С		F17	PT48B	1	С	
E20	PT48A	1	Т		E20	PT48A	1	Т	
G17	PT47B	1	С		G17	PT47B	1	С	
B20	PT47A	1	Т		B20	PT47A	1	Т	
E16	PT46B	1	С		E16	PT46B	1	С	
A20	PT46A	1	Т	TDQS46	A20	PT46A	1	Т	TDQS46
A19	PT45B	1	С		A19	PT45B	1	С	
GND	GND1	1			GND	GND1	1		
B19	PT45A	1	Т		B19	PT45A	1	Т	
D16	PT44B	1	С		D16	PT44B	1	С	
C16	PT44A	1	Т		C16	PT44A	1	Т	
F16	PT43B	1	С		F16	PT43B	1	С	
A18	PT43A	1	Т		A18	PT43A	1	Т	
G16	PT42B	1	С		G16	PT42B	1	С	
B18	PT42A	1	Т		B18	PT42A	1	Т	
A17	PT41B	1	С		A17	PT41B	1	С	
GND	GND1	1			GND	GND1	1		
A16	PT41A	1	Т		A16	PT41A	1	Т	
D15	PT40B	1	С		D15	PT40B	1	С	
B16	PT40A	1	Т		B16	PT40A	1	Т	
E15	PT39B	1	С		E15	PT39B	1	С	
C15	PT39A	1	Т		C15	PT39A	1	Т	
F15	PT38B	1	С		F15	PT38B	1	С	
G15	PT38A	1	Т	TDQS38	G15	PT38A	1	Т	TDQS38
B15	PT37B	1	С		B15	PT37B	1	С	
GND	GND1	1			GND	GND1	1		
A15	PT37A	1	Т		A15	PT37A	1	Т	
E14	PT36B	1	С		E14	PT36B	1	С	
G14	PT36A	1	Т		G14	PT36A	1	Т	
D14	PT35B	1	С	VREF2_1	D14	PT35B	1	С	VREF2_1
E13	PT35A	1	Т	VREF1_1	E13	PT35A	1	Т	VREF1_1
F14	PT34B	1	С		F14	PT34B	1	С	
C14	PT34A	1	Т		C14	PT34A	1	Т	
B14	PT33B	0	С	PCLKC0_0	B14	PT33B	0	С	PCLKC0_0
GND	GND0	0			GND	GND0	0		
A14	PT33A	0	Т	PCLKT0_0	A14	PT33A	0	Т	PCLKT0_0

LFEC20E-4F672I

LFEC20E-3F484I

LFEC20E-4F484I

LFEC33E-3F672I

LFEC33E-4F672I

LFEC33E-3F484I

LFEC33E-4F484I

Part Number

400

360

360

I/Os

496

496

360

360

IND

IND

IND

Temp.

IND

IND

IND

IND

672

484

484

Pins

672

672

484

484

19.7K

19.7K

19.7K

LUTs

32.8

32.8

32.8

32.8

LatticeEC Industrial (Continued)

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFEC15E-3F484I	352	-3	fpBGA	484	IND	15.3K
LFEC15E-4F484I	352	-4	fpBGA	484	IND	15.3K
LFEC15E-3F256I	195	-3	fpBGA	256	IND	15.3K
LFEC15E-4F256I	195	-4	fpBGA	256	IND	15.3K
Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFEC20E-3F672I	400	-3	fpBGA	672	IND	19.7K

-4

-3

-4

Grade

-3

-4

-3

-4

fpBGA

fpBGA

fpBGA

Package

fpBGA

fpBGA

fpBGA

fpBGA

LatticeECP	Industrial

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP6E-3F484I	224	-3	fpBGA	484	IND	6.1K
LFECP6E-4F484I	224	-4	fpBGA	484	IND	6.1K
LFECP6E-3F256I	195	-3	fpBGA	256	IND	6.1K
LFECP6E-4F256I	195	-4	fpBGA	256	IND	6.1K
LFECP6E-3Q208I	147	-3	PQFP	208	IND	6.1K
LFECP6E-4Q208I	147	-4	PQFP	208	IND	6.1K
LFECP6E-3T144I	97	-3	TQFP	144	IND	6.1K
LFECP6E-4T144I	97	-4	TQFP	144	IND	6.1K

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFECP10E-3F484I	288	-3	fpBGA	484	IND	10.2K
LFECP10E-4F484I	288	-4	fpBGA	484	IND	10.2K
LFECP10E-3F256I	195	-3	fpBGA	256	IND	10.2K
LFECP10E-4F256I	195	-4	fpBGA	256	IND	10.2K
LFECP10E-3Q208I	147	-3	PQFP	208	IND	10.2K
LFECP10E-4Q208I	147	-4	PQFP	208	IND	10.2K

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFECP15E-3F484I	352	-3	fpBGA	484	IND	15.3K
LFECP15E-4F484I	352	-4	fpBGA	484	IND	15.3K
LFECP15E-3F256I	195	-3	fpBGA	256	IND	15.3K
LFECP15E-4F256I	195	-4	fpBGA	256	IND	15.3K

LatticeECP Commercial (Continued)

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFECP33E-3FN484C	360	-3	Lead-Free fpBGA	484	COM	32.8K
LFECP33E-4FN484C	360	-4	Lead-Free fpBGA	484	COM	32.8K
LFECP33E-5FN484C	360	-5	Lead-Free fpBGA	484	COM	32.8K

LatticeEC Industrial

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC1E-3QN208I	112	-3	Lead-Free PQFP	208	IND	1.5K
LFEC1E-4QN208I	112	-4	Lead-Free PQFP	208	IND	1.5K
LFEC1E-3TN144I	97	-3	Lead-Free TQFP	144	IND	1.5K
LFEC1E-4TN144I	97	-4	Lead-Free TQFP	144	IND	1.5K
LFEC1E-3TN100I	67	-3	Lead-Free TQFP	100	IND	1.5K
LFEC1E-4TN100I	67	-4	Lead-Free TQFP	100	IND	1.5K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC3E-3FN256I	160	-3	Lead-Free fpBGA	256	IND	3.1K
LFEC3E-4FN256I	160	-4	Lead-Free fpBGA	256	IND	3.1K
LFEC3E-3QN208I	145	-3	Lead-Free PQFP	208	IND	3.1K
LFEC3E-4QN208I	145	-4	Lead-Free PQFP	208	IND	3.1K
LFEC3E-3TN144I	97	-3	Lead-Free TQFP	144	IND	3.1K
LFEC3E-4TN144I	97	-4	Lead-Free TQFP	144	IND	3.1K
LFEC3E-3TN100I	67	-3	Lead-Free TQFP	100	IND	3.1K
LFEC3E-4TN100I	67	-4	Lead-Free TQFP	100	IND	3.1K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC6E-3FN484I	224	-3	Lead-Free fpBGA	484	IND	6.1K
LFEC6E-4FN484I	224	-4	Lead-Free fpBGA	484	IND	6.1K
LFEC6E-3FN256I	195	-3	Lead-Free fpBGA	256	IND	6.1K
LFEC6E-4FN256I	195	-4	Lead-Free fpBGA	256	IND	6.1K
LFEC6E-3QN208I	147	-3	Lead-Free PQFP	208	IND	6.1K
LFEC6E-4QN208I	147	-4	Lead-Free PQFP	208	IND	6.1K
LFEC6E-3TN144I	97	-3	Lead-Free TQFP	144	IND	6.1K
LFEC6E-4TN144I	97	-4	Lead-Free TQFP	144	IND	6.1K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC10E-3FN484I	288	-3	Lead-Free fpBGA	484	IND	10.2K
LFEC10E-4FN484I	288	-4	Lead-Free fpBGA	484	IND	10.2K
LFEC10E-3FN256I	195	-3	Lead-Free fpBGA	256	IND	10.2K
LFEC10E-4FN256I	195	-4	Lead-Free fpBGA	256	IND	10.2K
LFEC10E-3QN208I	147	-3	Lead-Free PQFP	208	IND	10.2K
LFEC10E-4QN208I	147	-4	Lead-Free PQFP	208	IND	10.2K