

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	32800
Total RAM Bits	434176
Number of I/O	496
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfec33e-3f672c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU and PFF Blocks

The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Diagram

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Secondary Clock Sources

LatticeECP/EC devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-7.

Figure 2-7. Secondary Clock Sources

Clock Routing

The clock routing structure in LatticeECP/EC devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-8 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-9. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-10.

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	Ι	Dynamic Delay Lag/Lead. "1": Lead, "0": Lag
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

For more information about the PLL, please see the list of technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved regardless of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-13 illustrates the DCS Block Macro.

Figure 2-13. DCS Block Primitive

Figure 2-14 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information about the DCS, please see the list of technical documentation at the end of this data sheet.

Input Register Block

The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysl/O buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, reduces input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-27 shows the input register waveforms for DDR operation and Figure 2-28 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Figure 2-26. Input Register Diagram

Figure 2-34. LatticeECP/EC Banks

LatticeECP/EC devices contain two types of sysl/O buffer pairs.

1. Top and Bottom sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps. These I/O banks also support hot socketing with IDK less than 1mA. Note that the PCI clamp is enabled after V_{CC} , V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysl/O Buffer Pairs (Differential and Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Only the left and right banks have LVDS differential output drivers. See the I_{DK} specification for I/O leakage current during power-up.

Oscillator

Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 2-15 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Clock frequency.
- 2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5*	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—

Table 2-15. Selectable Master	^r Clock (CCLK)	Frequencies	During	Configuration
-------------------------------	---------------------------	-------------	--------	---------------

Density Shifting

The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Typical Building Block Function Performance

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions	•	•
16-bit decoder	5.5	ns
32-bit decoder	6.9	ns
64-bit decoder	7.1	ns
4:1 MUX	4.3	ns
8:1 MUX	4.7	ns
16:1 MUX	5.0	ns
32:1 MUX	5.5	ns

Register-to-Register Performance¹

Function	-5 Timing	Units
Basic Functions		
16 bit decoder	410	MHz
32 bit decoder	283	MHz
64 bit decoder	272	MHz
4:1 MUX	613	MHz
8:1 MUX	565	MHz
16:1 MUX	526	MHz
32:1 MUX	442	MHz
8-bit adder	363	MHz
16-bit adder	353	MHz
64-bit adder	196	MHz
16-bit counter	414	MHz
32-bit counter	317	MHz
64-bit counter	216	MHz
64-bit accumulator	178	MHz
Embedded Memory Functions	·	
256x36 Single Port RAM	280	MHz
512x18 True-Dual Port RAM	280	MHz
Distributed Memory Functions	·	
16x2 Single Port RAM	460	MHz
64x2 Single Port RAM	375	MHz
128x4 Single Port RAM	294	MHz
32x2 Pseudo-Dual Port RAM	392	MHz
64x4 Pseudo-Dual Port RAM	332	MHz
DSP Function ²	·	
9x9 Pipelined Multiply/Accumulate	242	MHz
18x18 Pipelined Multiply/Accumulate	238	MHz
36x36 Pipelined Multiply	235	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Applies to LatticeECP devices only.

Timing v.G 0.30

LatticeECP/EC sysCONFIG Port Timing Specifications (Continued)

Parameter	Description	Min.	Тур.	Max.	Units
t _{SOE}	CSSPIN Active Setup Time	300		—	ns
t _{CSPID}	CSSPIN Low to First Clock Edge Setup Time	300+3cyc		600+6cyc	ns
f _{MAXSPI}	Max Frequency for SPI	—		25	MHz
t _{SUSPI}	SOSPI Data Setup Time Before CCLK	7		—	ns
t _{HSPI}	SOSPI Data Hold Time After CCLK	1		—	ns

Timing v.G 0.30

Master Clock

Clock Mode	Min.	Тур.	Max.	Units
2.5MHz	1.75	2.5	3.25	MHz
5 MHz	3.78	5.4	7.02	MHz
10 MHz	7	10	13	MHz
15 MHz	10.5	15	19.5	MHz
20 MHz	14	20	26	MHz
25 MHz	18.2	26	33.8	MHz
30 MHz	21	30	39	MHz
35 MHz	23.8	34	44.2	MHz
40 MHz	28.7	41	53.3	MHz
45 MHz	31.5	45	58.5	MHz
50 MHz	35.7	51	66.3	MHz
55 MHz	38.5	55	71.5	MHz
60 MHz	42	60	78	MHz
Duty Cycle	40	—	60	%

Timing v.G 0.30

Figure 3-12. sysCONFIG Parallel Port Read Cycle

1. In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.

Figure 3-13. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.

Figure 3-14. sysCONFIG Master Serial Port Timing

Figure 3-16. Power-On-Reset (POR) Timing

1. Time taken from V_{CC} or V_{CCAUX}, whichever is the last to reach its V_{MIN} .

2. Device is in a Master Mode.

3. The CFG pins are normally static (hard wired).

Figure 3-17. Configuration from PROGRAMN Timing

1. The CFG pins are normally static (hard wired)

Figure 3-18. Wake-Up Timing

Figure 3-19. sysCONFIG SPI Port Sequence

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	8	—	ns
t _{BTH}	TCK [BSCAN] hold time	10	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	—	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable		25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Timing v.G 0.30

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins
D[Edgo] [n 4]	А	DQ
	В	DQ
P[Edge] [n-3]	А	DQ
	В	DQ
P[Edge] [n-2]	A	DQ
	В	DQ
P[Edge] [n-1]	А	DQ
	В	DQ
P[Edge] [n]	А	[Edge]DQSn
	В	DQ
P[Edge] [n+1]	A	DQ
	В	DQ
P[Edge] [n 2]	А	DQ
i [Euge] [ii+2]	В	DQ
P[Edge] [n+3]	A	DQ
i [⊏oge] [ii⊤o]	В	DQ

Notes:

1. "n" is a Row/Column PIC number

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.

Pin Information Summary (Cont.)

		LFECP/EC15		LFECP20/EC20		LFECP/EC33	
Pin	Pin Type		484-fpBGA	484-fpBGA	672-fpBGA	484-fpBGA	672-fpBGA
Single Ended Use	Single Ended User I/O		352	360	400	360	496
Differential Pair L	lser I/O	97	176	180	200	180	248
Configuration	Dedicated	13	13	13	13	13	13
Configuration	Muxed	56	56	56	56	56	56
TAP		5	5	5	5	5	5
Dedicated (total v	vithout supplies)	208	373	373	509	373	509
V _{CC}		10	20	20	32	16	28
V _{CCAUX}		2	12	12	20	12	20
V _{CCPLL}		0	0	0	0	4	4
	Bank0	2	4	4	6	4	6
	Bank1	2	4	4	6	4	6
	Bank2	2	4	4	6	4	6
V.	Bank3	2	4	4	6	4	6
V CCIO	Bank4	2	4	4	6	4	6
	Bank5	2	4	4	6	4	6
	Bank6	2	4	4	6	4	6
	Bank7	2	4	4	6	4	6
GND, GND0-GNI	7	20	44	44	63	44	63
NC		0	11	3	96	3	0
	Bank0	32/16	48/24	48/24	64/32	48/24	64/32
	Bank1	18/9	48/24	48/24	48/24	48/24	64/32
	Bank2	16/8	40/20	40/20	40/20	40/20	56/28
Single Ended/	Bank3	32/16	40/20	44/22	48/24	44/22	64/32
Pair per Bank	Bank4	17/8	48/24	48/24	48/24	48/24	64/32
	Bank5	32/16	48/24	48/24	64/32	48/24	64/32
	Bank6	32/16	40/20	44/22	48/24	44/22	64/32
	Bank7	16/8	40/20	40/20	40/20	40/20	56/28
V _{CCJ}	·	1	1	1	1	1	1

Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)

		LFEC	P6/LFE	C6	LFECP10/LFEC10					
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function		
85	VCCIO4	4			VCCIO4	4				
86	PB18A	4	Т	WRITEN	PB26A	4	Т	WRITEN		
87	PB18B	4	С	CS1N	PB26B	4	С	CS1N		
88	PB19A	4	Т	VREF1_4	PB27A	4	Т	VREF1_4		
89	PB19B	4	С	CSN	PB27B	4	С	CSN		
90	PB20A	4	Т	VREF2_4	PB28A	4	Т	VREF2_4		
91	PB20B	4	С	D0/SPID7	PB28B	4	С	D0/SPID7		
92	PB21A	4	Т	D2/SPID5	PB29A	4	Т	D2/SPID5		
93	GND4	4			GND4	4				
94	PB21B	4	С	D1/SPID6	PB29B	4	С	D1/SPID6		
95	PB22A	4	Т	BDQS22	PB30A	4	Т	BDQS30		
96	PB22B	4	С	D3/SPID4	PB30B	4	С	D3/SPID4		
97	PB23A	4	Т		PB31A	4	Т			
98	PB23B	4	С	D4/SPID3	PB31B	4	С	D4/SPID3		
99	PB24A	4	Т		PB32A	4	Т			
100	PB24B	4	С	D5/SPID2	PB32B	4	С	D5/SPID2		
101	PB25A	4	Т		PB33A	4	Т			
102	PB25B	4	С	D6/SPID1	PB33B	4	С	D6/SPID1		
103	PB33A	4			PB41A	4	4			
104	VCCIO4	4			VCCIO4	VCCIO4 4				
105*	GND3 GND4	-			GND3 GND4	-				
106	VCCIO3	3			VCCIO3	3				
107	PR27B	3	С	VREF2_3	PR36B	3	С	VREF2_3		
108	PR27A	3	Т	VREF1_3	PR36A	3	Т	VREF1_3		
109	PR26B	3	С		PR35B	3	С			
110	PR26A	3	Т		PR35A	3	Т			
111	PR25B	3	С		PR34B	3	С			
112	PR25A	3	Т		PR34A	3	Т			
113	PR24B	3	С		PR33B	3	С			
114	PR24A	3	Т	RDQS24	PR33A	3	Т	RDQS33		
115	PR23B	3	С	RLM0_PLLC_FB_A	PR32B	3	С	RLM0_PLLC_FB_A		
116	GND3	3			GND3	3				
117	PR23A	3	Т	RLM0_PLLT_FB_A	PR32A	3	Т	RLM0_PLLT_FB_A		
118	PR22B	3	С	RLM0_PLLC_IN_A	PR31B	3	С	RLM0_PLLC_IN_A		
119	PR22A	3	Т	RLM0_PLLT_IN_A	PR31A	3	Т	RLM0_PLLT_IN_A		
120	VCCIO3	3			VCCIO3 3					
121	PR21B	3	С	DI/CSSPIN	PR30B	3	С	DI/CSSPIN		
122	PR21A	3	Т	DOUT/CSON	PR30A	3	Т	DOUT/CSON		
123	PR20B	3	С	BUSY/SISPI	PR29B	3	С	BUSY/SISPI		
124	PR20A	3	Т	D7/SPID0	PR29A	3	Т	D7/SPID0		
125	CFG2	3			CFG2	3				
126	CFG1	3			CFG1	3				

LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)

		LFEC	P6/LFE	C6	LFECP10/LFEC10				
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function	
169	PT21A	1	Т		PT29A	1	Т		
170	PT20B	1	С		PT28B	1	С		
171	PT20A	1	Т		PT28A	1	Т		
172	PT19B	1	С	VREF2_1	PT27B	1	С	VREF2_1	
173	PT19A	1	Т	VREF1_1	PT27A	1	Т	VREF1_1	
174	PT18B	1	С		PT26B	1	С		
175	PT18A	1	Т		PT26A	1	Т		
176	VCCIO1	1			VCCIO1	1			
177	VCCAUX	-			VCCAUX	-			
178	PT17B	0	С	PCLKC0_0	PT25B	0	С	PCLKC0_0	
179	GND0	0			GND0	0			
180	PT17A	0	Т	PCLKT0_0	PT25A	0	Т	PCLKT0_0	
181	PT16B	0	С	VREF1_0	PT24B	0	С	VREF1_0	
182	PT16A	0	Т	VREF2_0	PT24A	0	Т	VREF2_0	
183	PT15B	0	С		PT23B	0	С		
184	PT15A	0	Т		PT23A	0	Т		
185	PT14B	0	С		PT22B	0	С		
186	PT14A	0	Т	TDQS14	PT22A	0	Т	TDQS22	
187	VCCIO0	0			VCCIO0 0				
188	PT13B	0	С		PT21B	0	С		
189	GND0	0			GND0	0			
190	PT13A	0	Т		PT21A	0	Т		
191	PT12B	0	С		PT20B	0	С		
192	PT12A	0	Т		PT20A	0	Т		
193	PT11B	0	С		PT19B	0	С		
194	PT11A	0	Т		PT19A	0	Т		
195	PT10B	0	С		PT18B	0	С		
196	PT10A	0	Т		PT18A	0	Т		
197	VCCIO0	0			VCCIO0	0			
198	PT6B	0	С		PT6B	0	С		
199	PT6A	0	Т	TDQS6	PT6A	0	Т	TDQS6	
200	PT5B	0	С		PT5B	0	С		
201	PT5A	0	Т		PT5A	0	Т		
202	PT4B	0	С		PT4B	0	С		
203	PT4A	0	Т		PT4A	0	Т		
204	PT3B	0	С		PT3B 0 C				
205	PT3A	0	Т		PT3A 0 T				
206	PT2B	0	С		PT2B 0 C				
207	PT2A	0	Т		PT2A	0	Т		
208	VCCIO0	0			VCCIO0	0			

*Double bonded to the pin.

LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		L	FEC3		LFECP6/LFEC6					
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function		
K2	PL11A	6	Т	LLM0_PLLT_IN_A	PL20A	6	Т	LLM0_PLLT_IN_A		
K1	PL11B	6	С	LLM0_PLLC_IN_A	PL20B	6	С	LLM0_PLLC_IN_A		
L2	PL12A	6	Т	LLM0_PLLT_FB_A	PL21A	6	Т	LLM0_PLLT_FB_A		
L1	PL12B	6	С	LLM0_PLLC_FB_A	PL21B	6	С	LLM0_PLLC_FB_A		
M2	PL13A	6	Т		PL22A	6	Т			
M1	PL13B	6	С		PL22B	6	С			
N1	PL14A	6	Т		PL23A	6	Т			
GND	GND6	6			GND6	6				
N2	PL14B	6	С		PL23B	6	С			
M4	PL15A	6	Т	LDQS15	PL24A	6	Т	LDQS24		
M3	PL15B	6	С		PL24B	6	С			
P1	PL16A	6	Т		PL25A	6	Т			
R1	PL16B	6	С		PL25B	6	С			
P2	PL17A	6	Т		PL26A	6	Т			
P3	PL17B	6	С		PL26B	6	С			
N3	PL18A	6	Т	VREF1_6	PL27A	6	Т	VREF1_6		
N4	PL18B	6	С	VREF2_6	PL27B	6	С	VREF2_6		
GND	GND6	6			GND6	6				
GND	GND5	5			GND5	5				
P4	PB2A	5	Т		PB2A	5	Т			
N5	PB2B	5	С		PB2B	5	С			
P5	PB3A	5	Т		PB3A	5	Т			
P6	PB3B	5	С		PB3B	5	С			
R4	PB4A	5	Т		PB4A	5	Т			
R3	PB4B	5	С		PB4B	5	С			
T2	PB5A	5	Т		PB5A	5	Т			
Т3	PB5B	5	С		PB5B	5	С			
R5	PB6A	5	Т	BDQS6	PB6A	5	Т	BDQS6		
R6	PB6B	5	С		PB6B	5	С			
T4	PB7A	5	Т		PB7A	5	Т			
T5	PB7B	5	С		PB7B	5	С			
N6	PB8A	5	Т		PB8A	5	Т			
M6	PB8B	5	С		PB8B	5	С			
T6	PB9A	5	Т		PB9A	5	Т			
GND	GND5	5			GND5	5				
T7	PB9B	5	С		PB9B	5	С			
P7	PB10A	5	Т		PB10A	5	Т			
N7	PB10B	5	С		PB10B	5	С			
R7	PB11A	5	Т		PB11A	5	Т			
R8	PB11B	5	С		PB11B	5	С			
M7	PB12A	5	Т		PB12A	5	Т			
M8	PB12B	5	С		PB12B	5	С			
T8	PB13A	5	Т		PB13A	5	Т			

LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		L	FEC3		LFECP6/LFEC6					
Number	Ball Function	Bank	LVDS	Dual Function	Function Ball Function		LVDS	Dual Function		
E5	VCC	-			VCC	-				
E8	VCC	-			VCC	-				
M12	VCC	-			VCC	-				
M5	VCC	-			VCC	-				
M9	VCC	-			VCC	-				
B15	VCCAUX	-			VCCAUX	-				
R2	VCCAUX	-			VCCAUX	-				
F7	VCCIO0	0			VCCIO0	0				
F8	VCCIO0	0			VCCIO0	0				
F10	VCCIO1	1			VCCIO1	1				
F9	VCCIO1	1			VCCIO1	1				
G11	VCCIO2	2			VCCIO2	2				
H11	VCCIO2	2			VCCIO2	2				
J11	VCCIO3	3			VCCIO3	3				
K11	VCCIO3	3			VCCIO3	3				
L10	VCCIO4	4			VCCIO4	4				
L9	VCCIO4	4			VCCIO4	4				
L7	VCCIO5	5			VCCIO5	5				
L8	VCCIO5	5			VCCIO5	5				
J6	VCCIO6	6			VCCIO6	6				
K6	VCCIO6	6			VCCIO6	6				
G6	VCCIO7	7			VCCIO7	7				
H6	VCCIO7	7			VCCIO7	7				
F6	VCC	-			VCC	-				
F11	VCC	-			VCC	-				
L11	VCC	-			VCC	-				
L6	VCC	-			VCC	-				

LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections: 484 fpBGA (Cont.)

	LFI	ECP6/I	LFEC6			LFE	CP10/	LFEC	10	LFECP/LFEC15				5
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
N22	PR17A	3	Т		N22	PR26A	3	Т		N22	PR30A	3	Т	
N19	PR16B	3	С		N19	PR25B	3	С		N19	PR29B	3	С	
N18	PR16A	3	Т		N18	PR25A	3	Т		N18	PR29A	3	Т	
M21	PR15B	3	С		M21	PR24B	3	С		M21	PR28B	3	С	
L20	PR15A	3	Т	RDQS15	L20	PR24A	3	Т	RDQS24	L20	PR28A	3	Т	RDQS28
L21	PR14B	3	С		L21	PR23B	3	С		L21	PR27B	3	С	
GND	GND3	3			GND	GND3	3			GND	GND3	3		
M20	PR14A	3	Т		M20	PR23A	3	Т		M20	PR27A	3	Т	
M18	PR13B	3	С		M18	PR22B	3	С		M18	PR26B	3	С	
M19	PR13A	3	Т		M19	PR22A	3	Т		M19	PR26A	3	Т	
M22	PR12B	3	С		M22	PR21B	3	С		M22	PR25B	3	С	
L22	PR12A	3	Т		L22	PR21A	3	Т		L22	PR25A	3	Т	
K22	PR11B	3	С		K22	PR20B	3	С		K22	PR24B	3	С	
K21	PR11A	3	Т		K21	PR20A	3	Т		K21	PR24A	3	Т	
J22	PR9B	2	С	PCLKC2_0	J22	PR18B	2	С	PCLKC2_0	J22	PR22B	2	С	PCLKC2_0
GND	GND2	2			GND	GND2	2			GND	GND2	2		
J21	PR9A	2	Т	PCLKT2_0	J21	PR18A	2	Т	PCLKT2_0	J21	PR22A	2	Т	PCLKT2_0
H22	PR8B	2	С		H22	PR17B	2	С		H22	PR21B	2	С	
H21	PR8A	2	Т		H21	PR17A	2	Т		H21	PR21A	2	Т	
L19	PR7B	2	С		L19	PR16B	2	С		L19	PR20B	2	С	
L18	PR7A	2	т		L18	PR16A	2	Т		L18	PR20A	2	Т	
K20	PR6B	2	С		K20	PR15B	2	С		K20	PR19B	2	С	
J20	PR6A	2	т	RDQS6	J20	PR15A	2	т	RDQS15	J20	PR19A	2	Т	RDQS19
K19	PR5B	2	С		K19	PR14B	2	С		K19	PR18B	2	С	
GND	-	-			GND	GND2	2			GND	GND2	2		
K18	PR5A	2	Т		K18	PR14A	2	Т		K18	PR18A	2	Т	
G22	PR4B	2	С		G22	PR13B	2	С		G22	PR17B	2	С	
F22	PR4A	2	Т		F22	PR13A	2	Т		F22	PR17A	2	Т	
F21	PR3B	2	С		F21	PR12B	2	С		F21	PR16B	2	С	
E22	PR3A	2	Т		E22	PR12A	2	Т		E22	PR16A	2	Т	
E21	NC	-			E21	PR11B	2	С		E21	PR15B	2	С	
D22	NC	-			D22	PR11A	2	Т		D22	PR15A	2	Т	
G21	NC	-			G21	NC	-			G21	PR14B	2	С	
G20	NC	-			G20	NC	-			GND	GND2	2		
GND	-	-			-	-	-			G20	PR14A	2	Т	
J18	NC	-			J18	NC	-			J18	PR13B	2	С	
H19	NC	-			H19	NC	-			H19	PR13A	2	Т	
J19	NC	-			J19	NC	-			J19	PR12B	2	С	
H20	NC	- 1			H20	NC	-			H20	PR12A	2	Т	
H17	NC	-			H17	NC	-			H17	PR11B	2	С	
H18	NC	-			H18	NC	-			H18	PR11A	2	Т	
D21	NC	-			D21	PR9B	2	С	RUM0 PLLC FB A	D21	PR9B	2	С	RUM0 PLLC FB A
GND	-	-			GND	GND2	2			GND	GND2	2		
C22	NC	-			C22	PR9A	2	Т	RUM0 PLLT FB A	C22	PR9A	2	Т	RUM0 PLLT FB A
G19	NC	1 -			G19	PR8B	2	С	RUM0_PLLC IN A	G19	PR8B	2	С	RUM0_PLLC IN A
G18	NC	- 1			G18	PR8A	2	Т	RUM0_PLLT IN A	G18	PR8A	2	Т	RUM0_PLLT IN A
F20	NC	- 1			F20	PR7B	2	С		F20	PR7B	2	С	
F19	NC	- 1			F19	PR7A	2	Т		F19	PR7A	2	Т	
E20	NC	-	<u> </u>		E20	PR6B	2	С		E20	PR6B	2	C	
D20	NC	1 -	<u> </u>		D20	PB6A	2	Т	RDQS6	D20	PR6A	2	Т	RDQS6
		1	1	L			I –	l .				I –	· ·	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF)	LFECP/EC33						
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
U12	GND	-			U12	GND	-		
U13	GND	-			U13	GND	-		
U14	GND	-			U14	GND	-		
U15	GND	-			U15	GND	-		
U16	GND	-			U16	GND	-		
U17	GND	-			U17	GND	-		
H10	VCC	-			H10	VCC	-		
H11	VCC	-			H11	VCC	-		
H16	VCC	-			H16	VCC	-		
H17	VCC	-			H17	VCC	-		
H18	VCC	-			H18	VCC	-		
H19	VCC	-			H19	VCC	-		
H8	VCC	-			H8	VCC	-		
H9	VCC	-			H9	VCC	-		
J18	VCC	-			J18	VCC	-		
J9	VCC	-			J9	VCC	-		
K8	VCC	-			K8	VCC	-		
L19	VCC	-			L19	VCC	-		
M19	VCC	-			M19	VCC	-		
N7	VCC	-			N7	VCC	-		
R20	VCC	-			R20	VCC	-		
R7	VCC	-			R7	VCC	-		
T19	VCC	-			T19	VCC	-		
V18	VCC	-			V18	VCC	-		
V8	VCC	-			V8	VCC	-		
V9	VCC	-			V9	VCC	-		
W10	VCC	-			W10	VCC	-		
W11	VCC	-			W11	VCC	-		
W16	VCC	-			W16	VCC	-		
W17	VCC	-			W17	VCC	-		
W18	VCC	-			W18	VCC	-		
W19	VCC	-			W19	VCC	-		
W8	VCC	-			W8	VCC	-		
W9	VCC	-			W9	VCC	-		
H12	VCCIO0	0			H12	VCCIO0	0		
H13	VCCIO0	0			H13	VCCIO0	0		
J10	VCCIO0	0			J10	VCCIO0	0		
J11	VCCIO0	0			J11	VCCIO0	0		
J12	VCCIO0	0			J12	VCCIO0	0		
J13	VCCIO0	0			J13	VCCIO0	0		
H14	VCCIO1	1			H14	VCCIO1	1		
H15	VCCIO1	1			H15	VCCIO1	1		