

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3100
Total RAM Bits	56320
Number of I/O	97
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfec3e-3tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP/EC Family Data Sheet Architecture

September 2012

Data Sheet

Architecture Overview

The LatticeECP-DSP and LatticeEC architectures contain an array of logic blocks surrounded by Programmable I/ O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR), as shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks, as shown in Figure 2-2.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeECP/EC architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG[™] port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage.

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SPR16x2	ROM16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information about using RAM in LatticeECP/EC devices, please see the list of technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

Routing

There are many resources provided in the LatticeECP/EC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered, the routing of both short and long connections between PFUs.

The ispLEVER design tool suite takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock Distribution Network

The clock inputs are selected from external I/O, the sysCLOCK[™] PLLs or routing. These clock inputs are fed through the chip via a clock distribution system.

Primary Clock Sources

LatticeECP/EC devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. LatticeECP/EC devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four dedicated clock inputs, one on each side of the device. Figure 2-6 shows the 20 primary clock sources.

Figure 2-6. Primary Clock Sources

grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-11. PLL Diagram

Figure 2-12 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-12. PLL Primitive

MULTADDSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-22 shows the MULTADDSUM sysDSP element.

Figure 2-22. MULTADDSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every DSP block. Four Clock, Reset and Clock Enable signals are selected for the sysDSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock enable (CE) and Reset (RST) are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

Figure 2-31. Tristate Register Block

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeEC devices provide this capability. In addition to these registers, the LatticeEC devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control logic, which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-32 and 2-33 show how the DQS transition signals are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-33. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Figure 2-32. DQS Local Bus.

Figure 2-33. DLL Calibration Bus and DQS/DQS Transition Distribution

Figure 2-34. LatticeECP/EC Banks

LatticeECP/EC devices contain two types of sysI/O buffer pairs.

1. Top and Bottom sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps. These I/O banks also support hot socketing with IDK less than 1mA. Note that the PCI clamp is enabled after V_{CC} , V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysl/O Buffer Pairs (Differential and Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Only the left and right banks have LVDS differential output drivers. See the I_{DK} specification for I/O leakage current during power-up.

Oscillator

Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 2-15 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Clock frequency.
- 2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5*	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—

Table 2-15. Selectable Maste	r Clock (CCLK)	Frequencies	During	Configuration
------------------------------	----------------	-------------	--------	---------------

Density Shifting

The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

LatticeECP/EC sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Тур.	Max.	Units
sysCONFIG Byte	Data Flow				•
t _{SUCBDI}	Byte D[0:7] Setup Time to CCLK	7		_	ns
t _{HCBDI}	Byte D[0:7] Hold Time to CCLK	1		_	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—		12	ns
t _{SUCS}	CS[0:1] Setup Time to CCLK	7			ns
t _{HCS}	CS[0:1] Hold Time to CCLK	1		_	ns
t _{SUWD}	Write Signal Setup Time to CCLK	7			ns
t _{HWD}	Write Signal Hold Time to CCLK	1			ns
t _{DCB}	CCLK to BUSY Delay Time	—		12	ns
t _{CORD}	Clock to Out for Read Data	—		12	ns
sysCONFIG Byte	Slave Clocking				
t _{BSCH}	Byte Slave Clock Minimum High Pulse	6		_	ns
t _{BSCL}	Byte Slave Clock Minimum Low Pulse	9			ns
t _{BSCYC}	Byte Slave Clock Cycle Time	15		_	ns
t _{SUSCDI}	Din Setup time to CCLK Slave Mode	7		_	ns
t _{HSCDI}	Din Hold Time to CCLK Slave Mode	1			ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—		12	ns
sysCONFIG Seria	al (Bit) Data Flow				
t _{SUMCDI}	Din Setup time to CCLK Master Mode	7			ns
t _{HMCDI}	Din Hold Time to CCLK Master Mode	1		_	ns
sysCONFIG Seria	al Slave Clocking				
t _{SSCH}	Serial Slave Clock Minimum High Pulse	6		—	ns
t _{SSCL}	Serial Slave Clock Minimum Low Pulse	6		—	ns
sysCONFIG POR	, Initialization and Wake Up				
t _{ICFG}	Minimum Vcc to INIT High	—		50	ms
t _{VMC}	Time from tICFG to Valid Master Clock	—		2	us
t _{PRGMRJ}	Program Pin Pulse Rejection	—		8	ns
t _{PRGM}	PROGRAMN Low Time to Start Configuration	25		—	ns
t _{DINIT}	INIT Low Time	—		1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INIT Low	—		37	ns
t _{DINITD}	Delay Time from PROGRAMN Low to DONE Low	—		37	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low	—		35	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake Up Sequence	-		25	ns
t _{MWC}	Additional Wake Master Clock Signals after Done Pin High	120		_	cycles
t _{SUCFG}	CFG to INITN Setup Time	100		_	ns
t _{HCFG}	CFG to INITN Hold Time	100		—	ns
sysCONFIG SPI F	Port				
t _{CFGX}	Init High to CCLK Low	—		80	ns
t _{CSSPI}	Init High to CSSPIN Low	—		2	us
t _{CSCCLK}	CCLK Low Before CSSPIN Low	0		-	ns
t _{SOCDO}	CCLK Low to Output Valid	—		15	ns

Figure 3-17. Configuration from PROGRAMN Timing

1. The CFG pins are normally static (hard wired)

Figure 3-18. Wake-Up Timing

Figure 3-19. sysCONFIG SPI Port Sequence

LFEC1, LFEC3, LFECP/EC6 Logic Signal Connections: 144 TQFP

			LFEC1				LFEC3			LFECP6/EC6		
Pin Number	Pin Function	Bank	LVD S	Dual Function	Pin Function	Bank	LVD S	Dual Function	Pin Function	Bank	LVD S	Dual Function
1	VCCIO7	7			VCCIO7	7			VCCIO7	7		
2	PL2A	7	Т	VREF2_7	PL2A	7	Т	VREF2_7	PL2A	7	Т	VREF2_7
3	PL2B	7	С	VREF1_7	PL2B	7	С	VREF1_7	PL2B	7	С	VREF1_7
4	PL3A	7	Т		PL7A	7	Т		PL7A	7	Т	
5	PL3B	7	С		PL7B	7	С		PL7B	7	С	
6	PL4A	7	Т		PL8A	7	Т		PL8A	7	Т	
7	PL4B	7	С		PL8B	7	С		PL8B	7	С	
8	PL5A	7	Т	PCLKT7_0	PL9A	7	Т	PCLKT7_0	PL9A	7	Т	PCLKT7_0
9	PL5B	7	С	PCLKC7_0	PL9B	7	С	PCLKC7_0	PL9B	7	С	PCLKC7_0
10	XRES	6			XRES	6			XRES	6		
11	NC	-			NC	-			VCC	-		
12	NC	-			NC	-			GND	-		
13	VCC	-			VCC	-			VCC	-		
14	ТСК	6			ТСК	6			ТСК	6		
15	GND	-			GND	-			GND	-		
16	TDI	6			TDI	6			TDI	6	-	
17	TMS	6			TMS	6			TMS	6	-	
18	TDO	6			TDO	6			TDO	6		
19	VCCJ	6			VCCJ	6			VCCJ	6		
20	PL7A	6	т	LLMO PLLT IN A	PL11A	6	т	LLMO PLLT IN A	PL20A	6	т	LLMO PLLT IN A
21	PL7B	6	С	LLMO PLLC IN A	PL11B	6	С	LLMO PLLC IN A	PL20B	6	С	LLMO PLLC IN A
22	PL8A	6	Т	LLM0 PLLT FB A	PL12A	6	Т	LLM0 PLLT FB A	PL21A	6	T	LLMO PLLT FB A
23	PI 8B	6	C		PI 12B	6	C		PI 21B	6	C	
24	VCCIO6	6	-		VCCIO6	6	-		VCCIO6	6	-	
25	PI 9A	6	т		PI 13A	6	т		PI 22A	6	т	
26	PL9B	6	C		PI 13B	6	C		PI 22B	6	C	
27	PI 10A	6	т		PI 14A	6	т		PI 23A	6	T	
28	GND6	6			GND6	6	•		GND6	6	•	
29	PI 10B	6	С		PI 14B	6	С		PI 23B	6	С	
30	PI 11A	6	т	LDOS11	PI 15A	6	т	LDOS15	PI 24A	6	T	100524
31	PL11B	6	C	EBQOTT	PL 15B	6	C	EBQOID	PL 24B	6	C	EBGOLI
32	PI 12A	6	т		PI 16A	6	т		PL 25A	6	T	
33	PI 12R	6	C		PL 16B	6	C		PL25R	6	Ċ	
34	PI 144	6	т	VBEE1 6		6	т	VBEE1 6	PI 27A	6	т	VBEE1 6
35	PI 14B	6	C	VBEF2_6	PI 18B	6	C	VBEF2_6	PL 27B	6	Ċ	VBEF2_6
36		6	0	VIIEI 2_0	VCCIO6	6	0	VIILI 2_0	VCCIO6	6	0	VIILI 2_0
	GND5	0			GND5				GND5	Ŭ	-	
37*	GND6	-			GND6	-			GND6	-		
38	VCCIO5	5			VCCIO5	5			VCCIO5	5		
39	PB2A	5	Т		PB10A	5	Т		PB10A	5	Т	
40	PB2B	5	С		PB10B	5	С		PB10B	5	С	
41	PB3A	5	Т		PB11A	5	Т		PB11A	5	Т	
42	PB3B	5	С		PB11B	5	С		PB11B	5	С	
43	PB5B	5			PB13B	5			PB13B	5		
44	VCCIO5	5			VCCIO5	5			VCCIO5	5		
45	PB6A	5	Т	BDQS6	PB14A	5	Т	BDQS14	PB14A	5	Т	BDQS14
46	PB6B	5	С		PB14B	5	С		PB14B	5	С	
47	PB7A	5	Т		PB15A	5	Т	1	PB15A	5	Т	
48	PB7B	5	С		PB15B	5	С		PB15B	5	С	
49	PB8A	5	Т	VREF2 5	PB16A	5	Т	VREF2 5	PB16A	5	Т	VREF2 5
			l			<u> </u>	. ·			<u> </u>	· ·	

LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		LFECP	10/LFEC	;10	LFECP15/LFEC15			
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function
L3	TMS	6			TMS	6		
L5	TDO	6			TDO	6		
L4	VCCJ	6			VCCJ	6		
K2	PL29A	6	Т	LLM0_PLLT_IN_A	PL37A	6	Т	LLM0_PLLT_IN_A
K1	PL29B	6	С	LLM0_PLLC_IN_A	PL37B	6	С	LLM0_PLLC_IN_A
L2	PL30A	6	Т	LLM0_PLLT_FB_A	PL38A	6	Т	LLM0_PLLT_FB_A
L1	PL30B	6	С	LLM0_PLLC_FB_A	PL38B	6	С	LLM0_PLLC_FB_A
M2	PL31A	6	Т		PL39A	6	Т	
M1	PL31B	6	С		PL39B	6	С	
N1	PL32A	6	Т		PL40A	6	Т	
GND	GND6	6			GND6	6		
-	-	-			GND6	6		
N2	PL32B	6	С		PL40B	6	С	
M4	PL33A	6	Т	LDQS33	PL41A	6	Т	LDQS41
M3	PL33B	6	С		PL41B	6	С	
P1	PL34A	6	Т		PL42A	6	Т	
R1	PL34B	6	С		PL42B	6	С	
P2	PL35A	6	Т		PL43A	6	Т	
P3	PL35B	6	С		PL43B	6	С	
N3	PL36A	6	Т	VREF1_6	PL44A	6	Т	VREF1_6
N4	PL36B	6	С	VREF2_6	PL44B	6	С	VREF2_6
GND	GND6	6			GND6	6		
GND	GND5	5			GND5	5		
GND	GND5	5			GND5	5		
P4	PB10A	5	Т		PB10A	5	Т	
N5	PB10B	5	С		PB10B	5	С	
P5	PB11A	5	Т		PB11A	5	Т	
P6	PB11B	5	С		PB11B	5	С	
R4	PB12A	5	Т		PB12A	5	Т	
R3	PB12B	5	С		PB12B	5	С	
T2	PB13A	5	Т		PB13A	5	Т	
GND	GND5	5			GND5	5		
Т3	PB13B	5	С		PB13B	5	С	
R5	PB14A	5	Т	BDQS14	PB14A	5	Т	BDQS14
R6	PB14B	5	С		PB14B	5	С	
T4	PB15A	5	Т		PB15A	5	Т	
T5	PB15B	5	С		PB15B	5	С	
N6	PB16A	5	Т		PB16A	5	Т	
M6	PB16B	5	С		PB16B	5	С	
T6	PB17A	5	Т		PB17A	5	Т	
GND	GND5	5			GND5	5		
T7	PB17B	5	С		PB17B	5	С	
P7	PB18A	5	Т		PB18A	5	Т	

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33				
Ball Number	Ball Function	Bank	LVD S	Dual Function	Ball Number	Ball Function	Bank	LVD S	Dual Function
K3	PL21A	7	Т		K3	PL33A	7	Т	
K2	PL21B	7	С		K2	PL33B	7	С	
J1	PL22A	7	Т	PCLKT7_0	J1	PL34A	7	Т	PCLKT7_0
GND	GND7	7			GND	GND7	7		
K1	PL22B	7	С	PCLKC7_0	K1	PL34B	7	С	PCLKC7_0
L3	XRES	6			L3	XRES	6		
L4	PL24A	6	Т		L4	PL36A	6	Т	
L5	PL24B	6	С		L5	PL36B	6	С	
L2	PL25A	6	Т		L2	PL37A	6	Т	
L1	PL25B	6	С		L1	PL37B	6	С	
M4	PL26A	6	Т		M4	PL38A	6	Т	
M5	PL26B	6	С		M5	PL38B	6	С	
M1	PL27A	6	Т		M1	PL39A	6	Т	
GND	GND6	6			GND	GND6	6		
M2	PL27B	6	С		M2	PL39B	6	С	
N3	PL28A	6	Т	LDQS28	N3	PL40A	6	Т	LDQS40
M3	PL28B	6	С		M3	PL40B	6	С	
N5	PL29A	6	Т		N5	PL41A	6	Т	
N4	PL29B	6	С		N4	PL41B	6	С	
N1	PL30A	6	Т		N1	PL42A	6	Т	
N2	PL30B	6	С		N2	PL42B	6	С	
P1	PL31A	6	Т		P1	PL43A	6	Т	
GND	GND6	6			GND	GND6	6		
P2	PL31B	6	С		P2	PL43B	6	С	
R6	PL32A	6	Т		R6	PL44A	6	Т	
P5	PL32B	6	С		P5	PL44B	6	С	
P3	PL33A	6	Т		P3	PL45A	6	Т	
P4	PL33B	6	С		P4	PL45B	6	С	
R1	PL34A	6	Т		R1	PL46A	6	Т	
R2	PL34B	6	С		R2	PL46B	6	С	
R5	PL35A	6	Т		R5	PL47A	6	Т	
GND	GND6	6			GND	GND6	6		
R4	PL35B	6	С		R4	PL47B	6	С	
T1	PL36A	6	Т	LDQS36	T1	PL48A	6	Т	LDQS48
T2	PL36B	6	С		T2	PL48B	6	С	
R3	PL37A	6	Т		R3	PL49A	6	Т	
Т3	PL37B	6	С		Т3	PL49B	6	С	
GND	GND6	6			GND	GND6	6		
T5	ТСК	6			T5	TCK	6		
U5	TDI	6			U5	TDI	6		
T4	TMS	6			T4	TMS	6		
U1	TDO	6			U1	TDO	6		
U2	VCCJ	6			U2	VCCJ	6		
V1	PL41A	6	Т	LLM0_PLLT_IN_A	V1	PL53A	6	Т	LLM0_PLLT_IN_A

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33				
Dell Number	Dell Eurotien	Denk	LVD	Dual Function	Dell Number	Dell Eurotion	Denk	LVD	Duel Function
A17		вапк	<u>ה</u>	Dual Function	A17		вапк	<u>э</u> т	Dual Function
B15	PT46B	1	C C		B15	PT46B	1	C	
A16	PT464	1	т	TDOS46	A16	PT464	1	т	TDOS46
A15	PT45B	1	C	1000+0	A15	PT45B	1	C	100040
GND	GND1	1	0		GND	GND1	1	Ŭ	
A14	PT45A	1	т		A14	PT45A	1	т	
G14	PT44B	1	C		G14	PT44B	1	C.	
E15	PT44A	1	т		E15	PT44A	1	Т	
D15	PT43B	1	C		D15	PT43B	1	C	
C15	PT43A	1	т		C15	PT43A	1	Т	
C14	PT42B	1	C		C14	PT42B	1	C	
B14	PT42A	1	т		B14	PT42A	1	Т	
A13	PT41B	1	C		A13	PT41B	1	C	
GND	GND1	1	-		GND	GND1	1	-	
B13	PT41A	1	т		B13	PT41A	1	т	
E14	PT40B	1	C		E14	PT40B	1	C	
C13	PT40A	1	Т		C13	PT40A	1	T	
F14	PT39B	1	C		F14	PT39B	1	C	
D14	PT39A	1	Т		D14	PT39A	1	T	
E13	PT38B	1	C		F13	PT38B	1	C	
G13	PT38A	1	Т	TDQS38	G13	PT38A	1	T	TDQS38
A12	PT37B	1	С		A12	PT37B	1	С	
GND	GND1	1			GND	GND1	1		
B12	PT37A	1	Т		B12	PT37A	1	Т	
F13	PT36B	1	С		F13	PT36B	1	С	
D13	PT36A	1	Т		D13	PT36A	1	Т	
F12	PT35B	1	С	VREF2_1	F12	PT35B	1	С	VREF2_1
D12	PT35A	1	Т	VREF1_1	D12	PT35A	1	Т	VREF1_1
F11	PT34B	1	С		F11	PT34B	1	С	
C12	PT34A	1	Т		C12	PT34A	1	Т	
A11	PT33B	0	С	PCLKC0_0	A11	PT33B	0	С	PCLKC0_0
GND	GND0	0			GND	GND0	0		
A10	PT33A	0	Т	PCLKT0_0	A10	PT33A	0	Т	PCLKT0_0
E12	PT32B	0	С	VREF1_0	E12	PT32B	0	С	VREF1_0
E11	PT32A	0	Т	VREF2_0	E11	PT32A	0	Т	VREF2_0
B11	PT31B	0	С		B11	PT31B	0	С	
C11	PT31A	0	Т		C11	PT31A	0	Т	
B9	PT30B	0	С		B9	PT30B	0	С	
B10	PT30A	0	Т	TDQS30	B10	PT30A	0	Т	TDQS30
A9	PT29B	0	С		A9	PT29B	0	С	
GND	GND0	0			GND	GND0	0		
A8	PT29A	0	Т		A8	PT29A	0	Т	
D11	PT28B	0	С		D11	PT28B	0	С	
C10	PT28A	0	Т		C10	PT28A	0	Т	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	EC20/L	FECP2	0			LFECP/EC33			
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function	
L24	PR17A	2	Т		L24	PR29A	2	Т		
K25	PR16B	2	С		K25	PR28B	2	С		
J25	PR16A	2	Т		J25	PR28A	2	Т		
J26	PR15B	2	С		J26	PR27B	2	С		
H26	PR15A	2	Т		H26	PR27A	2	Т		
H25	PR14B	2	С		H25	PR26B	2	С		
GND	GND2	2			GND	GND2	2			
J24	PR14A	2	Т		J24	PR26A	2	Т		
K21	PR13B	2	С		K21	PR25B	2	С		
K22	PR13A	2	Т		K22	PR25A	2	Т		
K20	PR12B	2	С		K20	PR24B	2	С		
J20	PR12A	2	Т		J20	PR24A	2	Т		
K23	PR11B	2	С		K23	PR23B	2	С		
K24	PR11A	2	Т		K24	PR23A	2	Т	RDQS23	
J21	NC	-			J21	PR22B	2	С		
-	-	-			GND	GND2	2			
J22	NC	-			J22	PR22A	2	Т		
J23	NC	-			J23	PR21B	2	С		
H22	NC	-			H22	PR21A	2	Т		
G26	NC	-			G26	PR20B	2	С		
F26	NC	-			F26	PR20A	2	Т		
E26	NC	-			E26	PR19B	2	С		
E25	NC	-			E25	PR19A	2	Т		
F25	PR9B	2	С	RUM0_PLLC_FB_A	F25	PR17B	2	С	RUM0_PLLC_FB_A	
GND	GND2	2			GND	GND2	2			
G25	PR9A	2	Т	RUM0_PLLT_FB_A	G25	PR17A	2	Т	RUM0_PLLT_FB_A	
H23	PR8B	2	С	RUM0_PLLC_IN_A	H23	PR16B	2	С	RUM0_PLLC_IN_A	
H24	PR8A	2	Т	RUM0_PLLT_IN_A	H24	PR16A	2	Т	RUM0_PLLT_IN_A	
H21	PR7B	2	С		H21	PR15B	2	С		
G21	PR7A	2	Т		G21	PR15A	2	Т		
D26	PR6B	2	С		D26	PR14B	2	С		
D25	PR6A	2	Т	RDQS6	D25	PR14A	2	Т	RDQS14	
F21	PR5B	2	С		F21	PR13B	2	С		
-	-	-			GND	GND2	2			
G22	PR5A	2	Т		G22	PR13A	2	Т		
G24	PR4B	2	С		G24	PR12B	2	С		
G23	PR4A	2	Т		G23	PR12A	2	Т		
C26	PR3B	2	С		C26	PR11B	2	С		
C25	PR3A	2	Т		C25	PR11A	2	Т		
F24	NC	-			F24	PR9B	2	С		
-	-	-			GND	GND2	2			
F23	NC	-			F23	PR9A	2	Т		

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

LFEC20/LFECP20					LFECP/EC33				
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
D13	PT32B	0	С	VREF1_0	D13	PT32B	0	С	VREF1_0
C13	PT32A	0	Т	VREF2_0	C13	PT32A	0	Т	VREF2_0
A13	PT31B	0	С		A13	PT31B	0	С	
B13	PT31A	0	Т		B13	PT31A	0	Т	
F13	PT30B	0	С		F13	PT30B	0	С	
F12	PT30A	0	Т	TDQS30	F12	PT30A	0	Т	TDQS30
A12	PT29B	0	С		A12	PT29B	0	С	
GND	GND0	0			GND	GND0	0		
B12	PT29A	0	Т		B12	PT29A	0	Т	
A11	PT28B	0	С		A11	PT28B	0	С	
B11	PT28A	0	Т		B11	PT28A	0	Т	
D12	PT27B	0	С		D12	PT27B	0	С	
C12	PT27A	0	Т		C12	PT27A	0	Т	
B10	PT26B	0	С		B10	PT26B	0	С	
A10	PT26A	0	Т		A10	PT26A	0	Т	
G12	PT25B	0	С		G12	PT25B	0	С	
GND	GND0	0			GND	GND0	0		
A9	PT25A	0	Т		A9	PT25A	0	Т	
E12	PT24B	0	С		E12	PT24B	0	С	
B9	PT24A	0	Т		B9	PT24A	0	Т	
F11	PT23B	0	С		F11	PT23B	0	С	
A8	PT23A	0	Т		A8	PT23A	0	Т	
D11	PT22B	0	С		D11	PT22B	0	С	
C11	PT22A	0	Т	TDQS22	C11	PT22A	0	Т	TDQS22
B8	PT21B	0	С		B8	PT21B	0	С	
GND	GND0	0			GND	GND0	0		
B7	PT21A	0	Т		B7	PT21A	0	Т	
E11	PT20B	0	С		E11	PT20B	0	С	
A7	PT20A	0	Т		A7	PT20A	0	Т	
G11	PT19B	0	С		G11	PT19B	0	С	
C7	PT19A	0	Т		C7	PT19A	0	Т	
G10	PT18B	0	С		G10	PT18B	0	С	
C6	PT18A	0	Т		C6	PT18A	0	Т	
C10	PT17B	0	С		C10	PT17B	0	С	
GND	GND0	0			GND	GND0	0		
D10	PT17A	0	Т		D10	PT17A	0	Т	
F10	PT16B	0	С		F10	PT16B	0	С	
A6	PT16A	0	Т		A6	PT16A	0	Т	
E10	PT15B	0	С		E10	PT15B	0	С	
C9	PT15A	0	Т		C9	PT15A	0	Т	
G9	PT14B	0	С		G9	PT14B	0	С	
D9	PT14A	0	Т	TDQS14	D9	PT14A	0	Т	TDQS14

LatticeECP Commercial

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP6E-3F484C	224	-3	fpBGA	484	COM	6.1K
LFECP6E-4F484C	224	-4	fpBGA	484	COM	6.1K
LFECP6E-5F484C	224	-5	fpBGA	484	COM	6.1K
LFECP6E-3F256C	195	-3	fpBGA	256	COM	6.1K
LFECP6E-4F256C	195	-4	fpBGA	256	COM	6.1K
LFECP6E-5F256C	195	-5	fpBGA	256	COM	6.1K
LFECP6E-3Q208C	147	-3	PQFP	208	COM	6.1K
LFECP6E-4Q208C	147	-4	PQFP	208	COM	6.1K
LFECP6E-5Q208C	147	-5	PQFP	208	COM	6.1K
LFECP6E-3T144C	97	-3	TQFP	144	COM	6.1K
LFECP6E-4T144C	97	-4	TQFP	144	COM	6.1K
LFECP6E-5T144C	97	-5	TQFP	144	COM	6.1K
Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP10E-3F484C	288	-3	fpBGA	484	COM	10.2K
LFECP10E-4F484C	288	-4	fpBGA	484	COM	10.2K
LFECP10E-5F484C	288	-5	fpBGA	484	COM	10.2K
LFECP10E-3F256C	195	-3	fpBGA	256	COM	10.2K
LFECP10E-4F256C	195	-4	fpBGA	256	COM	10.2K
LFECP10E-5F256C	195	-5	fpBGA	256	COM	10.2K
LFECP10E-3Q208C	147	-3	PQFP	208	COM	10.2K
LFECP10E-4Q208C	147	-4	PQFP	208	COM	10.2K
LFECP10E-5Q208C	147	-5	PQFP	208	COM	10.2K
Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP15E-3F484C	352	-3	fpBGA	484	COM	15.3K
LFECP15E-4F484C	352	-4	fpBGA	484	COM	15.3K
LFECP15E-5F484C	352	-5	fpBGA	484	COM	15.3K
LFECP15E-3F256C	195	-3	fpBGA	256	COM	15.3K
LFECP15E-4F256C	195	-4	fpBGA	256	COM	15.3K
LFECP15E-5F256C	195	-5	fpBGA	256	COM	15.3K
		•	•	•		
Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFECP20E-3F672C	400	-3	fpBGA	672	COM	19.7K
LFECP20E-4F672C	400	-4	fpBGA	672	COM	19.7K
LFECP20E-5F672C	400	-5	fpBGA	672	COM	19.7K
LFECP20E-3F484C	360	-3	fpBGA	484	COM	19.7K
LFECP20E-4F484C	360	-4	fpBGA	484	COM	19.7K
LFECP20E-5F484C	360	-5	fpBGA	484	COM	19.7K
					_	
Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFECP33E-3F672C	496	-3	fpBGA	672	COM	32.8K
LFECP33E-4F672C	496	-4	fpBGA	672	COM	32.8K
LFECP33E-5F672C	496	-5	fpBGA	672	COM	32.8K

LatticeECP Commercial (Continued)

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFECP33E-3F484C	360	-3	fpBGA	484	COM	32.8K
LFECP33E-4F484C	360	-4	fpBGA	484	COM	32.8K
LFECP33E-5F484C	360	-5	fpBGA	484	COM	32.8K

LatticeEC Industrial

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFEC1E-3Q208I	112	-3	PQFP	208	IND	1.5K
LFEC1E-4Q208I	112	-4	PQFP	208	IND	1.5K
LFEC1E-3T144I	97	-3	TQFP	144	IND	1.5K
LFEC1E-4T144I	97	-4	TQFP	144	IND	1.5K
LFEC1E-3T100I	67	-3	TQFP	100	IND	1.5K
LFEC1E-4T100I	67	-4	TQFP	100	IND	1.5K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC3E-3F256I	160	-3	fpBGA	256	IND	3.1K
LFEC3E-4F256I	160	-4	fpBGA	256	IND	3.1K
LFEC3E-3Q208I	145	-3	PQFP	208	IND	3.1K
LFEC3E-4Q208I	145	-4	PQFP	208	IND	3.1K
LFEC3E-3T144I	97	-3	TQFP	144	IND	3.1K
LFEC3E-4T144I	97	-4	TQFP	144	IND	3.1K
LFEC3E-3T100I	67	-3	TQFP	100	IND	3.1K
LFEC3E-4T100I	67	-4	TQFP	100	IND	3.1K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC6E-3F484I	224	-3	fpBGA	484	IND	6.1K
LFEC6E-4F484I	224	-4	fpBGA	484	IND	6.1K
LFEC6E-3F256I	195	-3	fpBGA	256	IND	6.1K
LFEC6E-4F256I	195	-4	fpBGA	256	IND	6.1K
LFEC6E-3Q208I	147	-3	PQFP	208	IND	6.1K
LFEC6E-4Q208I	147	-4	PQFP	208	IND	6.1K
LFEC6E-3T144I	97	-3	TQFP	144	IND	6.1K
LFEC6E-4T144I	97	-4	TQFP	144	IND	6.1K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC10E-3F484I	288	-3	fpBGA	484	IND	10.2K
LFEC10E-4F484I	288	-4	fpBGA	484	IND	10.2K
LFEC10E-3F256I	195	-3	fpBGA	256	IND	10.2K
LFEC10E-4F256I	195	-4	fpBGA	256	IND	10.2K
LFEC10E-3 P208I	147	-3	PQFP	208	IND	10.2K
LFEC10E-4 P208I	147	-4	PQFP	208	IND	10.2K

LatticeECP/EC Family Data Sheet Supplemental Information

September 2012

Data Sheet

For Further Information

A variety of technical notes for the LatticeECP/EC family are available on the Lattice web site at <u>www.latticesemi.com</u>.

- LatticeECP/EC sysIO Usage Guide (TN1056)
- LatticeECP/EC sysCLOCK PLL Design and Usage Guide (TN1049)
- Memory Usage Guide for LatticeECP/EC Devices (TN1051)
- LatticeECP/EC DDR Usage Guide (TN1050)
- Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)
- LatticeECP-DSP sysDSP Usage Guide (TN1057)
- LatticeECP/EC sysCONFIG Usage Guide (TN1053)
- IEEE 1149.1 Boundary Scan Testability in Lattice Devices

For further information about interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): <u>www.jedec.org</u>
- PCI: <u>ww.pcisig.com</u>

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.