

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	15400
Total RAM Bits	358400
Number of I/O	195
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfecp15e-5f256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Width of Multiply	x9	x18	x36
MULT	8	4	1
MAC	2	2	_
MULTADD	4	2	_
MULTADDSUM	2	1	_

Some options are available in four elements. The input register in all the elements can be directly loaded or can be loaded as shift registers from previous operand registers. In addition by selecting "dynamic operation" in the 'Signed/Unsigned' options the operands can be switched between signed and unsigned on every cycle. Similarly by selecting 'Dynamic operation' in the 'Add/Sub' option the Accumulator can be switched between addition and subtraction on every cycle.

MULT sysDSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-19 shows the MULT sysDSP element.

Figure 2-19. MULT sysDSP Element

MAC sysDSP Element

In this case the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-20 shows the MAC sysDSP element.

Table 2-12. PIO Signal List

Name	Туре	Description
CE0, CE1	Control from the core	Clock enables for input and output block FFs.
CLK0, CLK1	Control from the core	System clocks for input and output blocks.
LSR	Control from the core	Local Set/Reset.
GSRN	Control from routing	Global Set/Reset (active low).
INCK	Input to the core	Input to Primary Clock Network or PLL reference inputs.
DQS	Input to PIO	DQS signal from logic (routing) to PIO.
INDD	Input to the core	Unregistered data input to core.
INFF	Input to the core	Registered input on positive edge of the clock (CLK0).
IPOS0, IPOS1	Input to the core	DDRX registered inputs to the core.
ONEG0	Control from the core	Output signals from the core for SDR and DDR operation.
OPOS0,	Control from the core	Output signals from the core for DDR operation
OPOS1 ONEG1	Tristate control from the core	Signals to Tristate Register block for DDR operation.
TD	Tristate control from the core	Tristate signal from the core used in SDR operation.
DDRCLKPOL	Control from clock polarity bus	Controls the polarity of the clock (CLK0) that feed the DDR input block.

Figure 2-25. DQS Routing

		PIO A	PADA "T" LVDS Pair
		PIO B	PADB "C"
		PIO A	PADA "T" LVDS Pair
	→	PIO B	PADB "C"
	→	PIO A	PADA "T" LVDS Pair
	→	PIO B	PADB "C"
		PIO A	PADA "T" LVDS Pair
		PIO B	PADB "C"
			svsl0 Assigned
DQS		PIO A	Buffer PADA "T"
		PIO A	Buffer DQS Pin PADA "T" Delay LVDS Pair
DQS		PIO A PIO B	DQS Pin PADA "T" Delay LVDS Pair PADB "C"
DQS		PIO A PIO B PIO A	DQS Pin PADA "T" Pelay LVDS Pair PADA "T" PADA "T" PADA "T" LVDS Pair
DQS		PIO A PIO B PIO A PIO B	DQS Pin PADA 'T" LVDS Pair PADB "C" PADB "C" PADB "C"
		PIO A PIO B PIO A PIO B PIO A	DQS Pin PADA "T" LVDS Pair PADA "C" PADA "C" PADA "C" PADA "C" PADA "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
		PIO A PIO B PIO A PIO B PIO A PIO B	Buffer DQS Pin PADA "T" PADA "T" PADB "C" PADB "C"
		PIO A PIO B PIO A PIO B PIO A PIO B PIO A	Buffer DQS Pin PADA 'T" PADA 'T" LVDS Pair PADB "C" How PADB "C" PADB "C"

ΡΙΟ

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Input Register Block

The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysl/O buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, reduces input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-27 shows the input register waveforms for DDR operation and Figure 2-28 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Figure 2-26. Input Register Diagram

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeECP/EC family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysl/O buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysl/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysl/O Buffer Banks

LatticeECP/EC devices have eight sysl/O buffer banks; each is capable of supporting multiple I/O standards. Each sysl/O bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-34 shows the eight banks and their associated supplies.

In the LatticeECP/EC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeECP/EC devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeECP/EC devices, some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-34. LatticeECP/EC Banks

LatticeECP/EC devices contain two types of sysI/O buffer pairs.

1. Top and Bottom sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps. These I/O banks also support hot socketing with IDK less than 1mA. Note that the PCI clamp is enabled after V_{CC} , V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysl/O Buffer Pairs (Differential and Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Only the left and right banks have LVDS differential output drivers. See the I_{DK} specification for I/O leakage current during power-up.

Table 2-14. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)						
Single-ended Interfaces								
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3						
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3						
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5						
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8						
LVCMOS15	4mA, 8mA	1.5						
LVCMOS12	2mA, 6mA	1.2						
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—						
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—						
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—						
LVCMOS15, Open Drain	4mA, 8mA	—						
LVCMOS12, Open Drain	2mA, 6mA	—						
PCI33	N/A	3.3						
HSTL18 Class I, II, III	N/A	1.8						
HSTL15 Class I, III	N/A	1.5						
SSTL3 Class I, II	N/A	3.3						
SSTL2 Class I, II	N/A	2.5						
SSTL18 Class I	N/A	1.8						
Differential Interfaces								
Differential SSTL3, Class I, II	N/A	3.3						
Differential SSTL2, Class I, II	N/A	2.5						
Differential SSTL18, Class I	N/A	1.8						
Differential HSTL18, Class I, II, III	N/A	1.8						
Differential HSTL15, Class I, III	N/A	1.5						
LVDS	N/A	2.5						
BLVDS ¹	N/A	2.5						
LVPECL ¹	N/A	3.3						
RSDS ¹	N/A	2.5						

1. Emulated with external resistors.

Hot Socketing

The LatticeECP/EC devices have been carefully designed to ensure predictable behavior during power-up and power-down. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits, this allows for easy integration with the rest of the system. These capabilities make the LatticeECP/EC ideal for many multiple power supply and hot-swap applications.

Configuration and Testing

The following section describes the configuration and testing features of the LatticeECP/EC devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeECP/EC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to

Typical Building Block Function Performance

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions	·	
16-bit decoder	5.5	ns
32-bit decoder	6.9	ns
64-bit decoder	7.1	ns
4:1 MUX	4.3	ns
8:1 MUX	4.7	ns
16:1 MUX	5.0	ns
32:1 MUX	5.5	ns

Register-to-Register Performance¹

Function	-5 Timing	Units						
Basic Functions								
16 bit decoder	410	MHz						
32 bit decoder	283	MHz						
64 bit decoder	272	MHz						
4:1 MUX	613	MHz						
8:1 MUX	565	MHz						
16:1 MUX	526	MHz						
32:1 MUX	442	MHz						
8-bit adder	363	MHz						
16-bit adder	353	MHz						
64-bit adder	196	MHz						
16-bit counter	414	MHz						
32-bit counter	317	MHz						
64-bit counter	216	MHz						
64-bit accumulator	178	MHz						
Embedded Memory Functions	·							
256x36 Single Port RAM	280	MHz						
512x18 True-Dual Port RAM	280	MHz						
Distributed Memory Functions	·							
16x2 Single Port RAM	460	MHz						
64x2 Single Port RAM	375	MHz						
128x4 Single Port RAM	294	MHz						
32x2 Pseudo-Dual Port RAM	392	MHz						
64x4 Pseudo-Dual Port RAM	332	MHz						
DSP Function ²	·							
9x9 Pipelined Multiply/Accumulate	242	MHz						
18x18 Pipelined Multiply/Accumulate	238	MHz						
36x36 Pipelined Multiply	235	MHz						

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Applies to LatticeECP devices only.

Timing v.G 0.30

LatticeECP/EC Family Timing Adders^{1, 2, 3}

Buffer Type	Description	-5	-4	-3	Units				
Input Adjusters									
LVDS25	LVDS	0.41	0.50	0.58	ns				
BLVDS25	BLVDS	0.41	0.50	0.58	ns				
LVPECL33	LVPECL	0.50	0.60	0.70	ns				
HSTL18_I	HSTL_18 class I	0.41	0.49	0.57	ns				
HSTL18_II	HSTL_18 class II	0.41	0.49	0.57	ns				
HSTL18_III	HSTL_18 class III	0.41	0.49	0.57	ns				
HSTL18D_I	Differential HSTL 18 class I	0.37	0.44	0.52	ns				
HSTL18D_II	Differential HSTL 18 class II	0.37	0.44	0.52	ns				
HSTL18D_III	Differential HSTL 18 class III	0.37	0.44	0.52	ns				
HSTL15_I	HSTL_15 class I	0.40	0.48	0.56	ns				
HSTL15_III	HSTL_15 class III	0.40	0.48	0.56	ns				
HSTL15D_I	Differential HSTL 15 class I	0.37	0.44	0.51	ns				
HSTL15D_III	Differential HSTL 15 class III	0.37	0.44	0.51	ns				
SSTL33_I	SSTL_3 class I	0.46	0.55	0.64	ns				
SSTL33_II	SSTL_3 class II	0.46	0.55	0.64	ns				
SSTL33D_I	Differential SSTL_3 class I	0.39	0.47	0.55	ns				
SSTL33D_II	Differential SSTL_3 class II	0.39	0.47	0.55	ns				
SSTL25_I	SSTL_2 class I	0.43	0.51	0.60	ns				
SSTL25_II	SSTL_2 class II	0.43	0.51	0.60	ns				
SSTL25D_I	Differential SSTL_2 class I	0.38	0.45	0.53	ns				
SSTL25D_II	Differential SSTL_2 class II	0.38	0.45	0.53	ns				
SSTL18_I	SSTL_18 class I	0.40	0.48	0.56	ns				
SSTL18D_I	Differential SSTL_18 class I	0.37	0.44	0.51	ns				
LVTTL33	LVTTL	0.07	0.09	0.10	ns				
LVCMOS33	LVCMOS 3.3	0.07	0.09	0.10	ns				
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns				
LVCMOS18	LVCMOS 1.8	0.07	0.09	0.10	ns				
LVCMOS15	LVCMOS 1.5	0.24	0.29	0.33	ns				
LVCMOS12	LVCMOS 1.2	1.27	1.52	1.77	ns				
PCI33	PCI	0.07	0.09	0.10	ns				
Output Adjusters									
LVDS25E	LVDS 2.5 E	0.12	0.14	0.17	ns				
LVDS25	LVDS 2.5	-0.44	-0.53	-0.62	ns				
BLVDS25	BLVDS 2.5	0.33	0.40	0.46	ns				
LVPECL33	LVPECL 3.3	0.20	0.24	0.28	ns				
HSTL18_I	HSTL_18 class I	-0.10	-0.12	-0.14	ns				
HSTL18_II	HSTL_18 class II	0.06	0.07	0.08	ns				
HSTL18_III	HSTL_18 class III	0.15	0.19	0.22	ns				
HSTL18D_I	Differential HSTL 18 class I	-0.10	-0.12	-0.14	ns				
HSTL18D_II	Differential HSTL 18 class II	0.06	0.07	0.08	ns				
HSTL18D_III	Differential HSTL 18 class III	0.15	0.19	0.22	ns				
HSTL15_I	HSTL_15 class I	0.08	0.10	0.11	ns				

Over Recommended Operating Conditions

Figure 3-14. sysCONFIG Master Serial Port Timing

Figure 3-16. Power-On-Reset (POR) Timing

1. Time taken from V_{CC} or V_{CCAUX}, whichever is the last to reach its V_{MIN} .

2. Device is in a Master Mode.

3. The CFG pins are normally static (hard wired).

Signal Descriptions (Cont.)

Signal Name	I/O	Description				
ТОІ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.				
TDO	0	Output pin. Test Data out pin used to shift data out of device using 1149.1.				
V _{CCJ}		V _{CCJ} - The power supply pin for JTAG Test Access Port.				
Configuration Pads (used during sysCO)	NFIG)					
CFG[2:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.				
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.				
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.				
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, a the startup sequence is in progress. This is a dedicated pin.				
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.				
BUSY/SISPI	I/O	Read control command in SPI3 or SPIX mode.				
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.				
CS1N	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.				
WRITEN	I	Write Data on Parallel port (Active low).				
D[7:0]/SPID[0:7]	I/O	sysCONFIG Port Data I/O.				
DOUT/CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port.				
DI/CSSPIN	I/O	Input for serial configuration data (clocked with CCLK) when using sysCON- FIG port. During configuration, a pull-up is enabled. Output when used in SPI/SPIX modes.				

Pin Information Summary (Cont.)

		LFECF	P/EC15	LFECP	20/EC20	LFECF	P/EC33
Pin	Pin Type		484-fpBGA	484-fpBGA	672-fpBGA	484-fpBGA	672-fpBGA
Single Ended Use	Single Ended User I/O		i 352 360 400		360	496	
Differential Pair L	lser I/O	97	176	180	200	180	248
Configuration	Dedicated	13	13	13	13	13	13
Configuration	Muxed	56	56	56	56	56 56	
TAP		5	5	5	5	5	5
Dedicated (total v	vithout supplies)	208	373	373	509	373	509
V _{CC}		10	20	20	32	16	28
V _{CCAUX}		2	12	12	20	12	20
V _{CCPLL}		0	0	0	0	4	4
	Bank0	2	4	4	6	4	6
	Bank1	2	4	4	6	4	6
	Bank2	2	4	4	6	4	6
V.	Bank3	2	4	4	6	4	6
V _{CCIO}	Bank4	2	4	4	6	4	6
	Bank5	2	4	4	6	4	6
	Bank6	2	4	4	6	4	6
	Bank7	2	4	4	6	4	6
GND, GND0-GNI	7	20	44	44	63	44	63
NC		0	11	3	96	3	0
	Bank0	32/16	48/24	48/24	64/32	48/24	64/32
	Bank1	18/9	48/24	48/24	48/24	48/24	64/32
	Bank2	16/8	40/20	40/20	40/20	40/20	56/28
Single Ended/	Bank3	32/16	40/20	44/22	48/24	44/22	64/32
Pair per Bank	Bank4	17/8	48/24	48/24	48/24	48/24	64/32
	Bank5	32/16	48/24	48/24	64/32	48/24	64/32
	Bank6	32/16	40/20	44/22	48/24	44/22	64/32
	Bank7	16/8	40/20	40/20	40/20	40/20	56/28
V _{CCJ}	·	1	1	1	1	1	1

Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

LFEC1, LFEC3, LFECP/EC6 Logic Signal Connections: 144 TQFP (Cont.)

	LFEC1			LFEC3				LFECP6/EC6				
Pin			LVD				LVD				LVD	
Number	Pin Function	Bank	S	Dual Function	Pin Function	Bank	S	Dual Function	Pin Function	Bank	S	Dual Function
99	VCC	-			VCC	-			VCC	-		
100	PR5B	2	C	PCLKC2_0	PR9B	2	C	PCLKC2_0	PR9B	2	C	PCLKC2_0
101	PR5A	2	T	PCLKT2_0	PR9A	2	Т	PCLKT2_0	PR9A	2	Т	PCLKT2_0
102	PR4B	2	C		PR8B	2	C		PR8B	2	C	
103	PR4A	2	T		PR8A	2	Т		PR8A	2	Т	
104	PR3B	2	C		PR7B	2	C		PR7B	2	C T	
105	PR3A	2	T		PR7A	2	Т		PR7A	2	Т	
106	PR2B	2	C T	VREF1_2	PR2B	2	C T	VREF1_2	PR2B	2	С -	VREF1_2
107	PR2A	2	I	VREF2_2	PR2A	2	I	VREF2_2	PR2A	2	I	VREF2_2
108	VCCIO2	2			VCCIO2	2			VCCIO2	2		
109*	GND1 GND2	-			GND1 GND2	-			GND1 GND2	-		
110	VCCIO1	1			VCCIO1	1			VCCIO1	1		
111	PT17B	1	С		PT25B	1	С		PT25B	1	С	
112	PT17A	1	Т		PT25A	1	Т		PT25A	1	Т	
113	PT15A	1			PT23A	1			PT23A	1		
114	PT14B	1	С		PT22B	1	С		PT22B	1	С	
115	PT14A	1	Т	TDQS14	PT22A	1	Т	TDQS22	PT22A	1	Т	TDQS22
116	PT13B	1	С		PT21B	1	С		PT21B	1	С	
117	GND1	1			GND1	1			GND1	1		
118	PT13A	1	Т		PT21A	1	Т		PT21A	1	Т	
119	PT12B	1	С		PT20B	1	С		PT20B	1	С	
120	PT12A	1	Т		PT20A	1	Т		PT20A	1	Т	
121	PT11B	1	С	VREF2_1	PT19B	1	С	VREF2_1	PT19B	1	С	VREF2_1
122	PT11A	1	Т	VREF1_1	PT19A	1	Т	VREF1_1	PT19A	1	Т	VREF1_1
123	PT10B	1	С		PT18B	1	С		PT18B	1	С	
124	PT10A	1	Т		PT18A	1	Т		PT18A	1	Т	
125	VCCIO1	1			VCCIO1	1			VCCIO1	1		
126	VCCAUX	-			VCCAUX	-			VCCAUX	-		
127	PT9B	0	С	PCLKC0_0	PT17B	0	С	PCLKC0_0	PT17B	0	С	PCLKC0_0
128	GND0	0			GND0	0			GND0	0		
129	PT9A	0	Т	PCLKT0_0	PT17A	0	Т	PCLKT0_0	PT17A	0	Т	PCLKT0_0
130	PT8B	0	С	VREF1_0	PT16B	0	С	VREF1_0	PT16B	0	С	VREF1_0
131	PT8A	0	Т	VREF2_0	PT16A	0	Т	VREF2_0	PT16A	0	Т	VREF2_0
132	PT7B	0	С		PT15B	0	С		PT15B	0	С	
133	PT7A	0	Т		PT15A	0	Т		PT15A	0	Т	
134	PT6B	0	С		PT14B	0	С		PT14B	0	С	
135	PT6A	0	Т	TDQS6	PT14A	0	Т	TDQS14	PT14A	0	Т	TDQS14
136	VCCIO0	0			VCCIO0	0			VCCIO0	0		
137	PT5B	0	С		PT13B	0	С		PT13B	0	С	
138	PT5A	0	Т		PT13A	0	Т		PT13A	0	Т	
139	PT4B	0	С		PT12B	0	С		PT12B	0	С	
140	PT4A	0	Т		PT12A	0	Т		PT12A	0	Т	
141	PT2B	0	С		PT10B	0	С		PT10B	0	С	
142	PT2A	0	Т		PT10A	0	Т		PT10A	0	Т	
143	VCCIO0	0			VCCIO0	0			VCCIO0	0		
144*	GND0 GND7	-			GND0 GND7	-			GND0 GND7	-		

*Double bonded to the pin.

LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)

	LFECP6/LFEC6			LFECP10/LFEC10				
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function
127	CFG0	3			CFG0	3		
128	VCC	-			VCC	-		
129	PROGRAMN	3			PROGRAMN	3		
130	CCLK	3			CCLK	3		
131	INITN	3			INITN	3		
132	GND	-			GND	-		
133	DONE	3			DONE	3		
134	GND	-			GND	-		
135	VCC	-			VCC	-		
136	VCCAUX	-			VCCAUX	-		
137	PR9B	2	С	PCLKC2_0	PR18B	2	С	PCLKC2_0
138	GND2	2			GND2	2		
139	PR9A	2	Т	PCLKT2_0	PR18A	2	Т	PCLKT2_0
140	PR8B	2	С		PR17B	2	С	
141	PR8A	2	Т		PR17A	2	Т	
142	PR7B	2	С		PR16B	2	С	
143	PR7A	2	Т		PR16A	2	Т	
144	PR6B	2	С		PR15B	2	С	
145	VCCIO2	2			VCCIO2	2		
146	PR6A	2	Т	RDQS6	PR15A	2	Т	RDQS15
147	PR5B	2	С		PR14B	2	С	
148	PR5A	2	Т		PR14A	2	Т	
149	PR4B	2	С		PR13B	2	С	
150	PR4A	2	Т		PR13A	2	Т	
151	NC	-			GND	-		
152	NC	-			VCC	-		
153	PR2B	2	С	VREF1_2	PR2B	2	С	VREF1_2
154	PR2A	2	Т	VREF2_2	PR2A	2	Т	VREF2_2
155	VCCIO2	2			VCCIO2	2		
156*	GND1 GND2	-			GND1 GND2	-		
157	VCCIO1	1			VCCIO1	1		
158	PT33A	1			PT41A	1		
159	PT25B	1	С		PT33B	1	С	
160	PT25A	1	Т		PT33A	1	Т	
161	PT24B	1	С		PT32B	1	С	
162	PT24A	1	Т		PT32A	1	Т	
163	PT23B	1	С		PT31B	1	С	
164	PT23A	1	Т		PT31A	1	Т	
165	PT22B	1	С		PT30B	1	С	
166	PT22A	1	Т	TDQS22	PT30A	1	Т	TDQS30
167	PT21B	1	С		PT29B	1	С	
168	GND1	1			GND1	1		

LFEC20/LFECP20						LFECP/EC33				
Ball	Ball				Ball	Ball			Dual	
Number	Function	Bank	LVDS	Dual Function	Number	Function	Bank	LVDS	Function	
U21	PR36B	3	С		U21	PR48B	3	С		
T21	PR36A	3	Т	RDQS36	T21	PR48A	3	Т	RDQS48	
T25	PR35B	3	С		T25	PR47B	3	С		
GND	GND3	3			GND	GND3	3			
T26	PR35A	3	Т		T26	PR47A	3	Т		
T22	PR34B	3	С		T22	PR46B	3	С		
T23	PR34A	3	Т		T23	PR46A	3	Т		
T24	PR33B	3	С		T24	PR45B	3	С		
R23	PR33A	3	Т		R23	PR45A	3	Т		
R25	PR32B	3	С		R25	PR44B	3	С		
R24	PR32A	3	Т		R24	PR44A	3	Т		
R26	PR31B	3	С		R26	PR43B	3	С		
GND	GND3	3			GND	GND3	3			
P26	PR31A	3	Т		P26	PR43A	3	Т		
R21	PR30B	3	С		R21	PR42B	3	С		
R22	PR30A	3	Т		R22	PR42A	3	Т		
P25	PR29B	3	С		P25	PR41B	3	С		
P24	PR29A	3	Т		P24	PR41A	3	Т		
P23	PR28B	3	С		P23	PR40B	3	С		
P22	PR28A	3	Т	RDQS28	P22	PR40A	3	Т	RDQS40	
N26	PR27B	3	С		N26	PR39B	3	С		
GND	GND3	3			GND	GND3	3			
M26	PR27A	3	Т		M26	PR39A	3	Т		
N21	PR26B	3	С		N21	PR38B	3	С		
P21	PR26A	3	Т		P21	PR38A	3	Т		
N23	PR25B	3	С		N23	PR37B	3	С		
N22	PR25A	3	Т		N22	PR37A	3	Т		
N25	PR24B	3	С		N25	PR36B	3	С		
N24	PR24A	3	Т		N24	PR36A	3	Т		
L26	PR22B	2	С	PCLKC2_0	L26	PR34B	2	С	PCLKC2_0	
GND	GND2	2			GND	GND2	2			
K26	PR22A	2	Т	PCLKT2_0	K26	PR34A	2	Т	PCLKT2_0	
M22	PR21B	2	С		M22	PR33B	2	С		
M23	PR21A	2	Т		M23	PR33A	2	Т		
M25	PR20B	2	С		M25	PR32B	2	С		
M24	PR20A	2	Т		M24	PR32A	2	Т		
M21	PR19B	2	С		M21	PR31B	2	С		
L21	PR19A	2	Т	RDQS19	L21	PR31A	2	Т	RDQS31	
L22	PR18B	2	С		L22	PR30B	2	С		
GND	GND2	2			GND	GND2	2			
L23	PR18A	2	Т		L23	PR30A	2	Т		
L25	PR17B	2	C		L25	PR29R	2	C		
L23 L25	PR18A PR17B	2 2	T C		L23 L25	PR30A PR29B	2 2	T C		

LFEC20/LFECP20						LFECP/EC33					
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function		
D13	PT32B	0	С	VREF1_0	D13	PT32B	0	С	VREF1_0		
C13	PT32A	0	Т	VREF2_0	C13	PT32A	0	Т	VREF2_0		
A13	PT31B	0	С		A13	PT31B	0	С			
B13	PT31A	0	Т		B13	PT31A	0	Т			
F13	PT30B	0	С		F13	PT30B	0	С			
F12	PT30A	0	Т	TDQS30	F12	PT30A	0	Т	TDQS30		
A12	PT29B	0	С		A12	PT29B	0	С			
GND	GND0	0			GND	GND0	0				
B12	PT29A	0	Т		B12	PT29A	0	Т			
A11	PT28B	0	С		A11	PT28B	0	С			
B11	PT28A	0	Т		B11	PT28A	0	Т			
D12	PT27B	0	С		D12	PT27B	0	С			
C12	PT27A	0	Т		C12	PT27A	0	Т			
B10	PT26B	0	С		B10	PT26B	0	С			
A10	PT26A	0	Т		A10	PT26A	0	Т			
G12	PT25B	0	С		G12	PT25B	0	С			
GND	GND0	0			GND	GND0	0				
A9	PT25A	0	Т		A9	PT25A	0	Т			
E12	PT24B	0	С		E12	PT24B	0	С			
B9	PT24A	0	Т		B9	PT24A	0	Т			
F11	PT23B	0	С		F11	PT23B	0	С			
A8	PT23A	0	Т		A8	PT23A	0	Т			
D11	PT22B	0	С		D11	PT22B	0	С			
C11	PT22A	0	Т	TDQS22	C11	PT22A	0	Т	TDQS22		
B8	PT21B	0	С		B8	PT21B	0	С			
GND	GND0	0			GND	GND0	0				
B7	PT21A	0	Т		B7	PT21A	0	Т			
E11	PT20B	0	С		E11	PT20B	0	С			
A7	PT20A	0	Т		A7	PT20A	0	Т			
G11	PT19B	0	С		G11	PT19B	0	С			
C7	PT19A	0	Т		C7	PT19A	0	Т			
G10	PT18B	0	С		G10	PT18B	0	С			
C6	PT18A	0	Т		C6	PT18A	0	Т			
C10	PT17B	0	С		C10	PT17B	0	С			
GND	GND0	0			GND	GND0	0				
D10	PT17A	0	Т		D10	PT17A	0	Т			
F10	PT16B	0	С		F10	PT16B	0	С			
A6	PT16A	0	Т		A6	PT16A	0	Т			
E10	PT15B	0	С		E10	PT15B	0	С			
C9	PT15A	0	Т		C9	PT15A	0	Т			
G9	PT14B	0	С		G9	PT14B	0	С			
D9	PT14A	0	Т	TDQS14	D9	PT14A	0	Т	TDQS14		

LFEC20/LFECP20					LFECP/EC33					
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function	
A5	PT13B	0	С		A5	PT13B	0	С		
GND	GND0	0			GND	GND0	0			
A4	PT13A	0	Т		A4	PT13A	0	Т		
F9	PT12B	0	С		F9	PT12B	0	С		
B6	PT12A	0	Т		B6	PT12A	0	Т		
E9	PT11B	0	С		E9	PT11B	0	С		
C8	PT11A	0	Т		C8	PT11A	0	Т		
G8	PT10B	0	С		G8	PT10B	0	С		
B5	PT10A	0	Т		B5	PT10A	0	Т		
A3	PT9B	0	С		A3	PT9B	0	С		
GND	GND0	0			GND	GND0	0			
A2	PT9A	0	Т		A2	PT9A	0	Т		
F8	PT8B	0	С		F8	PT8B	0	С		
B4	PT8A	0	Т		B4	PT8A	0	Т		
E8	PT7B	0	С		E8	PT7B	0	С		
B3	PT7A	0	Т		B3	PT7A	0	Т		
D8	PT6B	0	С		D8	PT6B	0	С		
G7	PT6A	0	Т	TDQS6	G7	PT6A	0	Т	TDQS6	
C4	PT5B	0	С		C4	PT5B	0	С		
C5	PT5A	0	Т		C5	PT5A	0	Т		
E7	PT4B	0	С		E7	PT4B	0	С		
D4	PT4A	0	Т		D4	PT4A	0	Т		
F7	PT3B	0	С		F7	PT3B	0	С		
D6	PT3A	0	Т		D6	PT3A	0	Т		
D7	PT2B	0	С		D7	PT2B	0	С		
E6	PT2A	0	Т		E6	PT2A	0	Т		
GND	GND0	0			GND	GND0	0			
K10	GND	-			K10	GND	-			
K11	GND	-			K11	GND	-			
K12	GND	-			K12	GND	-			
K13	GND	-			K13	GND	-			
K14	GND	-			K14	GND	-			
K15	GND	-			K15	GND	-			
K16	GND	-			K16	GND	-			
L10	GND	-			L10	GND	-			
L11	GND	-			L11	GND	-			
L12	GND	-			L12	GND	-			
L13	GND	-			L13	GND	-			
L14	GND	-			L14	GND	-			
L15	GND	-			L15	GND	-			
L16	GND	-			L16	GND	-			
L17	GND	-			L17	GND	-			

LFEC20/LFECP20						LFECP/EC33					
Ball	Ball				Ball	Ball			Dual		
Number	Function	Bank	LVDS	Dual Function	Number	Function	Bank	LVDS	Function		
M10	GND	-			M10	GND	-				
M11	GND	-			M11	GND	-				
M12	GND	-			M12	GND	-				
M13	GND	-			M13	GND	-				
M14	GND	-			M14	GND	-				
M15	GND	-			M15	GND	-				
M16	GND	-			M16	GND	-				
M17	GND	-			M17	GND	-				
N10	GND	-			N10	GND	-				
N11	GND	-			N11	GND	-				
N12	GND	-			N12	GND	-				
N13	GND	-			N13	GND	-				
N14	GND	-			N14	GND	-				
N15	GND	-			N15	GND	-				
N16	GND	-			N16	GND	-				
N17	GND	-			N17	GND	-				
P10	GND	-			P10	GND	-				
P11	GND	-			P11	GND	-				
P12	GND	-			P12	GND	-				
P13	GND	-			P13	GND	-				
P14	GND	-			P14	GND	-				
P15	GND	-			P15	GND	-				
P16	GND	-			P16	GND	-				
P17	GND	-			P17	GND	-				
R10	GND	-			R10	GND	-				
R11	GND	-			R11	GND	-				
R12	GND	-			R12	GND	-				
R13	GND	-			R13	GND	-				
R14	GND	-			R14	GND	-				
R15	GND	-			R15	GND	-				
R16	GND	-			R16	GND	-				
R17	GND	-			R17	GND	-				
T10	GND	-			T10	GND	-				
T11	GND	-			T11	GND	-				
T12	GND	-			T12	GND	-				
T13	GND	-			T13	GND	-				
T14	GND	-			T14	GND	-				
T15	GND	-			T15	GND	-				
T16	GND	-			T16	GND	-				
T17	GND	-			T17	GND	-				
U10	GND	-			U10	GND	-				
U11	GND	-			U11	GND	-		<u> </u>		
		1					1				

LatticeECP/EC Family Data Sheet Ordering Information

September 2012

Data Sheet

Part Number Description

Ordering Information

Note:pLatticeECP/EC devices are dual marked. For example, the commercial speed grade LFEC20E-4F484C is also marked with industrial grade -3I (LFEC20E-3F484I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows:

Lattice
LFEC20E- 4F484C-3I
Datecode

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeECP Industrial (Continued)

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP20E-3F672I	400	-3	fpBGA	672	IND	19.7K
LFECP20E-4F672I	400	-4	fpBGA	672	IND	19.7K
LFECP20E-3F484I	360	-3	fpBGA	484	IND	19.7K
LFECP20E-4F484I	360	-4	fpBGA	484	IND	19.7K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFECP33E-3F672I	496	-3	fpBGA	672	IND	32.8K
LFECP33E-4F672I	496	-4	fpBGA	672	IND	32.8K
LFECP33E-3F484I	360	-3	fpBGA	484	IND	32.8K
LFECP33E-4F484I	360	-4	fpBGA	484	IND	32.8K

LatticeECP/EC Family Data Sheet Supplemental Information

September 2012

Data Sheet

For Further Information

A variety of technical notes for the LatticeECP/EC family are available on the Lattice web site at <u>www.latticesemi.com</u>.

- LatticeECP/EC sysIO Usage Guide (TN1056)
- LatticeECP/EC sysCLOCK PLL Design and Usage Guide (TN1049)
- Memory Usage Guide for LatticeECP/EC Devices (TN1051)
- LatticeECP/EC DDR Usage Guide (TN1050)
- Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)
- LatticeECP-DSP sysDSP Usage Guide (TN1057)
- LatticeECP/EC sysCONFIG Usage Guide (TN1053)
- IEEE 1149.1 Boundary Scan Testability in Lattice Devices

For further information about interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): <u>www.jedec.org</u>
- PCI: <u>ww.pcisig.com</u>

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.