Lattice Semiconductor Corporation - <u>LFECP15E-5FN484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	15400
Total RAM Bits	358400
Number of I/O	352
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfecp15e-5fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU and PFF Blocks

The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Diagram

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-14. DCS Waveforms

sysMEM Memory

The LatticeECP/EC devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

MULTADDSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-22 shows the MULTADDSUM sysDSP element.

Figure 2-22. MULTADDSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every DSP block. Four Clock, Reset and Clock Enable signals are selected for the sysDSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock enable (CE) and Reset (RST) are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

IPexpress[™]

The user can access the sysDSP block via the IPexpress configuration tool, included with the ispLEVER design tool suite. IPexpress has options to configure each DSP module (or group of modules) or through direct HDL instantiation. Additionally Lattice has partnered Mathworks to support instantiation in the Simulink tool, which is a Graphical Simulation Environment. Simulink works with ispLEVER and dramatically shortens the DSP design cycle in Lattice FPGAs.

Optimized DSP Functions

Lattice provides a library of optimized DSP IP functions. Some of the IPs planned for LatticeECP DSP are: Bit Correlators, Fast Fourier Transform, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/ Decoder, Turbo Encoder/Decoders and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IPs.

Resources Available in the LatticeECP Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP family. Table 2-10 shows the maximum available EBR RAM Blocks in each of the LatticeECP family. EBR blocks, together with Distributed RAM can be used to store variables locally for the fast DSP operations.

Device	DSP Block	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
LFECP6	4	32	16	4
LFECP10	5	40	20	5
LFECP15	6	48	24	6
LFECP20	7	56	28	7
LFECP33	8	64	32	8

Table 2-9. Number of DSP Blocks in LatticeECP Family

Table 2-10. Embedded SRAM in LatticeECP Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
LFECP6	10	92
LFECP10	30	276
LFECP15	38	350
LFECP20	46	424
LFECP33	54	498

DSP Performance of the LatticeECP Family

Table 2-11 lists the maximum performance in millions of MAC operations per second (MMAC) for each member of the LatticeECP family.

 Table 2-11. DSP Block Performance of LatticeECP Family

Device	DSP Block	DSP Performance MMAC
LFECP6	4	3680
LFECP10	5	4600
LFECP15	6	5520
LFECP20	7	6440
LFECP33	8	7360

Table 2-12. PIO Signal List

Name	Туре	Description
CE0, CE1	Control from the core	Clock enables for input and output block FFs.
CLK0, CLK1	Control from the core	System clocks for input and output blocks.
LSR	Control from the core	Local Set/Reset.
GSRN	Control from routing	Global Set/Reset (active low).
INCK	Input to the core	Input to Primary Clock Network or PLL reference inputs.
DQS	Input to PIO	DQS signal from logic (routing) to PIO.
INDD	Input to the core	Unregistered data input to core.
INFF	Input to the core	Registered input on positive edge of the clock (CLK0).
IPOS0, IPOS1	Input to the core	DDRX registered inputs to the core.
ONEG0	Control from the core	Output signals from the core for SDR and DDR operation.
OPOS0,	Control from the core	Output signals from the core for DDR operation
OPOS1 ONEG1	Tristate control from the core	Signals to Tristate Register block for DDR operation.
TD	Tristate control from the core	Tristate signal from the core used in SDR operation.
DDRCLKPOL	Control from clock polarity bus	Controls the polarity of the clock (CLK0) that feed the DDR input block.

Figure 2-25. DQS Routing

		PIO A	PADA "T" LVDS Pair
		PIO B	PADB "C"
		PIO A	PADA "T" LVDS Pair
	→	PIO B	PADB "C"
	→	PIO A	PADA "T" LVDS Pair
	→	PIO B	PADB "C"
		PIO A	PADA "T" LVDS Pair
		PIO B	PADB "C"
			svsl0 Assigned
DQS		PIO A	Buffer PADA "T"
		PIO A	Buffer DQS Pin PADA "T" Delay LVDS Pair
DQS		PIO A PIO B	DQS Pin PADA "T" Delay LVDS Pair PADB "C"
DQS		PIO A PIO B PIO A	DQS Pin PADA "T" Pelay LVDS Pair PADA "T" PADA "T" PADA "T" LVDS Pair
DQS		PIO A PIO B PIO A PIO B	DQS Pin PADA 'T" ↓ Delay LVDS Pair PADB "C" ↓ PADB "C" ↓ PADB "C"
		PIO A PIO B PIO A PIO B PIO A	DQS Pin PADA "T" LVDS Pair PADA "C" PADA "C" PADA "C" PADA "C" PADA "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
		PIO A PIO B PIO A PIO B PIO A PIO B	Buffer DQS Pin PADA "T" PADA "T" PADB "C" PADB "C"
		PIO A PIO B PIO A PIO B PIO A PIO B PIO A	Buffer PADA "T" LVDS Pair PADB "C" PADB "C"

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Figure 2-29. Output Register Block

*Latch is transparent when input is low.

Figure 2-30. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-31 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-34. LatticeECP/EC Banks

LatticeECP/EC devices contain two types of sysI/O buffer pairs.

1. Top and Bottom sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps. These I/O banks also support hot socketing with IDK less than 1mA. Note that the PCI clamp is enabled after V_{CC} , V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysl/O Buffer Pairs (Differential and Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Only the left and right banks have LVDS differential output drivers. See the I_{DK} specification for I/O leakage current during power-up.

Table 2-14. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)		
Single-ended Interfaces				
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3		
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3		
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5		
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—		
LVCMOS15, Open Drain	4mA, 8mA	—		
LVCMOS12, Open Drain	2mA, 6mA	—		
PCI33	N/A	3.3		
HSTL18 Class I, II, III	N/A	1.8		
HSTL15 Class I, III	N/A	1.5		
SSTL3 Class I, II	N/A	3.3		
SSTL2 Class I, II	N/A	2.5		
SSTL18 Class I	N/A	1.8		
Differential Interfaces				
Differential SSTL3, Class I, II	N/A	3.3		
Differential SSTL2, Class I, II	N/A	2.5		
Differential SSTL18, Class I	N/A	1.8		
Differential HSTL18, Class I, II, III	N/A	1.8		
Differential HSTL15, Class I, III	N/A	1.5		
LVDS	N/A	2.5		
BLVDS ¹	N/A	2.5		
LVPECL ¹	N/A	3.3		
RSDS ¹	N/A	2.5		

1. Emulated with external resistors.

Hot Socketing

The LatticeECP/EC devices have been carefully designed to ensure predictable behavior during power-up and power-down. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits, this allows for easy integration with the rest of the system. These capabilities make the LatticeECP/EC ideal for many multiple power supply and hot-swap applications.

Configuration and Testing

The following section describes the configuration and testing features of the LatticeECP/EC devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeECP/EC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to

Oscillator

Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 2-15 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Clock frequency.
- 2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5*	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—

Table 2-15. Selectable Maste	r Clock (CCLK)	Frequencies	During	Configuration
------------------------------	----------------	-------------	--------	---------------

Density Shifting

The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

RSDS

The LatticeECP/EC devices support differential RSDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	ohm
R _S	Driver series resistor	294	ohm
R _P	Driver parallel resistor	121	ohm
R _T	Receiver termination	100	ohm
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	ohm
I _{DC}	DC output current	3.66	mA

Signal Descriptions (Cont.)

Signal Name	I/O	Description
ТОІ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.
TDO	0	Output pin. Test Data out pin used to shift data out of device using 1149.1.
V _{CCJ}		V _{CCJ} - The power supply pin for JTAG Test Access Port.
Configuration Pads (used during sysCO)	NFIG)	
CFG[2:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.
BUSY/SISPI	I/O	Read control command in SPI3 or SPIX mode.
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.
CS1N	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.
WRITEN	I	Write Data on Parallel port (Active low).
D[7:0]/SPID[0:7]	I/O	sysCONFIG Port Data I/O.
DOUT/CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port.
DI/CSSPIN	I/O	Input for serial configuration data (clocked with CCLK) when using sysCON- FIG port. During configuration, a pull-up is enabled. Output when used in SPI/SPIX modes.

LFEC1, LFEC3 Logic Signal Connections: 100 TQFP (Cont.)

			LFEC1				LFEC3	
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function
41	PB11A	4	Т	VREF1_4	PB19A	4	Т	VREF1_4
42	PB11B	4	С	CSN	PB19B	4	С	CSN
43	PB12B	4		D0/SPID7	PB20B	4		D0/SPID7
44	PB13A	4	Т	D2/SPID5	PB21A	4	Т	D2/SPID5
45	PB13B	4	С	D1/SPID6	PB21B	4	С	D1/SPID6
46	PB14A	4	Т	BDQS14	PB22A	4	Т	BDQS22
47	PB14B	4	С	D3/SPID4	PB22B	4	С	D3/SPID4
48	PB15B	4		D4/SPID3	PB23B	4		D4/SPID3
49	PB16B	4		D5/SPID2	PB24B	4		D5/SPID2
50	PB17B	4		D6/SPID1	PB25B	4		D6/SPID1
51*	GND3 GND4	-			GND3 GND4	-		
52	PR10B	3	С	RLM0_PLLC_FB_A	PR14B	3	С	RLM0_PLLC_FB_A
53	PR10A	3	Т	RLM0_PLLT_FB_A	PR14A	3	Т	RLM0_PLLT_FB_A
54	PR9B	3	С	RLM0_PLLC_IN_A	PR13B	3	С	RLM0_PLLC_IN_A
55	PR9A	3	Т	RLM0_PLLT_IN_A	PR13A	3	Т	RLM0_PLLT_IN_A
56	VCCIO3	3			VCCIO3	3		
57	PR8B	3	С	DI/CSSPIN	PR12B	3	С	DI/CSSPIN
58	PR8A	3	Т	DOUT/CSON	PR12A	3	Т	DOUT/CSON
59	PR7B	3	С	BUSY/SISPI	PR11B	3	С	BUSY/SISPI
60	PR7A	3	Т	D7/SPID0	PR11A	3	Т	D7/SPID0
61	CFG2	3			CFG2	3		
62	CFG1	3			CFG1	3		
63	CFG0	3			CFG0	3		
64	VCC	-			VCC	-		
65	PROGRAMN	3			PROGRAMN	3		
66	CCLK	3			CCLK	3		
67	INITN	3			INITN	3		
68	GND	-			GND	-		
69	DONE	3			DONE	3		
70	PR5B	2	С	PCLKC2_0	PR9B	2	С	PCLKC2_0
71	PR5A	2	Т	PCLKT2_0	PR9A	2	Т	PCLKT2_0
72	PR2B	2		VREF1_2	PR2B	2		VREF1_2
73	VCCIO2	2			VCCIO2	2		
74	GND2	2			GND2	2		
75	PT17B	1	С		PT25B	1	С	
76	PT17A	1	Т		PT25A	1	Т	
77	PT14B	1	С		PT22B	1	С	
78	PT14A	1	Т	TDQS14	PT22A	1	Т	TDQS22
79	PT13A	1			PT21A	1		
80	PT12B	1	С		PT20B	1	С	
81	PT12A	1	Т		PT20A	1	Т	

LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		LFECP	10/LFEC	10		LFECP	15/LFEC	:15
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function
N7	PB18B	5	С		PB18B	5	С	
R7	PB19A	5	Т		PB19A	5	Т	
R8	PB19B	5	С		PB19B	5	С	
M7	PB20A	5	Т		PB20A	5	Т	
M8	PB20B	5	С		PB20B	5	С	
Т8	PB21A	5	Т		PB21A	5	Т	
GND	GND5	5			GND5	5		
Т9	PB21B	5	С		PB21B	5	С	
P8	PB22A	5	Т	BDQS22	PB22A	5	Т	BDQS22
N8	PB22B	5	С		PB22B	5	С	
R9	PB23A	5	Т		PB23A	5	Т	
R10	PB23B	5	С		PB23B	5	С	
P9	PB24A	5	Т	VREF2_5	PB24A	5	Т	VREF2_5
N9	PB24B	5	С	VREF1_5	PB24B	5	С	VREF1_5
T10	PB25A	5	Т	PCLKT5_0	PB25A	5	Т	PCLKT5_0
GND	GND5	5			GND5	5		
T11	PB25B	5	С	PCLKC5_0	PB25B	5	С	PCLKC5_0
T12	PB26A	4	Т	WRITEN	PB26A	4	Т	WRITEN
T13	PB26B	4	С	CS1N	PB26B	4	С	CS1N
P10	PB27A	4	Т	VREF1_4	PB27A	4	Т	VREF1_4
N10	PB27B	4	С	CSN	PB27B	4	С	CSN
T14	PB28A	4	Т	VREF2_4	PB28A	4	Т	VREF2_4
T15	PB28B	4	С	D0/SPID7	PB28B	4	С	D0/SPID7
M10	PB29A	4	Т	D2/SPID5	PB29A	4	Т	D2/SPID5
GND	GND4	4			GND4	4		
M11	PB29B	4	С	D1/SPID6	PB29B	4	С	D1/SPID6
R11	PB30A	4	Т	BDQS30	PB30A	4	Т	BDQS30
P11	PB30B	4	С	D3/SPID4	PB30B	4	С	D3/SPID4
R13	PB31A	4	Т		PB31A	4	Т	
R14	PB31B	4	С	D4/SPID3	PB31B	4	С	D4/SPID3
P12	PB32A	4	Т		PB32A	4	Т	
P13	PB32B	4	С	D5/SPID2	PB32B	4	С	D5/SPID2
N11	PB33A	4	Т		PB33A	4	Т	
GND	GND4	4			GND4	4		
N12	PB33B	4	С	D6/SPID1	PB33B	4	С	D6/SPID1
R12	PB34A	4			PB34A	4		
GND	GND4	4			GND4	4		
GND	GND4	4			GND4	4		
-	-	-			GND4	4		
-	-	-			GND4	4		
GND	GND3	3			GND3	3		
N13	PR36B	3	С	VREF2_3	PR44B	3	С	VREF2_3
N14	PR36A	3	Т	VREF1_3	PR44A	3	Т	VREF1_3

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33					
Ball Number	Ball Function	Bank	LVD S	Dual Function	Ball Number	Ball Function	Bank	LVD S	Dual Function	
U9	PB20B	5	С		U9	PB20B	5	С		
Y8	PB21A	5	Т		Y8	PB21A	5	Т		
GND	GND5	5			GND	GND5	5			
Y9	PB21B	5	С		Y9	PB21B	5	С		
V9	PB22A	5	Т	BDQS22	V9	PB22A	5	Т	BDQS22	
Т9	PB22B	5	С		Т9	PB22B	5	С		
W10	PB23A	5	Т		W10	PB23A	5	Т		
U10	PB23B	5	С		U10	PB23B	5	С		
V10	PB24A	5	Т		V10	PB24A	5	Т		
T10	PB24B	5	С		T10	PB24B	5	С		
AA6	PB25A	5	Т		AA6	PB25A	5	Т		
GND	GND5	5			GND	GND5	5			
AB5	PB25B	5	С		AB5	PB25B	5	С		
AA8	PB26A	5	Т		AA8	PB26A	5	Т		
AA7	PB26B	5	С		AA7	PB26B	5	С		
AB6	PB27A	5	Т		AB6	PB27A	5	Т		
AB7	PB27B	5	С		AB7	PB27B	5	С		
Y10	PB28A	5	Т		Y10	PB28A	5	Т		
W11	PB28B	5	С		W11	PB28B	5	С		
AB8	PB29A	5	Т		AB8	PB29A	5	Т		
GND	GND5	5			GND	GND5	5			
AB9	PB29B	5	С		AB9	PB29B	5	С		
AA10	PB30A	5	Т	BDQS30	AA10	PB30A	5	Т	BDQS30	
AA9	PB30B	5	С		AA9	PB30B	5	С		
Y11	PB31A	5	Т		Y11	PB31A	5	Т		
AA11	PB31B	5	С		AA11	PB31B	5	С		
V11	PB32A	5	Т	VREF2_5	V11	PB32A	5	Т	VREF2_5	
V12	PB32B	5	С	VREF1_5	V12	PB32B	5	С	VREF1_5	
AB10	PB33A	5	Т	PCLKT5_0	AB10	PB33A	5	Т	PCLKT5_0	
GND	GND5	5			GND	GND5	5			
AB11	PB33B	5	С	PCLKC5_0	AB11	PB33B	5	С	PCLKC5_0	
Y12	PB34A	4	Т	WRITEN	Y12	PB34A	4	Т	WRITEN	
U11	PB34B	4	С	CS1N	U11	PB34B	4	С	CS1N	
W12	PB35A	4	Т	VREF1_4	W12	PB35A	4	Т	VREF1_4	
U12	PB35B	4	С	CSN	U12	PB35B	4	С	CSN	
W13	PB36A	4	Т	VREF2_4	W13	PB36A	4	Т	VREF2_4	
U13	PB36B	4	С	D0/SPID7	U13	PB36B	4	С	D0/SPID7	
AA12	PB37A	4	Т	D2/SPID5	AA12	PB37A	4	Т	D2/SPID5	
GND	GND4	4			GND	GND4	4			
AB12	PB37B	4	С	D1/SPID6	AB12	PB37B	4	С	D1/SPID6	
T13	PB38A	4	Т	BDQS38	T13	PB38A	4	Т	BDQS38	
V13	PB38B	4	С	D3/SPID4	V13	PB38B	4	С	D3/SPID4	
W14	PB39A	4	Т		W14	PB39A	4	Т		
U14	PB39B	4	С	D4/SPID3	U14	PB39B	4	С	D4/SPID3	

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33					
			LVD					LVD		
Ball Number	Ball Function	Bank	5	Dual Function	Ball Number	Ball Function	Bank	<u></u> т	Dual Function	
¥13	PB40A	4			¥13	PB40A	4			
V 14		4	т	D3/3FID2	V14 AA12		4	т	D5/3F1D2	
GND	GND4	4	-		GND	GND4	4	-		
AB13		4	C		AB13		4	<u> </u>		
ΔΔ14	PB42A	4	т	00/01101	AD13	PB42A	4	т	00/01101	
Y14	PB42B	4	Ċ		Y14	PB42B	4	C		
Y15	PB43A	4	Т		Y15	PB43A	4	Т		
W15	PB43B	4	C		W15	PB43B	4	C		
V15	PB44A	4	T		V15	PB44A	4	T		
T14	PB44B	4	C		T14	PB44B	4	C		
AB14	PB45A	4	T		AB14	PB45A	4	T		
GND	GND4	4			GND	GND4	4			
AB15	PB45B	4	С		AB15	PB45B	4	С		
AB16	PB46A	4	Т	BDQS46	AB16	PB46A	4	Т	BDQS46	
AA15	PB46B	4	С		AA15	PB46B	4	С		
AB17	PB47A	4	Т		AB17	PB47A	4	Т		
AA16	PB47B	4	С		AA16	PB47B	4	С		
AB18	PB48A	4	Т		AB18	PB48A	4	Т		
AA17	PB48B	4	С		AA17	PB48B	4	С		
AB19	PB49A	4	Т		AB19	PB49A	4	Т		
GND	GND4	4			GND	GND4	4			
AA18	PB49B	4	С		AA18	PB49B	4	С		
W16	PB50A	4	Т		W16	PB50A	4	Т		
U15	PB50B	4	С		U15	PB50B	4	С		
V16	PB51A	4	Т		V16	PB51A	4	Т		
U16	PB51B	4	С		U16	PB51B	4	С		
Y17	PB52A	4	Т		Y17	PB52A	4	Т		
V17	PB52B	4	С		V17	PB52B	4	С		
AB20	PB53A	4	Т		AB20	PB53A	4	Т		
GND	GND4	4			GND	GND4	4			
AA19	PB53B	4	С		AA19	PB53B	4	С		
Y16	PB54A	4	Т	BDQS54	Y16	PB54A	4	Т	BDQS54	
W17	PB54B	4	С		W17	PB54B	4	С		
AA20	PB55A	4	Т		AA20	PB55A	4	Т		
Y19	PB55B	4	С		Y19	PB55B	4	С		
Y18	PB56A	4	Т		Y18	PB56A	4	Т		
W18	PB56B	4	С		W18	PB56B	4	С		
T17	PB57A	4	Т		T17	PB57A	4	Т		
U17	PB57B	4	С		U17	PB57B	4	С		
GND	-	-			GND	GND4	4			
GND	GND4	4			GND	GND4	4			
GND	GND3	3			GND	GND4	4			
GND	-	-			GND	GND3	3			

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	EC20/L	FECP2	0			LFECP	/EC33	
Ball	Ball	Bank		Dual Eurotian	Ball	Ball	Ponk		Dual
Number	FUNCTION	Бапк	LVDS	Dual Function	Number		Бапк	LVDS	Function
P5	PL32B	0			P5	PL44B	6		
P6	PL33A	6	1		P6	PL45A	6	1	
R5	PL33B	6	C T		R5	PL45B	6	C T	
01	PL34A	6	I		01	PL46A	6	1	
02	PL34B	6	C		02	PL46B	6	C	
T3	PL35A	6	Т		Т3	PL47A	6	Т	
GND	GND6	6			GND	GND6	6		
T4	PL35B	6	С		T4	PL47B	6	С	
R6	PL36A	6	Т	LDQS36	R6	PL48A	6	Т	LDQS48
T5	PL36B	6	С		T5	PL48B	6	С	
T6	PL37A	6	Т		T6	PL49A	6	Т	
U5	PL37B	6	С		U5	PL49B	6	С	
U3	PL38A	6	Т		U3	PL50A	6	Т	
U4	PL38B	6	С		U4	PL50B	6	С	
V1	PL39A	6	Т		V1	PL51A	6	Т	
GND	GND6	6			GND	GND6	6		
V2	PL39B	6	С		V2	PL51B	6	С	
U7	ТСК	6			U7	TCK	6		
V4	TDI	6			V4	TDI	6		
V5	TMS	6			V5	TMS	6		
V3	TDO	6			V3	TDO	6		
U6	VCCJ	6			U6	VCCJ	6		
W1	PL41A	6	Т	LLM0_PLLT_IN_A	W1	PL53A	6	Т	LLM0_PLLT_IN_A
W2	PL41B	6	С	LLM0_PLLC_IN_A	W2	PL53B	6	С	LLM0_PLLC_IN_A
V6	PL42A	6	Т	LLM0_PLLT_FB_A	V6	PL54A	6	Т	LLM0_PLLT_FB_A
W6	PL42B	6	С	LLM0_PLLC_FB_A	W6	PL54B	6	С	LLM0_PLLC_FB_A
Y1	PL43A	6	Т		Y1	PL55A	6	Т	
Y2	PL43B	6	С		Y2	PL55B	6	С	
W3	PL44A	6	Т		W3	PL56A	6	Т	
GND	GND6	6			GND	GND6	6		
W4	PL44B	6	С		W4	PL56B	6	С	
AA1	PL45A	6	Т	LDQS45	AA1	PL57A	6	Т	LDQS57
AB1	PL45B	6	С		AB1	PL57B	6	С	
Y4	PL46A	6	Т		Y4	PL58A	6	Т	
Y3	PL46B	6	С		Y3	PL58B	6	С	
AC1	PL47A	6	Т		AC1	PL59A	6	Т	
AB2	PL47B	6	С		AB2	PL59B	6	С	
AA2	NC	-	_		AA2	PL60A	6	Т	
-	-	-			GND	GND6	6		
AA3	NC	-			AA3	PL60B	6	С	
W5	NC	-			W5	PI 61A	6	T	
Y5	NC	-			Y5	PI 61R	6	C C	
15					15		0	0	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	FECP20)	LFECP/EC33					
Ball	Ball				Ball	Ball			Dual
Number	Function	Bank	LVDS	Dual Function	Number	Function	Bank	LVDS	Function
J14	VCCIO1	1			J14	VCCIO1	1		
J15	VCCIO1	1			J15	VCCIO1	1		
J16	VCCIO1	1			J16	VCCIO1	1		
J17	VCCIO1	1			J17	VCCIO1	1		
K17	VCCIO2	2			K17	VCCIO2	2		
K18	VCCIO2	2			K18	VCCIO2	2		
L18	VCCIO2	2			L18	VCCIO2	2		
M18	VCCIO2	2			M18	VCCIO2	2		
N18	VCCIO2	2			N18	VCCIO2	2		
N19	VCCIO2	2			N19	VCCIO2	2		
P18	VCCIO3	3			P18	VCCIO3	3		
P19	VCCIO3	3			P19	VCCIO3	3		
R18	VCCIO3	3			R18	VCCIO3	3		
R19	VCCIO3	3			R19	VCCIO3	3		
T18	VCCIO3	3			T18	VCCIO3	3		
U18	VCCIO3	3			U18	VCCIO3	3		
V14	VCCIO4	4			V14	VCCIO4	4		
V15	VCCIO4	4			V15	VCCIO4	4		
V16	VCCIO4	4			V16	VCCIO4	4		
V17	VCCIO4	4			V17	VCCIO4	4		
W14	VCCIO4	4			W14	VCCIO4	4		
W15	VCCIO4	4			W15	VCCIO4	4		
V10	VCCIO5	5			V10	VCCIO5	5		
V11	VCCIO5	5			V11	VCCIO5	5		
V12	VCCIO5	5			V12	VCCIO5	5		
V13	VCCIO5	5			V13	VCCIO5	5		
W12	VCCIO5	5			W12	VCCIO5	5		
W13	VCCIO5	5			W13	VCCIO5	5		
P8	VCCIO6	6			P8	VCCIO6	6		
P9	VCCIO6	6			P9	VCCIO6	6		
R8	VCCIO6	6			R8	VCCIO6	6		
R9	VCCIO6	6			R9	VCCIO6	6		
T9	VCCIO6	6			T9	VCCIO6	6		
U9	VCCIO6	6			U9	VCCIO6	6		
K9	VCCI07	7			K9	VCCI07	7		
L9	VCCI07	7			L9	VCCI07	7		
M8	VCCI07	7			M8	VCCI07	7		
M9	VCCI07	7			M9	VCCI07	7	l	
N8	VCCI07	7			N8	VCCI07	7		
N9	VCCI07	7			N9	VCCI07	7		
G13	VCCAUX	-			G13	VCCAUX	-		
H20	VCCAUX	-			H20	VCCAUX	-		
1120	VOCAUX				1120	VOOLOX	-		

Conventional Packaging

LatticeEC Commercial

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC1E-3Q208C	112	-3	PQFP	208	COM	1.5K
LFEC1E-4Q208C	112	-4	PQFP	208	COM	1.5K
LFEC1E-5Q208C	112	-5	PQFP	208	СОМ	1.5K
LFEC1E-3T144C	97	-3	TQFP	144	СОМ	1.5K
LFEC1E-4T144C	97	-4	TQFP	144	COM	1.5K
LFEC1E-5T144C	97	-5	TQFP	144	СОМ	1.5K
LFEC1E-3T100C	67	-3	TQFP	100	СОМ	1.5K
LFEC1E-4T100C	67	-4	TQFP	100	СОМ	1.5K
LFEC1E-5T100C	67	-5	TQFP	100	COM	1.5K

Part Number	l/Os	Grade	Package	Pins	Temp.	LUTs
LFEC3E-3F256C	160	-3	fpBGA	256	COM	3.1K
LFEC3E-4F256C	160	-4	fpBGA	256	COM	3.1K
LFEC3E-5F256C	160	-5	fpBGA	256	COM	3.1K
LFEC3E-3Q208C	145	-3	PQFP	208	COM	3.1K
LFEC3E-4Q208C	145	-4	PQFP	208	COM	3.1K
LFEC3E-5Q208C	145	-5	PQFP	208	COM	3.1K
LFEC3E-3T144C	97	-3	TQFP	144	COM	3.1K
LFEC3E-4T144C	97	-4	TQFP	144	COM	3.1K
LFEC3E-5T144C	97	-5	TQFP	144	COM	3.1K
LFEC3E-3T100C	67	-3	TQFP	100	COM	3.1K
LFEC3E-4T100C	67	-4	TQFP	100	COM	3.1K
LFEC3E-5T100C	67	-5	TQFP	100	COM	3.1K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC6E-3F484C	224	-3	fpBGA	484	COM	6.1K
LFEC6E-4F484C	224	-4	fpBGA	484	COM	6.1K
LFEC6E-5F484C	224	-5	fpBGA	484	COM	6.1K
LFEC6E-3F256C	195	-3	fpBGA	256	COM	6.1K
LFEC6E-4F256C	195	-4	fpBGA	256	COM	6.1K
LFEC6E-5F256C	195	-5	fpBGA	256	COM	6.1K
LFEC6E-3Q208C	147	-3	PQFP	208	COM	6.1K
LFEC6E-4Q208C	147	-4	PQFP	208	COM	6.1K
LFEC6E-5Q208C	147	-5	PQFP	208	COM	6.1K
LFEC6E-3T144C	97	-3	TQFP	144	COM	6.1K
LFEC6E-4T144C	97	-4	TQFP	144	COM	6.1K
LFEC6E-5T144C	97	-5	TQFP	144	COM	6.1K

Part Number	I/Os	Grade	Package	Pins	Temp.	LUTs
LFEC10E-3F484C	288	-3	fpBGA	484	COM	10.2K
LFEC10E-4F484C	288	-4	fpBGA	484	COM	10.2K
LFEC10E-5F484C	288	-5	fpBGA	484	COM	10.2K
LFEC10E-3F256C	195	-3	fpBGA	256	COM	10.2K

LatticeEC Commercial (Continued)

Part Number	l/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC10E-4FN256C	195	-4	Lead-Free fpBGA	256	СОМ	10.2K
LFEC10E-5FN256C	195	-5	Lead-Free fpBGA	256	COM	10.2K
LFEC10E-3QN208C	147	-3	Lead-Free PQFP	208	COM	10.2K
LFEC10E-4QN208C	147	-4	Lead-Free PQFP	208	COM	10.2K
LFEC10E-5QN208C	147	-5	Lead-Free PQFP	208	COM	10.2K
		•		•	•	•

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC15E-3FN484C	352	-3	Lead-Free fpBGA	484	COM	15.3K
LFEC15E-4FN484C	352	-4	Lead-Free fpBGA	484	COM	15.3K
LFEC15E-5FN484C	352	-5	Lead-Free fpBGA	484	COM	15.3K
LFEC15E-3FN256C	195	-3	Lead-Free fpBGA	256	COM	15.3K
LFEC15E-4FN256C	195	-4	Lead-Free fpBGA	256	COM	15.3K
LFEC15E-5FN256C	195	-5	Lead-Free fpBGA	256	COM	15.3K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC20E-3FN672C	400	-3	Lead-Free fpBGA	672	COM	19.7K
LFEC20E-4FN672C	400	-4	Lead-Free fpBGA	672	COM	19.7K
LFEC20E-5FN672C	400	-5	Lead-Free fpBGA	672	COM	19.7K
LFEC20E-3FN484C	360	-3	Lead-Free fpBGA	484	COM	19.7K
LFEC20E-4FN484C	360	-4	Lead-Free fpBGA	484	COM	19.7K
LFEC20E-5FN484C	360	-5	Lead-Free fpBGA	484	COM	19.7K

Part Number	l/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC33E-3FN672C	496	-3	Lead-Free fpBGA	672	COM	32.8K
LFEC33E-4FN672C	496	-4	Lead-Free fpBGA	672	COM	32.8K
LFEC33E-5FN672C	496	-5	Lead-Free fpBGA	672	COM	32.8K
LFEC33E-3FN484C	360	-3	Lead-Free fpBGA	484	COM	32.8K
LFEC33E-4FN484C	360	-4	Lead-Free fpBGA	484	COM	32.8K
LFEC33E-5FN484C	360	-5	Lead-Free fpBGA	484	COM	32.8K

Date	Version	Section	Change Summary
September 2005	02.0	Architecture	sysIO section has been updated.
		DC & Switching	Recommended Operating Conditions has been updated with V _{CCPLL} .
		Characteristics	DC Electrical Characteristics table has been updated
			Removed 5V Tolerant Input Buffer section.
			Register-to-Register performance table has been updated (rev. G 0.28).
			LatticeECP/EC External Switching Characteristics table has been updated (rev. G 0.28).
			LatticeECP/EC Internal Switching Characteristics table has been updated (rev. G 0.28).
			LatticeECP/EC Family Timing Adders have been updated (rev. G 0.28).
			sysCLOCK PLL timing table has been updated (rev. G 0.28)
			LatticeECP/EC sysCONFIG Port Timing specification table has been updated (rev. G 0.28).
			Master Clock table has been updated (rev. G 0.28).
			JTAG Port Timing specification table has been updated (rev. G 0.28).
		Pinout Information	Signal Description table has been updated with V _{CCPLL} .
November 2005	02.1	DC & Switching Characteristics	Pin-to-Pin Performance table has been updated (G 0.30) - 4:1MUX, 8:1MUX, 16:1MUX, 32:1MUX Register-to-Register Performance (G 0.30) - No timing number changes.
			External Switching Characteristics (G 0.30) - No timing number changes.
			Internal Switching Characteristics (G 0.30) -tsup_Dsp, tHP_Dsp_tsuo_Dsp, tHO_Dsp, tCOI_Dsp_tcOD_Dsp_numbers have been updated.
			Family Timing Adders (G 0.30) - No timing number changes.
			sysCLOCK PLL Timing (G 0.30) - No timing number changes.
			sysCONFIG Port Timing Specifications (G 0.30) - No timing number changes.
			Master Clock (G 0.30) - No timing number changes.
			JTAG Port Timing Specification (G 0.30) - No timing number changes.
		Ordering Information	Added 208-PQFP lead-free part numbers.
March 2006	02.2	DC & Switching Characteristics	Added footnote 3. to $V_{\mbox{CCAUX}}$ in the Recommended Operating Conditions table.
January 2007	02.3	Architecture	EBR Asynchronous Reset section added.
February 2007	02.4	Architecture	Updated EBR Asynchronous Reset section.
			Updated Maximum Number of Elements in a Block table - MAC value for x9 changed to 2.
May 2007	02.5	Architecture	Updated text in Ripple Mode section.
November 2007	02.6	DC & Switching Characteristics	Added JTAG Port Waveforms diagram.
			Updated t _{RST} timing information in the sysCLOCK PLL Timing table.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.
February 2008	02.7	DC & Switching Characteristics	Read/Write Mode (Normal) and Read/Write Mode with Input and Output Registers waveforms in the EBR Memory Timing Diagrams section have been updated.
September 2012	02.8	All	Updated document with new corporate logo.