Lattice Semiconductor Corporation - LFECP33E-3FN484I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	32800
Total RAM Bits	434176
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfecp33e-3fn484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PFU and PFF Blocks

The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-3. PFU Diagram

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Routing

There are many resources provided in the LatticeECP/EC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered, the routing of both short and long connections between PFUs.

The ispLEVER design tool suite takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock Distribution Network

The clock inputs are selected from external I/O, the sysCLOCK[™] PLLs or routing. These clock inputs are fed through the chip via a clock distribution system.

Primary Clock Sources

LatticeECP/EC devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. LatticeECP/EC devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four dedicated clock inputs, one on each side of the device. Figure 2-6 shows the 20 primary clock sources.

Figure 2-6. Primary Clock Sources

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	Ι	"1" to reset PLL
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	Ι	Dynamic Delay Lag/Lead. "1": Lead, "0": Lag
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

For more information about the PLL, please see the list of technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved regardless of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-13 illustrates the DCS Block Macro.

Figure 2-13. DCS Block Primitive

Figure 2-14 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information about the DCS, please see the list of technical documentation at the end of this data sheet.

For further information about the sysDSP block, please see the list of technical information at the end of this data sheet.

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysl/O Buffers which are then connected to the PADs as shown in Figure 2-24. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysl/O buffer, and receives input from the buffer.

Figure 2-24. PIC Diagram

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs.

One of every 16 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds the DQS bus which spans the set of 16 PIOs. Figure 2-25 shows the assignment of DQS pins in each set of 16 PIOs. The exact DQS pins are shown in a dual function in the Logic Signal Connections table at the end of this data sheet. Additional detail is provided in the Signal Descriptions table at the end of this data sheet. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed for memories that support one DQS strobe per eight bits of data.

Figure 2-29. Output Register Block

*Latch is transparent when input is low.

Figure 2-30. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-31 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Oscillator

Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 2-15 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Clock frequency.
- 2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5*	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—

Table 2-15. Selectable Maste	r Clock (CCLK)	Frequencies	During	Configuration
------------------------------	----------------	-------------	--------	---------------

Density Shifting

The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

BLVDS

The LatticeECP/EC devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

Over	Recommended	Operating	Conditions
0.0		oporating	oonantiono

		Тур		
Parameter	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	ohm
R _{TLEFT}	Left end termination	45	90	ohm
R _{TRIGHT}	Right end termination	45	90	ohm
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA

1. For input buffer, see LVDS table.

LatticeECP/EC Internal Switching Characteristics (Continued)

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.18	_	0.21	_	0.25	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.14		-0.17	—	-0.20	—	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.47	_	1.76	_	2.05	ns
PLL Parameters					•			
t _{RSTREC}	Reset Recovery to Rising Clock	1.00		1.00		1.00		ns
t _{RSTSU}	Reset Signal Setup Time	1.00		1.00	—	1.00	—	ns
DSP Block Timir								
t _{SUI_DSP}	Input Register Setup Time	-0.38		-0.30	—	-0.23	—	ns
t _{HI_DSP}	Input Register Hold Time	0.71		0.86	—	1.00	_	ns
t _{SUP_DSP}	Pipeline Register Setup Time	3.31		3.98	—	4.64	—	ns
t _{HP_DSP}	Pipeline Register Hold Time	0.71		0.86	—	1.00	_	ns
t _{SUO_DSP} ⁴	Output Register Setup Time	5.54		6.64	—	7.75	—	ns
t _{HO_DSP} ⁴	Output Register Hold Time	0.71		0.86	—	1.00	—	ns
t _{COI_DSP} ⁴	Input Register Clock to Output Time	—	7.50		9.00	—	10.50	ns
t _{COP_DSP} ⁴	Pipeline Register Clock to Output Time	—	4.66		5.60	—	6.53	ns
t _{COO_DSP}	Output Register Clock to Output Time	—	1.47	—	1.77	—	2.06	ns
t _{SUADSUB}	AdSub Input Register Setup Time	-0.38		-0.30		-0.23		ns
t _{HADSUB}	AdSub Input Register Hold Time	0.71		0.86	—	1.00		ns

Over Recommended Operating Conditions

1. Internal parameters are characterized but not tested on every device.

2. These parameters apply to LatticeECP devices only.

3. DSP Block is configured in Multiply Add/Sub 18 x 18 Mode.

4. These parameters include the Adder Subtractor block in the path.

Timing v.G 0.30

Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LatticeECP/EC Family Timing Adders^{1, 2, 3}

Buffer Type	Description	-5	-4	-3	Units
Input Adjusters					
LVDS25	LVDS	0.41	0.50	0.58	ns
BLVDS25	BLVDS	0.41	0.50	0.58	ns
LVPECL33	LVPECL	0.50	0.60	0.70	ns
HSTL18_I	HSTL_18 class I	0.41	0.49	0.57	ns
HSTL18_II	HSTL_18 class II	0.41	0.49	0.57	ns
HSTL18_III	HSTL_18 class III	0.41	0.49	0.57	ns
HSTL18D_I	Differential HSTL 18 class I	0.37	0.44	0.52	ns
HSTL18D_II	Differential HSTL 18 class II	0.37	0.44	0.52	ns
HSTL18D_III	Differential HSTL 18 class III	0.37	0.44	0.52	ns
HSTL15_I	HSTL_15 class I	0.40	0.48	0.56	ns
HSTL15_III	HSTL_15 class III	0.40	0.48	0.56	ns
HSTL15D_I	Differential HSTL 15 class I	0.37	0.44	0.51	ns
HSTL15D_III	Differential HSTL 15 class III	0.37	0.44	0.51	ns
SSTL33_I	SSTL_3 class I	0.46	0.55	0.64	ns
SSTL33_II	SSTL_3 class II	0.46	0.55	0.64	ns
SSTL33D_I	Differential SSTL_3 class I	0.39	0.47	0.55	ns
SSTL33D_II	Differential SSTL_3 class II	0.39	0.47	0.55	ns
SSTL25_I	SSTL_2 class I	0.43	0.51	0.60	ns
SSTL25_II	SSTL_2 class II	0.43	0.51	0.60	ns
SSTL25D_I	Differential SSTL_2 class I	0.38	0.45	0.53	ns
SSTL25D_II	Differential SSTL_2 class II	0.38	0.45	0.53	ns
SSTL18_I	SSTL_18 class I	0.40	0.48	0.56	ns
SSTL18D_I	Differential SSTL_18 class I	0.37	0.44	0.51	ns
LVTTL33	LVTTL	0.07	0.09	0.10	ns
LVCMOS33	LVCMOS 3.3	0.07	0.09	0.10	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	0.07	0.09	0.10	ns
LVCMOS15	LVCMOS 1.5	0.24	0.29	0.33	ns
LVCMOS12	LVCMOS 1.2	1.27	1.52	1.77	ns
PCI33	PCI	0.07	0.09	0.10	ns
Output Adjusters					
LVDS25E	LVDS 2.5 E	0.12	0.14	0.17	ns
LVDS25	LVDS 2.5	-0.44	-0.53	-0.62	ns
BLVDS25	BLVDS 2.5	0.33	0.40	0.46	ns
LVPECL33	LVPECL 3.3	0.20	0.24	0.28	ns
HSTL18_I	HSTL_18 class I	-0.10	-0.12	-0.14	ns
HSTL18_II	HSTL_18 class II	0.06	0.07	0.08	ns
HSTL18_III	HSTL_18 class III	0.15	0.19	0.22	ns
HSTL18D_I	Differential HSTL 18 class I	-0.10	-0.12	-0.14	ns
HSTL18D_II	Differential HSTL 18 class II	0.06	0.07	0.08	ns
HSTL18D_III	Differential HSTL 18 class III	0.15	0.19	0.22	ns
HSTL15_I	HSTL_15 class I	0.08	0.10	0.11	ns

Over Recommended Operating Conditions

Figure 3-12. sysCONFIG Parallel Port Read Cycle

^{1.} In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.

Figure 3-13. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	—	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	8	—	ns
t _{BTH}	TCK [BSCAN] hold time	10	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns

Timing v.G 0.30

LFEC1, LFEC3 Logic Signal Connections: 208 PQFP

	LFEC1			LFEC3				
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function
1*	GND0 GND7	-			GND0 GND7	-		
2	VCCI07	7			VCCIO7	7		
3	PL2A	7	Т	VREF2_7	PL2A	7	Т	VREF2_7
4	PL2B	7	С	VREF1_7	PL2B	7	С	VREF1_7
5	NC	-			NC	-		
6	NC	-			NC	-		
7	NC	-			PL3B	7		
8	NC	-			PL4A	7	Т	
9	NC	-			PL4B	7	С	
10	NC	-			PL5A	7	Т	
11	NC	-			PL5B	7	С	
12	NC	-			PL6A	7	Т	LDQS6
13	NC	-			VCCIO7	7		
14	NC	-			PL6B	7	С	
15	PL3A	7	Т		PL7A	7	Т	
16	PL3B	7	С		PL7B	7	С	
17	PL4A	7	Т		PL8A	7	Т	
18	NC	-			NC	-		
19	PL4B	7	С		PL8B	7	С	
20	PL5A	7	Т	PCLKT7_0	PL9A	7	Т	PCLKT7_0
21	PL5B	7	С	PCLKC7_0	PL9B	7	С	PCLKC7_0
22	NC	-			VCCAUX	-		
23	XRES	6			XRES	6		
24	NC	-			NC	-		
25	NC	-			NC	-		
26	VCC	-			VCC	-		
27	TCK	6			TCK	6		
28	GND	-			GND	-		
29	TDI	6			TDI	6		
30	TMS	6			TMS	6		
31	TDO	6			TDO	6		
32	VCCJ	6			VCCJ	6		
33	PL7A	6	Т	LLM0_PLLT_IN_A	PL11A	6	Т	LLM0_PLLT_IN_A
34	PL7B	6	С	LLM0_PLLC_IN_A	PL11B	6	С	LLM0_PLLC_IN_A
35	PL8A	6	Т	LLM0_PLLT_FB_A	PL12A	6	Т	LLM0_PLLT_FB_A
36	PL8B	6	С	LLM0_PLLC_FB_A	PL12B	6	С	LLM0_PLLC_FB_A
37	VCCIO6	6			VCCIO6	6		
38	PL9A	6	Т		PL13A	6	Т	
39	PL9B	6	С		PL13B	6	С	
40	PL10A	6	Т		PL14A	6	Т	
41	GND6	6			GND6	6		
42	PL10B	6	С		PL14B	6	С	

LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP

	LFECP6/LFEC6			LFECP10/LFEC10				
Pin Number	Pin Function	Bank	LVDS	Dual Function	Pin Function	Bank	LVDS	Dual Function
1*	GND0 GND7	-			GND0 GND7	-		
2	VCCIO7	7			VCCIO7	7		
3	PL2A	7	Т	VREF2_7	PL2A	7	Т	VREF2_7
4	PL2B	7	С	VREF1_7	PL2B	7	С	VREF1_7
5	NC	-			VCC	-		
6	NC	-			GND	-		
7	PL3B	7			PL12B	7		
8	PL4A	7	Т		PL13A	7	Т	
9	PL4B	7	С		PL13B	7	С	
10	PL5A	7	Т		PL14A	7	Т	
11	PL5B	7	С		PL14B	7	С	
12	PL6A	7	Т	LDQS6	PL15A	7	Т	LDQS15
13	VCCIO7	7			VCCIO7	7		
14	PL6B	7	С		PL15B	7	С	
15	PL7A	7	Т		PL16A	7	Т	
16	PL7B	7	С		PL16B	7	С	
17	PL8A	7	Т		PL17A	7	Т	
18	GND7	7			GND7	7		
19	PL8B	7	С		PL17B	7	С	
20	PL9A	7	Т	PCLKT7_0	PL18A	7	Т	PCLKT7_0
21	PL9B	7	С	PCLKC7_0	PL18B	7	С	PCLKC7_0
22	VCCAUX	-			VCCAUX	-		
23	XRES	6			XRES	6		
24	VCC	-			VCC	-		
25	GND	-			GND	-		
26	VCC	-			VCC	-		
27	TCK	6			TCK	6		
28	GND	-			GND	-		
29	TDI	6			TDI	6		
30	TMS	6			TMS	6		
31	TDO	6			TDO	6		
32	VCCJ	6			VCCJ	6		
33	PL20A	6	Т	LLM0_PLLT_IN_A	PL29A	6	Т	LLM0_PLLT_IN_A
34	PL20B	6	С	LLM0_PLLC_IN_A	PL29B	6	С	LLM0_PLLC_IN_A
35	PL21A	6	Т	LLM0_PLLT_FB_A	PL30A	6	Т	LLM0_PLLT_FB_A
36	PL21B	6	С	LLM0_PLLC_FB_A	PL30B	6	С	LLM0_PLLC_FB_A
37	VCCIO6	6			VCCIO6	6		
38	PL22A	6	Т		PL31A	6	Т	
39	PL22B	6	С		PL31B	6	С	
40	PL23A	6	Т		PL32A	6	Т	
41	GND6	6			GND6	6		
42	PL23B	6	С		PL32B	6	С	

LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		LFECP	10/LFEC	;10	LFECP15/LFEC15			:15
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function
L3	TMS	6			TMS	6		
L5	TDO	6			TDO	6		
L4	VCCJ	6			VCCJ	6		
K2	PL29A	6	Т	LLM0_PLLT_IN_A	PL37A	6	Т	LLM0_PLLT_IN_A
K1	PL29B	6	С	LLM0_PLLC_IN_A	PL37B	6	С	LLM0_PLLC_IN_A
L2	PL30A	6	Т	LLM0_PLLT_FB_A	PL38A	6	Т	LLM0_PLLT_FB_A
L1	PL30B	6	С	LLM0_PLLC_FB_A	PL38B	6	С	LLM0_PLLC_FB_A
M2	PL31A	6	Т		PL39A	6	Т	
M1	PL31B	6	С		PL39B	6	С	
N1	PL32A	6	Т		PL40A	6	Т	
GND	GND6	6			GND6	6		
-	-	-			GND6	6		
N2	PL32B	6	С		PL40B	6	С	
M4	PL33A	6	Т	LDQS33	PL41A	6	Т	LDQS41
M3	PL33B	6	С		PL41B	6	С	
P1	PL34A	6	Т		PL42A	6	Т	
R1	PL34B	6	С		PL42B	6	С	
P2	PL35A	6	Т		PL43A	6	Т	
P3	PL35B	6	С		PL43B	6	С	
N3	PL36A	6	Т	VREF1_6	PL44A	6	Т	VREF1_6
N4	PL36B	6	С	VREF2_6	PL44B	6	С	VREF2_6
GND	GND6	6			GND6	6		
GND	GND5	5			GND5	5		
GND	GND5	5			GND5	5		
P4	PB10A	5	Т		PB10A	5	Т	
N5	PB10B	5	С		PB10B	5	С	
P5	PB11A	5	Т		PB11A	5	Т	
P6	PB11B	5	С		PB11B	5	С	
R4	PB12A	5	Т		PB12A	5	Т	
R3	PB12B	5	С		PB12B	5	С	
T2	PB13A	5	Т		PB13A	5	Т	
GND	GND5	5			GND5	5		
Т3	PB13B	5	С		PB13B	5	С	
R5	PB14A	5	Т	BDQS14	PB14A	5	Т	BDQS14
R6	PB14B	5	С		PB14B	5	С	
T4	PB15A	5	Т		PB15A	5	Т	
T5	PB15B	5	С		PB15B	5	С	
N6	PB16A	5	Т		PB16A	5	Т	
M6	PB16B	5	С		PB16B	5	С	
T6	PB17A	5	Т		PB17A	5	Т	
GND	GND5	5			GND5	5		
T7	PB17B	5	С		PB17B	5	С	
P7	PB18A	5	Т		PB18A	5	Т	

LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)

Ball	LFECP10/LFEC10				LFECP15/LFEC15					
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function		
A10	PT25B	0	С	PCLKC0_0	PT25B	0	С	PCLKC0_0		
GND	GND0	0			GND0	0				
B10	PT25A	0	Т	PCLKT0_0	PT25A	0	Т	PCLKT0_0		
C9	PT24B	0	С	VREF1_0	PT24B	0	С	VREF1_0		
B9	PT24A	0	Т	VREF2_0	PT24A	0	Т	VREF2_0		
E9	PT23B	0	С		PT23B	0	С			
D9	PT23A	0	Т		PT23A	0	Т			
D8	PT22B	0	С		PT22B	0	С			
C8	PT22A	0	Т	TDQS22	PT22A	0	Т	TDQS22		
A9	PT21B	0	С		PT21B	0	С			
GND	GND0	0			GND0	0				
A8	PT21A	0	Т		PT21A	0	Т			
B8	PT20B	0	С		PT20B	0	С			
B7	PT20A	0	Т		PT20A	0	Т			
D7	PT19B	0	С		PT19B	0	С			
C7	PT19A	0	Т		PT19A	0	Т			
A7	PT18B	0	С		PT18B	0	С			
A6	PT18A	0	Т		PT18A	0	Т			
E7	PT17B	0	С		PT17B	0	С			
GND	GND0	0			GND0	0				
E6	PT17A	0	Т		PT17A	0	Т			
D6	PT16B	0	С		PT16B	0	С			
C6	PT16A	0	Т		PT16A	0	Т			
B6	PT15B	0	С		PT15B	0	С			
B5	PT15A	0	Т		PT15A	0	Т			
A5	PT14B	0	С		PT14B	0	С			
A4	PT14A	0	Т	TDQS14	PT14A	0	Т	TDQS14		
A3	PT13B	0	С		PT13B	0	С			
-	GND0	0			GND0	0				
A2	PT13A	0	Т		PT13A	0	Т			
B2	PT12B	0	С		PT12B	0	С			
B3	PT12A	0	Т		PT12A	0	Т			
D5	PT11B	0	С		PT11B	0	C			
C5	PT11A	0	Т		PT11A	0	Т			
C4	PT10B	0	С		PT10B	0	С			
B4	PT10A	0	Т		PT10A	0	Т			
GND	GND0	0			GND0	0				
GND	GND0	0			GND0	0				
A1	GND	-			GND	-				
A16	GND	-			GND	-				
G10	GND	-			GND	-				
G7	GND	-			GND	-				
G8	GND	-			GND	-				

LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections: 484 fpBGA

	LFI	ECP6/I	LFEC6			LFE	CP10/	LFEC	10	LFECP/LFEC15				
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function
GND	GND7	7			GND	GND7	7			GND	GND7	7		
D4	PL2A	7	Т	VREF2_7	D4	PL2A	7	Т	VREF2_7	D4	PL2A	7	Т	VREF2_7
E4	PL2B	7	С	VREF1_7	E4	PL2B	7	С	VREF1_7	E4	PL2B	7	С	VREF1_7
C3	NC	-			C3	PL3A	7	Т		C3	PL3A	7	Т	
B2	NC	-			B2	PL3B	7	С		B2	PL3B	7	С	
E5	NC	-			E5	PL4A	7	Т		E5	PL4A	7	Т	
F5	NC	-			F5	PL4B	7	С		F5	PL4B	7	С	
D3	NC	-			D3	PL5A	7	Т		D3	PL5A	7	Т	
C2	NC	-			C2	PL5B	7	С		C2	PL5B	7	С	
F4	NC	-			F4	PL6A	7	Т	LDQS6	F4	PL6A	7	Т	LDQS6
G4	NC	-			G4	PL6B	7	С		G4	PL6B	7	С	
E3	NC	-			E3	PL7A	7	Т		E3	PL7A	7	Т	
D2	NC	-			D2	PL7B	7	С		D2	PL7B	7	С	
B1	NC	-			B1	PL8A	7	Т	LUM0_PLLT_IN_A	B1	PL8A	7	Т	LUM0_PLLT_IN_A
C1	NC	-			C1	PL8B	7	С	LUM0_PLLC_IN_A	C1	PL8B	7	С	LUM0_PLLC_IN_A
F3	NC	-			F3	PL9A	7	Т	LUM0_PLLT_FB_A	F3	PL9A	7	Т	LUM0_PLLT_FB_A
GND	-	-			GND	GND7	7			GND	GND7	7		
E2	NC	-			E2	PL9B	7	С	LUM0_PLLC_FB_A	E2	PL9B	7	С	LUM0_PLLC_FB_A
G5	NC	-			G5	NC	-			G5	PL11A	7	т	
H6	NC	-			H6	NC	-			H6	PL11B	7	С	
G3	NC	-			G3	NC	-			G3	PL12A	7	т	
H4	NC	-			H4	NC	-			H4	PL12B	7	С	
J5	NC	-			J5	NC	-			J5	PL13A	7	т	
H5	NC	-			H5	NC	-			H5	PL13B	7	С	
F2	NC	-			F2	NC	-			F2	PL14A	7	т	
GND	-	-			GND	-	-			GND	GND7	7		
F1	NC	-			F1	NC	-			F1	PL14B	7	С	
E1	NC	-			E1	PL11A	7	Т		E1	PL15A	7	т	
D1	NC	-			D1	PL11B	7	С		D1	PL15B	7	С	
H3	PL3A	7	т		H3	PL12A	7	Т		H3	PL16A	7	т	
G2	PL3B	7	С		G2	PL12B	7	С		G2	PL16B	7	С	
H2	PL4A	7	Т		H2	PL13A	7	Т		H2	PL17A	7	Т	
G1	PL4B	7	С		G1	PL13B	7	С		G1	PL17B	7	С	
J4	PL5A	7	т		J4	PL14A	7	Т		J4	PL18A	7	т	
GND	-	-			GND	GND7	7			GND	GND7	7		
J3	PL5B	7	С		J3	PL14B	7	С		J3	PL18B	7	С	
J2	PL6A	7	Т	LDQS6	J2	PL15A	7	т	LDQS15	J2	PL19A	7	т	LDQS19
H1	PL6B	7	С		H1	PL15B	7	С		H1	PL19B	7	С	
K4	PL7A	7	Т		K4	PL16A	7	т		K4	PL20A	7	т	
K5	PL7B	7	С		K5	PL16B	7	С		K5	PL20B	7	С	
K3	PL8A	7	Т		K3	PL17A	7	Т		K3	PL21A	7	Т	
K2	PL8B	7	С		K2	PL17B	7	С		K2	PL21B	7	С	
	PL9A	7	T	PCLKT7 0	J1	PL18A	7	Т	PCLKT7 0	J1	PL22A	7	T	PCLKT7 0
GND	GND7	7	<u> </u>		GND	GND7	7			GND	GND7	7	· ·	
K1	PL9B	7	С	PCLKC7 0	K1	PL18B	7	С	PCLKC7 0	K1	PL22B	7	С	PCLKC7 0
13	XRES	6			13	XBES	6		. 01.107_0	13	XBES	6		
14		6	т		14	PI 20A	6	т		14	PI 24A	6	т	
15	PI 11R	6	Ċ		15	PI 20R	6	Ċ		15	PI 24R	6	C	
12	PI 124	6	т		12	PI 214	6	т		12	PI 254	6	т	
	PI 12R	6	C		1	PI 21R	6	C		1	PI 25R	6	C C	
	1 6120	0	Ŭ			I LZ I D	U	U		L I	I LEJD	0	U	l

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

LFECP20/LFEC20					LFECP/LFEC33				
			LVD				_ .	LVD	
Ball Number	Ball Function	Bank	S	Dual Function	Ball Number	Ball Function	Bank	S	Dual Function
V2	PL41B	6	<u>с</u> т	LLMO_PLLC_IN_A	V2	PL53B	6		LLMO_PLLC_IN_A
03	PL42A	6		LLIMO PLLI_FB_A	03	PL34A	6		LLIMO PLLI_FB_A
V3	PL42B	6	<u>т</u>		V3	PL34B	6	т	
04 V5	PL43A	6	г С		04 V5	PLSSA	6		
V3 W/1	PL43D	6	<u>т</u>		V3 \\\/1	PL56A	6	т	
GND		6			GND	GND6	6	-	
W/2		6	<u> </u>		W2	PI 56B	6	C	
V12	PI 454	6	<u>т</u>		V1	PI 57A	6	т	
V2	PL 45R	6		LDQ043	¥2	PI 57B	6		LDQ037
ΔΔ1	PL 464	6	<u>т</u>		ΔΔ1	PI 584	6	т	
	PL/6B	6	- -		AA1 AA2	PI 58B	6		
		6	<u>т</u>			PI 59A	6	т	
V/4	PI 47B	6			V4 V4	PI 59B	6	C	
W/3		6	<u>т</u>	VREE1 6	W/3	PI 68A	6	т	VBEE1 6
V3	PL 48B	6		VBEE2_6	¥3	PI 68B	6	C	VBEE2_6
GND	GND6	6	0		GND	GND6	6	-	
GND	GND5	5			GND	GND6	6		
GND	-	5			GND	GND6	6		
GND	-				GND	GND5	5		
GND	GND5	5			GND	GND5	5		
V7	PB104	5	т		V7	PB104	5	т	
T6	PB10R	5	С		T6	PB10R	5	C	
V8	PB11A	5	T		V8	PB11A	5	т	
U7	PB11B	5	C		U7	PB11B	5	C	
W5	PB12A	5	т		W5	PB12A	5	Т	
U6	PB12B	5	C		U6	PB12B	5	C	
AA3	PB13A	5	T		AA3	PB13A	5	Т	
GND	GND5	5			GND	GND5	5		
AB3	PB13B	5	С		AB3	PB13B	5	С	
Y6	PB14A	5	Т	BDQS14	Y6	PB14A	5	Т	BDQS14
V6	PB14B	5	С		V6	PB14B	5	С	
AA5	PB15A	5	Т		AA5	PB15A	5	Т	
W6	PB15B	5	С		W6	PB15B	5	С	
Y5	PB16A	5	Т		Y5	PB16A	5	Т	
Y4	PB16B	5	С		Y4	PB16B	5	С	
AA4	PB17A	5	Т		AA4	PB17A	5	Т	
GND	GND5	5			GND	GND5	5		
AB4	PB17B	5	С		AB4	PB17B	5	С	
Y7	PB18A	5	Т		Y7	PB18A	5	Т	
W8	PB18B	5	С		W8	PB18B	5	С	
W7	PB19A	5	Т		W7	PB19A	5	Т	
U8	PB19B	5	С		U8	PB19B	5	С	
W9	PB20A	5	Т		W9	PB20A	5	Т	

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

LFEC20/LFECP20					LFECP/EC33					
Ball	Ball				Ball	Ball			Dual	
Number	Function	Bank	LVDS	Dual Function	Number	Function	Bank	LVDS	Function	
U21	PR36B	3	С		U21	PR48B	3	С		
T21	PR36A	3	Т	RDQS36	T21	PR48A	3	Т	RDQS48	
T25	PR35B	3	С		T25	PR47B	3	С		
GND	GND3	3			GND	GND3	3			
T26	PR35A	3	Т		T26	PR47A	3	Т		
T22	PR34B	3	С		T22	PR46B	3	С		
T23	PR34A	3	Т		T23	PR46A	3	Т		
T24	PR33B	3	С		T24	PR45B	3	С		
R23	PR33A	3	Т		R23	PR45A	3	Т		
R25	PR32B	3	С		R25	PR44B	3	С		
R24	PR32A	3	Т		R24	PR44A	3	Т		
R26	PR31B	3	С		R26	PR43B	3	С		
GND	GND3	3			GND	GND3	3			
P26	PR31A	3	Т		P26	PR43A	3	Т		
R21	PR30B	3	С		R21	PR42B	3	С		
R22	PR30A	3	Т		R22	PR42A	3	Т		
P25	PR29B	3	С		P25	PR41B	3	С		
P24	PR29A	3	Т		P24	PR41A	3	Т		
P23	PR28B	3	С		P23	PR40B	3	С		
P22	PR28A	3	Т	RDQS28	P22	PR40A	3	Т	RDQS40	
N26	PR27B	3	С		N26	PR39B	3	С		
GND	GND3	3			GND	GND3	3			
M26	PR27A	3	Т		M26	PR39A	3	Т		
N21	PR26B	3	С		N21	PR38B	3	С		
P21	PR26A	3	Т		P21	PR38A	3	Т		
N23	PR25B	3	С		N23	PR37B	3	С		
N22	PR25A	3	Т		N22	PR37A	3	Т		
N25	PR24B	3	С		N25	PR36B	3	С		
N24	PR24A	3	Т		N24	PR36A	3	Т		
L26	PR22B	2	С	PCLKC2_0	L26	PR34B	2	С	PCLKC2_0	
GND	GND2	2			GND	GND2	2			
K26	PR22A	2	Т	PCLKT2_0	K26	PR34A	2	Т	PCLKT2_0	
M22	PR21B	2	С		M22	PR33B	2	С		
M23	PR21A	2	Т		M23	PR33A	2	Т		
M25	PR20B	2	С		M25	PR32B	2	С		
M24	PR20A	2	Т		M24	PR32A	2	Т		
M21	PR19B	2	С		M21	PR31B	2	С		
L21	PR19A	2	Т	RDQS19	L21	PR31A	2	Т	RDQS31	
L22	PR18B	2	С		L22	PR30B	2	С		
GND	GND2	2			GND	GND2	2			
L23	PR18A	2	Т		L23	PR30A	2	Т		
L25	PR17B	2	C		L25	PR29R	2	C		
L23 L25	PR18A PR17B	2 2	T C		L23 L25	PR30A PR29B	2 2	T C		

Lead-Free Packaging

LatticeEC Commercial

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC1E-3QN208C	112	-3	Lead-Free PQFP	208	COM	1.5K
LFEC1E-4QN208C	112	-4	Lead-Free PQFP	208	COM	1.5K
LFEC1E-5QN208C	112	-5	Lead-Free PQFP	208	COM	1.5K
LFEC1E-3TN144C	97	-3	Lead-Free TQFP	144	COM	1.5K
LFEC1E-4TN144C	97	-4	Lead-Free TQFP	144	COM	1.5K
LFEC1E-5TN144C	97	-5	Lead-Free TQFP	144	COM	1.5K
LFEC1E-3TN100C	67	-3	Lead-Free TQFP	100	COM	1.5K
LFEC1E-4TN100C	67	-4	Lead-Free TQFP	100	COM	1.5K
LFEC1E-5TN100C	67	-5	Lead-Free TQFP	100	COM	1.5K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC3E-3FN256C	160	-3	Lead-Free fpBGA	256	COM	3.1K
LFEC3E-4FN256C	160	-4	Lead-Free fpBGA	256	COM	3.1K
LFEC3E-5FN256C	160	-5	Lead-Free fpBGA	256	COM	3.1K
LFEC3E-3QN208C	145	-3	Lead-Free PQFP	208	COM	3.1K
LFEC3E-4QN208C	145	-4	Lead-Free PQFP	208	COM	3.1K
LFEC3E-5QN208C	145	-5	Lead-Free PQFP	208	COM	3.1K
LFEC3E-3TN144C	97	-3	Lead-Free TQFP	144	COM	3.1K
LFEC3E-4TN144C	97	-4	Lead-Free TQFP	144	COM	3.1K
LFEC3E-5TN144C	97	-5	Lead-Free TQFP	144	COM	3.1K
LFEC3E-3TN100C	67	-3	Lead-Free TQFP	100	COM	3.1K
LFEC3E-4TN100C	67	-4	Lead-Free TQFP	100	COM	3.1K
LFEC3E-5TN100C	67	-5	Lead-Free TQFP	100	COM	3.1K

Part Number	l/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC6E-3FN484C	224	-3	Lead-Free fpBGA	484	COM	6.1K
LFEC6E-4FN484C	224	-4	Lead-Free fpBGA	484	COM	6.1K
LFEC6E-5FN484C	224	-5	Lead-Free fpBGA	484	COM	6.1K
LFEC6E-3FN256C	195	-3	Lead-Free fpBGA	256	COM	6.1K
LFEC6E-4FN256C	195	-4	Lead-Free fpBGA	256	COM	6.1K
LFEC6E-5FN256C	195	-5	Lead-Free fpBGA	256	COM	6.1K
LFEC6E-3QN208C	147	-3	Lead-Free PQFP	208	COM	6.1K
LFEC6E-4QN208C	147	-4	Lead-Free PQFP	208	COM	6.1K
LFEC6E-5QN208C	147	-5	Lead-Free PQFP	208	COM	6.1K
LFEC6E-3TN144C	97	-3	Lead-Free TQFP	144	COM	6.1K
LFEC6E-4TN144C	97	-4	Lead-Free TQFP	144	COM	6.1K
LFEC6E-5TN144C	97	-5	Lead-Free TQFP	144	COM	6.1K

Part Number	I/Os	Grade	Package	Pins/Balls	Temp.	LUTs
LFEC10E-3FN484C	288	-3	Lead-Free fpBGA	484	COM	10.2K
LFEC10E-4FN484C	288	-4	Lead-Free fpBGA	484	COM	10.2K
LFEC10E-5FN484C	288	-5	Lead-Free fpBGA	484	COM	10.2K
LFEC10E-3FN256C	195	-3	Lead-Free fpBGA	256	COM	10.2K