
___Lattice Semiconductor Corporation - <u>LFECP33E-4FN672I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

XE

Detans	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	32800
Total RAM Bits	434176
Number of I/O	496
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfecp33e-4fn672i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP/EC Family Data Sheet Architecture

September 2012

Data Sheet

Architecture Overview

The LatticeECP-DSP and LatticeEC architectures contain an array of logic blocks surrounded by Programmable I/ O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR), as shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks, as shown in Figure 2-2.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeECP/EC architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG[™] port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage.

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SPR16x2	ROM16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

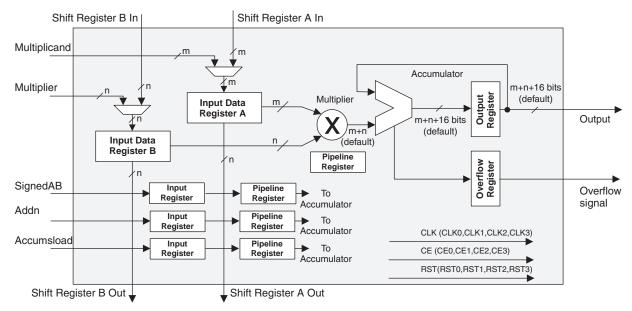
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

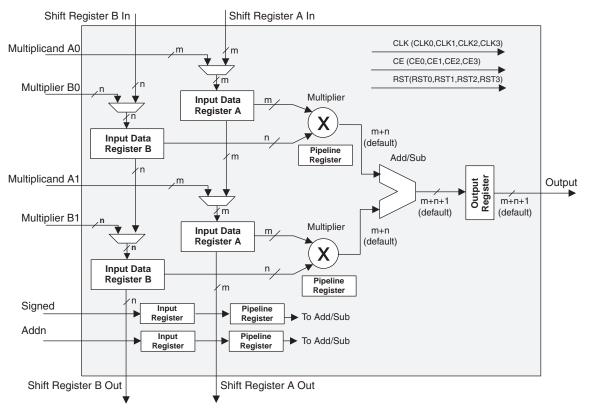
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information about using RAM in LatticeECP/EC devices, please see the list of technical documentation at the end of this data sheet.


Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

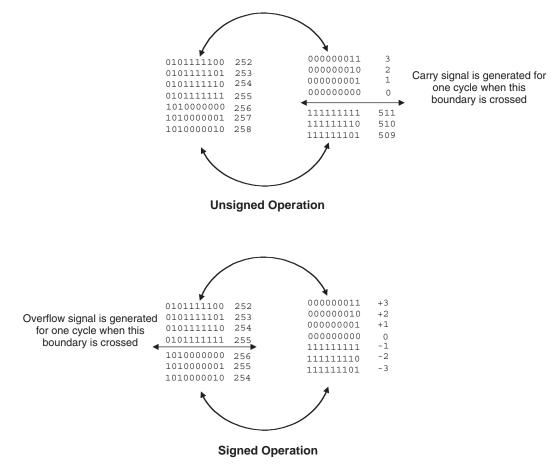

Figure 2-20. MAC sysDSP Element

MULTADD sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and A2. The user can enable the input, output and pipeline registers. Figure 2-21 shows the MULTADD sysDSP element.

Figure 2-21. MULTADD

Signed and Unsigned with Different Widths


The DSP block supports different widths of signed and unsigned multipliers besides x9, x18 and x36 widths. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two's complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-8 provides an example of this.

Number	Unsigned	Unsigned 9-bit	Unsigned 18-bit	Signed	Two's Complement Signed 9-Bits	Two's Complement Signed 18-bits
+5	0101	000000101	00000000000000101	0101	00000101	00000000000000101
-6	0110	000000110	0000000000000110	1010	111111010	111111111111111010

OVERFLOW Flag from MAC

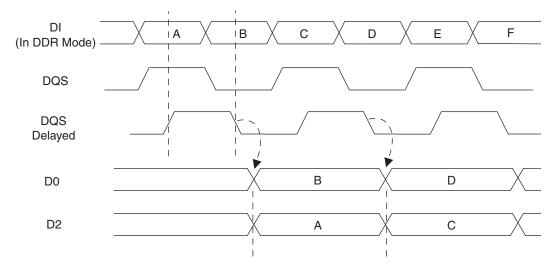

The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. When two unsigned numbers are added and the result is a smaller number then accumulator roll over is said to occur and overflow signal is indicated. When two positive numbers are added with a negative sum and when two negative numbers are added with a positive sum, then the accumulator "roll-over" is said to have occurred and an overflow signal is indicated. Note when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions overflow signals for signed and unsigned operands are listed in Figure 2-23.

Figure 2-23. Accumulator Overflow/Underflow Conditions

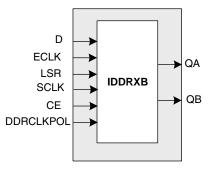


Figure 2-28. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-29 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-30 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP/EC devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported Standards

The LatticeECP/EC sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards (together with their supply and reference voltages) supported by the LatticeECP/EC devices. For further information about utilizing the sysl/O buffer to support a variety of standards please see the the list of technical information at the end of this data sheet.

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)			
Single Ended Interfaces					
LVTTL	—	—			
LVCMOS33 ²	—	—			
LVCMOS25 ²	—	—			
LVCMOS18	—	1.8			
LVCMOS15	_	1.5			
LVCMOS12 ²	—	—			
PCI	—	3.3			
HSTL18 Class I, II	0.9	—			
HSTL18 Class III	1.08	—			
HSTL15 Class I	0.75	—			
HSTL15 Class III	0.9	—			
SSTL3 Class I, II	1.5	—			
SSTL2 Class I, II	1.25	—			
SSTL18 Class I	0.9	—			
Differential Interfaces					
Differential SSTL18 Class I	—	—			
Differential SSTL2 Class I, II	—	—			
Differential SSTL3 Class I, II	—	—			
Differential HSTL15 Class I, III	—	—			
Differential HSTL18 Class I, II, III	—	—			
LVDS, LVPECL, BLVDS, RSDS	—	—			

Table 2-13. Supported Input Standards

1. When not specified $V_{\mbox{\scriptsize CCIO}}$ can be set anywhere in the valid operating range.

2. JTAG inputs do not have a fixed threshold option and always follow $V_{\mbox{CCJ.}}$

LatticeECP/EC External Switching Characteristics

			-	5	-4		-3		<u> </u>
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Primary Cl	ock without	PLL) ¹						
		LFEC1	_	5.09	_	6.11	—	7.13	ns
		LFEC3	—	5.71	_	6.85	—	7.99	ns
		LFEC6	_	5.60	—	6.72	—	7.84	ns
t _{CO} ⁷	Clock to Output - PIO Output Register	LFEC10	—	5.47	—	6.57	—	7.66	ns
	l logistoi	LFEC15	_	5.67	—	6.81	—	7.94	ns
		LFEC20	_	5.89	—	7.07	—	8.25	ns
		LFEC33	_	6.19	—	7.42	—	8.66	ns
		LFEC1	-0.08	—	-0.10	—	-0.12		ns
		LFEC3	-0.70	—	-0.84	—	-0.98		ns
		LFEC6	-0.63	—	-0.76	—	-0.89		ns
t _{SU} 7	Clock to Data Setup - PIO Input Register	LFEC10	-0.43	—	-0.52	—	-0.61		ns
	l logistoi	LFEC15	-0.70	—	-0.84	—	-0.98		ns
		LFEC20	-0.88	—	-1.06	—	-1.24		ns
		LFEC33	-1.12	—	-1.34	—	-1.56		ns
		LFEC1	2.19	—	2.62	—	3.06		ns
		LFEC3	2.80	—	3.36	—	3.92		ns
		LFEC6	2.69	—	3.23	—	3.77		ns
t _H 7	Clock to Data Hold - PIO Input Register	LFEC10	2.56	—	3.08	—	3.59		ns
		LFEC15	2.76	—	3.32	—	3.87		ns
		LFEC20	2.99	—	3.58	—	4.18		ns
		LFEC33	3.28	—	3.93	—	4.59		ns
		LFEC1	3.36	—	4.03	—	4.70		ns
		LFEC3	2.74	—	3.29	—	3.84		ns
		LFEC6	2.81	—	3.37	—	3.93		ns
t _{SU_DEL} 7	Clock to Data Setup - PIO Input Register with Data Input Delay	LFEC10	3.01	—	3.61	—	4.21		ns
		LFEC15	2.74	—	3.29	—	3.83		ns
		LFEC20	2.56	—	3.07	—	3.58		ns
		LFEC33	2.32	—	2.79	—	3.25		ns
		LFEC1	-1.31	—	-1.57	—	-1.83		ns
		LFEC3	-0.70	—	-0.83	—	-0.97		ns
		LFEC6	-0.80	—	-0.96	—	-1.12		ns
tH_DEL ⁷	Clock to Data Hold - PIO Input Register with Input Data Delay	LFEC10	-0.93	—	-1.12	—	-1.30		ns
	lingiotor mar input Data Dolay	LFEC15	-0.73	—	-0.88	—	-1.02		ns
		LFEC20	-0.51	—	-0.61	—	-0.71	—	ns
		LFEC33	-0.22	—	-0.26	—	-0.30	—	ns
f _{MAX_IO²}	Clock Frequency of I/O and PFU Register	All	_	420	—	378	—	340	Mhz
DDR I/O Pin	Parameters ^{3, 4, 5}			-	-	-	-	•	
t _{DVADQ}	Data Valid After DQS (DDR Read)	All	—	0.19	—	0.19	—	0.19	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All	0.67	—	0.67	—	0.67	—	UI

Over Recommended Operating Conditions

sysCLOCK PLL Timing

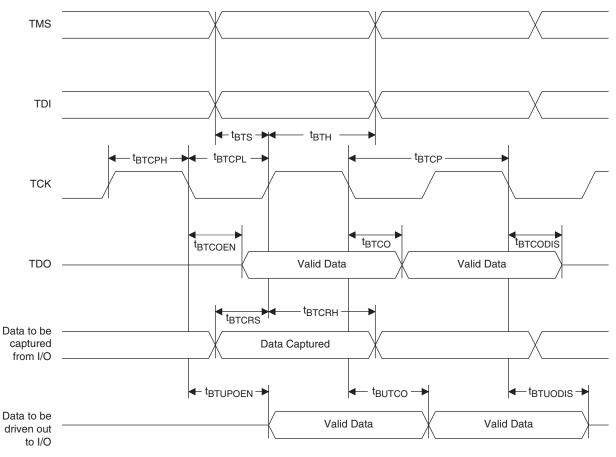
Parameter	Description	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	—	420	MHz
f _{ouт}	Output Clock Frequency (CLKOP, CLKOS)		25		420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	_	210	MHz
f _{VCO}	PLL VCO Frequency		420	—	840	MHz
f _{PFD}	Phase Detector Input Frequency		25		—	MHz
AC Characte	eristics					
t _{DT}	Output Clock Duty Cycle	Default Duty Cycle Elected ³	45	50	55	%
t _{PH} ⁴	Output Phase Accuracy		_		0.05	UI
t 1 Output Clock Devied I	Output Clock Period Jitter	f _{OUT} >= 100MHz	—		+/- 125	ps
^t OPJIT ¹		f _{OUT} < 100MHz	_		0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_		+/- 200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1		—	ns
t _{LOCK} ²	PLL Lock-in Time		_		150	μs
t _{PA}	Programmable Delay Unit		100	250	450	ps
t _{IPJIT}	Input Clock Period Jitter		—		+/- 200	ps
t _{FBKDLY}	External Feedback Delay		—	_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5		—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RST}	RST Pulse Width		10		—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.

2. Output clock is valid after $t_{\rm LOCK}$ for PLL reset and dynamic delay adjustment. 3. Using LVDS output buffers.

4. Relative to CLKOP.

Timing v.G 0.30


JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	8	—	ns
t _{BTH}	TCK [BSCAN] hold time	10	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time		—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time		—	ns
t _{BTCRH}	BSCAN test capture register hold time		—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output		25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable		25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable		25	ns

Timing v.G 0.30

LatticeECP/EC Family Data Sheet Pinout Information

September 2012

Data Sheet

Signal Descriptions

Signal Name	I/O	Description		
General Purpose				
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).		
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.		
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.		
		Some of these user-programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.		
		During configuration the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.		
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.		
NC	_	No connect.		
GND	_	Ground. Dedicated pins.		
V _{CC}	_	Power supply pins for core logic. Dedicated pins.		
V _{CCAUX}	_	Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated pins.		
V _{CCIOx}		Power supply pins for I/O bank x. Dedicated pins.		
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.		
XRES	_	10K ohm +/-1% resistor must be connected between this pad and ground.		
V _{CCPLL}		Power supply pin for PLL.pApplicable to ECP/EC33 device.		
	progra	ammable I/O pins when not in use for PLL or clock pins)		
[LOC][num]_PLL[T, C]_IN_A	I	Reference clock (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.		
[LOC][num]_PLL[T, C]_FB_A	I	Optional feedback (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.		
PCLK[T, C]_[n:0]_[3:0]	I	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0,1,2,3 within bank.		
[LOC]DQS[num]	I	DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output.		
Test and Programming (Dedicated pins)				
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.		
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.		

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Description		
тді	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.		
TDO	0	Output pin. Test Data out pin used to shift data out of device using 1149.1.		
V _{CCJ}	_	V _{CCJ} - The power supply pin for JTAG Test Access Port.		
Configuration Pads (used during sysCOI	NFIG)			
CFG[2:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.		
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.		
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.		
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin.		
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.		
BUSY/SISPI	I/O	Read control command in SPI3 or SPIX mode.		
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.		
CS1N	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled.		
WRITEN	I	Write Data on Parallel port (Active low).		
D[7:0]/SPID[0:7]	I/O	sysCONFIG Port Data I/O.		
DOUT/CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port.		
DI/CSSPIN	I/O	Input for serial configuration data (clocked with CCLK) when using sysCOI FIG port. During configuration, a pull-up is enabled. Output when used in SPI/SPIX modes.		

LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		L	FEC3		LFECP6/LFEC6					
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function		
K2	PL11A	6	Т	LLM0_PLLT_IN_A	PL20A	6	Т	LLM0_PLLT_IN_A		
K1	PL11B	6	С	LLM0_PLLC_IN_A	PL20B	6	С	LLM0_PLLC_IN_A		
L2	PL12A	6	Т	LLM0_PLLT_FB_A	PL21A	6	Т	LLM0_PLLT_FB_A		
L1	PL12B	6	С	LLM0_PLLC_FB_A	PL21B	6	С	LLM0_PLLC_FB_A		
M2	PL13A	6	Т		PL22A	6	Т			
M1	PL13B	6	С		PL22B	6	С			
N1	PL14A	6	Т		PL23A	6	Т			
GND	GND6	6			GND6	6				
N2	PL14B	6	С		PL23B	6	С			
M4	PL15A	6	Т	LDQS15	PL24A	6	Т	LDQS24		
M3	PL15B	6	С		PL24B	6	С			
P1	PL16A	6	Т		PL25A	6	Т			
R1	PL16B	6	С		PL25B	6	С			
P2	PL17A	6	Т		PL26A	6	Т			
P3	PL17B	6	С		PL26B	6	С			
N3	PL18A	6	Т	VREF1_6	PL27A	6	Т	VREF1_6		
N4	PL18B	6	С	VREF2_6	PL27B	6	С	VREF2_6		
GND	GND6	6			GND6	6				
GND	GND5	5			GND5	5				
P4	PB2A	5	Т		PB2A	5	Т			
N5	PB2B	5	С		PB2B	5	С			
P5	PB3A	5	Т		PB3A	5	Т			
P6	PB3B	5	С		PB3B	5	С			
R4	PB4A	5	Т		PB4A	5	Т			
R3	PB4B	5	С		PB4B	5	С			
T2	PB5A	5	Т		PB5A	5	Т			
Т3	PB5B	5	С		PB5B	5	С			
R5	PB6A	5	Т	BDQS6	PB6A	5	Т	BDQS6		
R6	PB6B	5	С		PB6B	5	С			
T4	PB7A	5	Т		PB7A	5	Т			
T5	PB7B	5	С		PB7B	5	С			
N6	PB8A	5	Т		PB8A	5	Т			
M6	PB8B	5	С		PB8B	5	С			
T6	PB9A	5	Т		PB9A	5	Т			
GND	GND5	5			GND5	5				
T7	PB9B	5	С		PB9B	5	С			
P7	PB10A	5	Т		PB10A	5	Т			
N7	PB10B	5	С		PB10B	5	С			
R7	PB11A	5	Т		PB11A	5	Т			
R8	PB11B	5	С		PB11B	5	С			
M7	PB12A	5	T		PB12A	5	Т			
M8	PB12B	5	С		PB12B	5	С			
T8	PB13A	5	Т		PB13A	5	Т			

LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		L	FEC3		LFECP6/LFEC6					
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function		
E5	VCC	-			VCC	-				
E8	VCC	-			VCC	-				
M12	VCC	-			VCC	-				
M5	VCC	-			VCC	-				
M9	VCC	-			VCC	-				
B15	VCCAUX	-			VCCAUX	-				
R2	VCCAUX	-			VCCAUX	-				
F7	VCCIO0	0			VCCIO0	0				
F8	VCCIO0	0			VCCIO0	0				
F10	VCCIO1	1			VCCIO1	1				
F9	VCCIO1	1			VCCIO1	1				
G11	VCCIO2	2			VCCIO2	2				
H11	VCCIO2	2			VCCIO2	2				
J11	VCCIO3	3			VCCIO3	3				
K11	VCCIO3	3			VCCIO3	3				
L10	VCCIO4	4			VCCIO4	4				
L9	VCCIO4	4			VCCIO4	4				
L7	VCCIO5	5			VCCIO5	5				
L8	VCCIO5	5			VCCIO5	5				
J6	VCCIO6	6			VCCIO6	6				
K6	VCCIO6	6			VCCIO6	6				
G6	VCCI07	7			VCCIO7	7				
H6	VCCI07	7			VCCIO7	7				
F6	VCC	-			VCC	-				
F11	VCC	-			VCC	-				
L11	VCC	-			VCC	-				
L6	VCC	-			VCC	-				

LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)

Ball		LFECF	10/LFEC	:10	LFECP15/LFEC15					
Number	Ball Function	Bank	LVDS	Dual Function	Ball Function	Bank	LVDS	Dual Function		
P14	PR35B	3	С		PR43B	3	С			
P15	PR35A	3	Т		PR43A	3	Т			
R15	PR34B	3	С		PR42B	3	С			
R16	PR34A	3	Т		PR42A	3	Т			
M13	PR33B	3	С		PR41B	3	С			
M14	PR33A	3	Т	RDQS33	PR41A	3	Т	RDQS41		
P16	PR32B	3	С	RLM0_PLLC_FB_A	PR40B	3	С	RLM0_PLLC_FB_A		
GND	GND3	3			GND3	3				
N16	PR32A	3	Т	RLM0_PLLT_FB_A	PR40A	3	Т	RLM0_PLLT_FB_A		
N15	PR31B	3	С	RLM0_PLLC_IN_A	PR39B	3	С	RLM0_PLLC_IN_A		
M15	PR31A	3	Т	RLM0_PLLT_IN_A	PR39A	3	Т	RLM0_PLLT_IN_A		
M16	PR30B	3	С	DI/CSSPIN	PR38B	3	С	DI/CSSPIN		
L16	PR30A	3	Т	DOUT/CSON	PR38A	3	Т	DOUT/CSON		
K16	PR29B	3	С	BUSY/SISPI	PR37B	3	С	BUSY/SISPI		
J16	PR29A	3	Т	D7/SPID0	PR37A	3	Т	D7/SPID0		
L12	CFG2	3			CFG2	3				
L14	CFG1	3			CFG1	3				
L13	CFG0	3			CFG0	3				
K13	PROGRAMN	3			PROGRAMN	3				
L15	CCLK	3			CCLK	3				
K15	INITN	3			INITN	3				
K14	DONE	3			DONE	3				
GND	GND3	3			GND3	3				
H16	PR27B	3	С		PR31B	3	С			
-	-	-			GND3	3				
H15	PR27A	3	Т		PR31A	3	Т			
G16	PR26B	3	С		PR30B	3	С			
G15	PR26A	3	Т		PR30A	3	Т			
K12	PR25B	3	С		PR29B	3	С			
J12	PR25A	3	Т		PR29A	3	Т			
J14	PR24B	3	С		PR28B	3	С			
J15	PR24A	3	Т	RDQS24	PR28A	3	Т	RDQS28		
F16	PR23B	3	С		PR27B	3	С			
GND	GND3	3			GND3	3				
F15	PR23A	3	Т		PR27A	3	Т			
J13	PR22B	3	С		PR26B	3	С			
H13	PR22A	3	Т		PR26A	3	Т			
H14	PR21B	3	С		PR25B	3	С			
G14	PR21A	3	Т		PR25A	3	Т			
E16	PR20B	3	С		PR24B	3	С			
E15	PR20A	3	Т		PR24A	3	Т			
H12	PR18B	2	С	PCLKC2_0	PR22B	2	С	PCLKC2_0		
GND	GND2	2			GND2	2				

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33						
Ball Number	Ball Function	Bank	LVD S	Dual Function	Ball Number	Ball Function	Bank	LVD S	Dual Function		
K3	PL21A	7	Т		К3	PL33A	7	Т			
K2	PL21B	7	С		K2	PL33B	7	С			
J1	PL22A	7	Т	PCLKT7_0	J1	PL34A	7	Т	PCLKT7_0		
GND	GND7	7			GND	GND7	7				
K1	PL22B	7	С	PCLKC7_0	K1	PL34B	7	С	PCLKC7_0		
L3	XRES	6			L3	XRES	6				
L4	PL24A	6	Т		L4	PL36A	6	Т			
L5	PL24B	6	С		L5	PL36B	6	С			
L2	PL25A	6	Т		L2	PL37A	6	Т			
L1	PL25B	6	С		L1	PL37B	6	С			
M4	PL26A	6	Т		M4	PL38A	6	Т			
M5	PL26B	6	С		M5	PL38B	6	С			
M1	PL27A	6	Т		M1	PL39A	6	Т			
GND	GND6	6			GND	GND6	6				
M2	PL27B	6	С		M2	PL39B	6	С			
N3	PL28A	6	Т	LDQS28	N3	PL40A	6	Т	LDQS40		
M3	PL28B	6	С		M3	PL40B	6	С			
N5	PL29A	6	Т		N5	PL41A	6	Т			
N4	PL29B	6	С		N4	PL41B	6	С			
N1	PL30A	6	Т		N1	PL42A	6	Т			
N2	PL30B	6	С		N2	PL42B	6	С			
P1	PL31A	6	Т		P1	PL43A	6	Т			
GND	GND6	6			GND	GND6	6				
P2	PL31B	6	С		P2	PL43B	6	С			
R6	PL32A	6	Т		R6	PL44A	6	Т			
P5	PL32B	6	С		P5	PL44B	6	С			
P3	PL33A	6	Т		P3	PL45A	6	Т			
P4	PL33B	6	С		P4	PL45B	6	С			
R1	PL34A	6	Т		R1	PL46A	6	Т			
R2	PL34B	6	С		R2	PL46B	6	С			
R5	PL35A	6	Т		R5	PL47A	6	Т			
GND	GND6	6			GND	GND6	6				
R4	PL35B	6	С		R4	PL47B	6	С			
T1	PL36A	6	Т	LDQS36	T1	PL48A	6	Т	LDQS48		
T2	PL36B	6	С		T2	PL48B	6	С			
R3	PL37A	6	Т		R3	PL49A	6	Т			
T3	PL37B	6	С		Т3	PL49B	6	С			
GND	GND6	6			GND	GND6	6				
T5	ТСК	6			T5	ТСК	6	-			
U5	TDI	6			U5	TDI	6				
T4	TMS	6			T4	TMS	6				
U1	TDO	6			U1	TDO	6	-			
U2	VCCJ	6			U2	VCCJ	6				
V1	PL41A	6	Т	LLM0_PLLT_IN_A	V1	PL53A	6	Т	LLM0_PLLT_IN_		

LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)

	LFECP	20/LFE	C20		LFECP/LFEC33						
Ball Number	Ball Function	Bank	LVD S	Dual Function	Ball Number	Ball Function	Bank	LVD S	Dual Function		
A7	PT27B	0	С		A7	PT27B	0	С			
A6	PT27A	0	Т		A6	PT27A	0	Т			
B7	PT26B	0	С		B7	PT26B	0	С			
B8	PT26A	0	Т		B8	PT26A	0	Т			
A5	PT25B	0	С		A5	PT25B	0	С			
GND	GND0	0			GND	GND0	0				
B6	PT25A	0	Т		B6	PT25A	0	Т			
G10	PT24B	0	С		G10	PT24B	0	С			
E10	PT24A	0	Т		E10	PT24A	0	Т			
F10	PT23B	0	С		F10	PT23B	0	С			
D10	PT23A	0	Т		D10	PT23A	0	Т			
G9	PT22B	0	С		G9	PT22B	0	С			
E9	PT22A	0	Т	TDQS22	E9	PT22A	0	Т	TDQS22		
C9	PT21B	0	С		C9	PT21B	0	С			
GND	GND0	0			GND	GND0	0				
C8	PT21A	0	Т		C8	PT21A	0	Т			
F9	PT20B	0	С		F9	PT20B	0	С			
D9	PT20A	0	Т		D9	PT20A	0	Т			
F8	PT19B	0	С		F8	PT19B	0	С			
D7	PT19A	0	Т		D7	PT19A	0	Т			
D8	PT18B	0	С		D8	PT18B	0	С			
C7	PT18A	0	Т		C7	PT18A	0	Т			
GND	GND0	0			GND	GND0	0				
A4	PT17B	0	С		A4	PT17B	0	С			
B4	PT17A	0	Т		B4	PT17A	0	Т			
C4	PT16B	0	С		C4	PT16B	0	С			
C5	PT16A	0	Т		C5	PT16A	0	Т			
D6	PT15B	0	С		D6	PT15B	0	С			
B5	PT15A	0	Т		B5	PT15A	0	Т			
E6	PT14B	0	С		E6	PT14B	0	С			
C6	PT14A	0	Т	TDQS14	C6	PT14A	0	Т	TDQS14		
A3	PT13B	0	С		A3	PT13B	0	С			
GND	GND0	0			GND	GND0	0				
B3	PT13A	0	Т		B3	PT13A	0	Т			
F6	PT12B	0	С		F6	PT12B	0	С			
D5	PT12A	0	Т		D5	PT12A	0	Т			
F7	PT11B	0	С		F7	PT11B	0	С			
E8	PT11A	0	Т		E8	PT11A	0	Т			
G6	PT10B	0	С		G6	PT10B	0	С			
E7	PT10A	0	Т		E7	PT10A	0	Т			
GND	GND0	0			GND	GND0	0				
GND	GND0	0			GND	GND0	0				
A1	GND	-			A1	GND	-				
A22	GND	-			A22	GND	-				

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA

	LF	EC20/L	FECP2	D	LFECP/EC33						
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function		
GND	GND7	7			GND	GND7	7				
E3	PL2A	7	Т	VREF2_7	E3	PL2A	7	Т	VREF2_7		
E4	PL2B	7	С	VREF1_7	E4	PL2B	7	С	VREF1_7		
E5	NC	-			E5	PL6A	7	Т	LDQS6		
D5	NC	-			D5	PL6B	7	С			
F4	NC	-			F4	PL7A	7	Т			
F5	NC	-			F5	PL7B	7	С			
C3	NC	-			C3	PL8A	7	Т			
D3	NC	-			D3	PL8B	7	С			
C2	NC	-			C2	PL9A	7	Т			
-	-	-			GND	GND7	7				
B2	NC	-			B2	PL9B	7	С			
B1	PL3A	7	Т		B1	PL10A	7	Т			
C1	PL3B	7	С		C1	PL10B	7	С			
F3	PL4A	7	Т		F3	PL11A	7	Т			
G3	PL4B	7	С		G3	PL11B	7	С			
D2	PL5A	7	Т		D2	PL12A	7	Т			
E2	PL5B	7	С		E2	PL12B	7	С			
-	-	-			GND	GND7	7				
D1	PL6A	7	Т	LDQS6	D1	PL14A	7	Т	LDQS14		
E1	PL6B	7	С		E1	PL14B	7	С			
F2	PL7A	7	Т		F2	PL15A	7	Т			
G2	PL7B	7	С		G2	PL15B	7	С			
F6	PL8A	7	Т	LUM0_PLLT_IN_A	F6	PL16A	7	Т	LUM0_PLLT_IN_A		
G6	PL8B	7	С	LUM0_PLLC_IN_A	G6	PL16B	7	С	LUM0_PLLC_IN_A		
H4	PL9A	7	Т	LUM0_PLLT_FB_A	H4	PL17A	7	Т	LUM0_PLLT_FB_A		
GND	GND7	7			GND	GND7	7				
G4	PL9B	7	С	LUM0_PLLC_FB_A	G4	PL17B	7	С	LUM0_PLLC_FB_A		
H6	NC	-			H6	PL19A	7	Т			
J7	NC	-			J7	PL19B	7	С			
G5	NC	-			G5	PL20A	7	Т			
H5	NC	-			H5	PL20B	7	С			
H3	NC	-			H3	PL21A	7	Т			
J3	NC	-			J3	PL21B	7	С			
H2	NC	-			H2	PL22A	7	Т			
-	-	-			GND	GND7	7				
J2	NC	-			J2	PL22B	7	С			
J4	PL11A	7	Т		J4	PL23A	7	Т	LDQS23		
J5	PL11B	7	С		J5	PL23B	7	С			
K4	PL12A	7	Т		K4	PL24A	7	Т			
K5	PL12B	7	С		K5	PL24B	7	С			
J6	PL13A	7	Т		J6	PL25A	7	Т			

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	EC20/L	FECP2	0	LFECP/EC33						
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function		
L24	PR17A	2	Т		L24	PR29A	2	Т			
K25	PR16B	2	С		K25	PR28B	2	С			
J25	PR16A	2	Т		J25	PR28A	2	Т			
J26	PR15B	2	С		J26	PR27B	2	С			
H26	PR15A	2	Т		H26	PR27A	2	Т			
H25	PR14B	2	С		H25	PR26B	2	С			
GND	GND2	2			GND	GND2	2				
J24	PR14A	2	Т		J24	PR26A	2	Т			
K21	PR13B	2	С		K21	PR25B	2	С			
K22	PR13A	2	Т		K22	PR25A	2	Т			
K20	PR12B	2	С		K20	PR24B	2	С			
J20	PR12A	2	Т		J20	PR24A	2	Т			
K23	PR11B	2	С		K23	PR23B	2	С			
K24	PR11A	2	Т		K24	PR23A	2	Т	RDQS23		
J21	NC	-			J21	PR22B	2	С			
-	-	-			GND	GND2	2				
J22	NC	-			J22	PR22A	2	Т			
J23	NC	-			J23	PR21B	2	С			
H22	NC	-			H22	PR21A	2	Т			
G26	NC	-			G26	PR20B	2	С			
F26	NC	-			F26	PR20A	2	Т			
E26	NC	-			E26	PR19B	2	С			
E25	NC	-			E25	PR19A	2	Т			
F25	PR9B	2	С	RUM0_PLLC_FB_A	F25	PR17B	2	С	RUM0_PLLC_FB_		
GND	GND2	2			GND	GND2	2				
G25	PR9A	2	Т	RUM0_PLLT_FB_A	G25	PR17A	2	Т	RUM0_PLLT_FB_/		
H23	PR8B	2	С	RUM0_PLLC_IN_A	H23	PR16B	2	С	RUM0_PLLC_IN_		
H24	PR8A	2	Т	RUM0_PLLT_IN_A	H24	PR16A	2	Т	RUM0_PLLT_IN_A		
H21	PR7B	2	С		H21	PR15B	2	С			
G21	PR7A	2	Т		G21	PR15A	2	Т			
D26	PR6B	2	С		D26	PR14B	2	С			
D25	PR6A	2	T	RDQS6	D25	PR14A	2	T	RDQS14		
F21	PR5B	2	C		F21	PR13B	2	C			
-	-	-	-		GND	GND2	2				
G22	PR5A	2	Т		G22	PR13A	2	Т			
G24	PR4B	2	C		G24	PR12B	2	C			
G23	PR4A	2	T		G23	PR12A	2	T			
C26	PR3B	2	C		C26	PR11B	2	C			
C25	PR3A	2	T		C25	PR11A	2	Т			
F24	NC	-	-		F24	PR9B	2	C			
-	-	-			GND	GND2	2	-			
F23	NC	-			F23	PR9A	2	Т			

LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)

	LF	EC20/L	FECP20		LFECP/EC33						
Ball Number	Ball Function	Bank	LVDS	Dual Function	Ball Number	Ball Function	Bank	LVDS	Dual Function		
A5	PT13B	0	С		A5	PT13B	0	С			
GND	GND0	0			GND	GND0	0				
A4	PT13A	0	Т		A4	PT13A	0	Т			
F9	PT12B	0	С		F9	PT12B	0	С			
B6	PT12A	0	Т		B6	PT12A	0	Т			
E9	PT11B	0	С		E9	PT11B	0	С			
C8	PT11A	0	Т		C8	PT11A	0	Т			
G8	PT10B	0	С		G8	PT10B	0	С			
B5	PT10A	0	Т		B5	PT10A	0	Т			
A3	PT9B	0	С		A3	PT9B	0	С			
GND	GND0	0			GND	GND0	0				
A2	PT9A	0	Т		A2	PT9A	0	Т			
F8	PT8B	0	С		F8	PT8B	0	С			
B4	PT8A	0	Т		B4	PT8A	0	Т			
E8	PT7B	0	С		E8	PT7B	0	С			
B3	PT7A	0	Т		B3	PT7A	0	Т			
D8	PT6B	0	С		D8	PT6B	0	С			
G7	PT6A	0	Т	TDQS6	G7	PT6A	0	Т	TDQS6		
C4	PT5B	0	С		C4	PT5B	0	С			
C5	PT5A	0	Т		C5	PT5A	0	Т			
E7	PT4B	0	С		E7	PT4B	0	С			
D4	PT4A	0	Т		D4	PT4A	0	Т			
F7	PT3B	0	С		F7	PT3B	0	С			
D6	PT3A	0	Т		D6	PT3A	0	Т			
D7	PT2B	0	С		D7	PT2B	0	С			
E6	PT2A	0	Т		E6	PT2A	0	Т			
GND	GND0	0			GND	GND0	0				
K10	GND	-			K10	GND	-				
K11	GND	-			K11	GND	-				
K12	GND	-			K12	GND	-				
K13	GND	-			K13	GND	-				
K14	GND	-			K14	GND	-				
K15	GND	-			K15	GND	-				
K16	GND	-			K16	GND	-				
L10	GND	-			L10	GND	-				
L11	GND	-			L11	GND	-				
L12	GND	-			L12	GND	-				
L13	GND	-			L13	GND	-				
L14	GND	-			L14	GND	-				
L15	GND	-			L15	GND	-				
L16	GND	-			L16	GND	-				
L17	GND	-	İ		L17	GND	-				

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following located on the Lattice website at <u>www.latticesemi.com</u>.

- Thermal Management document
- Technical Note TN1052 Power Estimation and Management for LatticeECP/EC and LatticeXP Devices
- Power Calculator tool included with Lattice's ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>