Microchip Technology - AT90S1200-12SC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

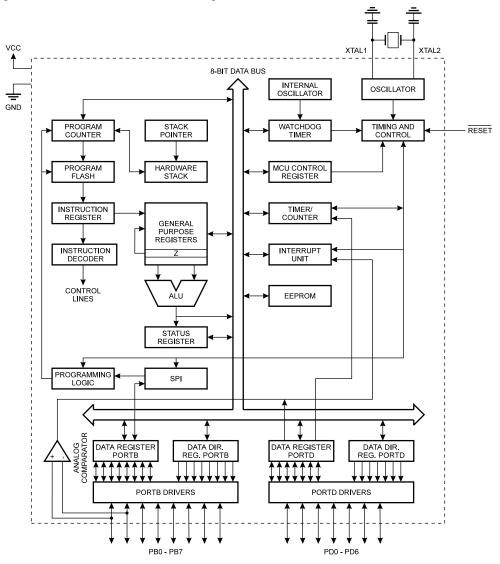
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	12MHz
Connectivity	SPI
Peripherals	POR, WDT
Number of I/O	15
Program Memory Size	1KB (512 x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	-
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s1200-12sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Description

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with the 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The AT90S1200 Block Diagram

The architecture supports high-level languages efficiently as well as extremely dense assembler code programs. The AT90S1200 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers, internal and external interrupts, programmable watchdog timer with internal oscillator, an SPI serial port for program downloading and two software selectable power-saving modes. The Idle Mode stops the CPU while allow-

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the stack. The stack is a 3-level-deep hardware stack dedicated for subroutines and interrupts.

The I/O memory space contains 64 addresses for CPU peripheral functions such as Control Registers, Timer/Counters, A/D Converters and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

General Purpose Register File

Figure 5 shows the structure of the 32 general purpose registers in the CPU.

Figure 5. AVR CPU General Purpose Working Registers

General Purpose Working Registers

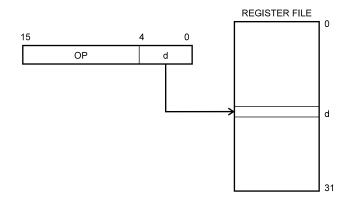
7	0
R0	
R1	
R2	
R28	
R29	
R30 (Z-Register)	
R31	

All the register operating instructions in the instruction set have direct and single cycle access to all registers. The only exception is the five constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI, ORI between a constant and a register and the LDI instruction for load immediate constant data. These instructions apply to the second half of the registers in the register file (R16..R31). The general SBC, SUB, CP, AND, OR and all other operations between two registers or on a single register apply to the entire register file.

Register 30 also serves as an 8-bit pointer for indirect address of the register file.

ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, ALU operations between registers in the register file are executed. The ALU operations are divided into three main categories – arithmetic, logic and bit-functions.

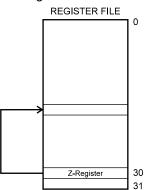
In-SystemThe AT90S1200 contains 1K bytes On-chip In-System Programmable Flash memory for
program storage. Since all instructions are single 16-bit words, the Flash is organized as
512 x 16. The Flash memory has an endurance of at least 1000 write/erase cycles.


The AT90S1200 Program Counter is 9 bits wide, thus addressing the 512 words Flash program memory.

See page 37 for a detailed description on Flash data downloading.

Program and Data Addressing Modes

The AT90S1200 AVR RISC Microcontroller supports powerful and efficient addressing modes. This section describes the different addressing modes supported in the AT90S1200. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.


Register Direct, Single Register Rd Figure 6. Direct Single Register Addressing

The operand is contained in register d (Rd).

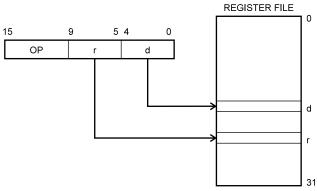
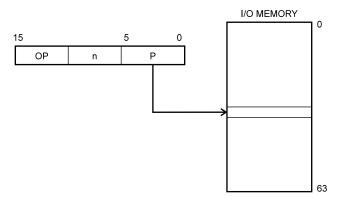

Register Indirect

Figure 7. Indirect Register Addressing

The register accessed is the one pointed to by the Z-register (R30).

Register Direct, Two Registers	Figure 8.	Direct Register	Addressing,	Two Registers
Rd and Rr				



Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

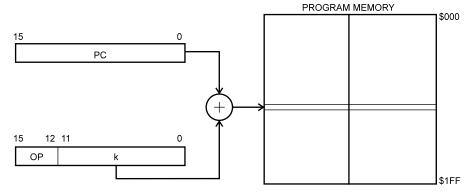

I/O Direct

Figure 9. I/O Direct Addressing

Operand address is contained in 6 bits of the instruction word. n is the destination or source register address.

Relative Program Addressing, RJMP and RCALL Figure 10. Relative Program Memory Addressing

Program execution continues at address PC + k + 1. The relative address k is -2048 to 2047.

Subroutine and Interrupt Hardware Stack The AT90S1200 uses a 3 level deep hardware stack for subroutines and interrupts. The hardware stack is 9 bits wide and stores the Program Counter (PC) return address while subroutines and interrupts are executed.

RCALL instructions and interrupts push the PC return address onto stack level 0, and the data in the other stack levels 1 - 2 are pushed one level deeper in the stack. When a RET or RETI instruction is executed the returning PC is fetched from stack level 0, and the data in the other stack levels 1 - 2 are popped one level in the stack.

If more than three subsequent subroutine calls or interrupts are executed, the first values written to the stack are overwritten.

8

EEPROM Data Memory The AT90S1200 contains 64 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described on page 25 specifying the EEPROM address register, the EEPROM data register, and the EEPROM control register. For the SPI data download-ing, see page 44 for a detailed description.

Instruction ExecutionThis section describes the general access timing concepts for instruction execution and
internal memory access.

The AVR CPU is driven by the System Clock \emptyset , directly generated from the external clock crystal for the chip. No internal clock division is used.

Figure 11 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

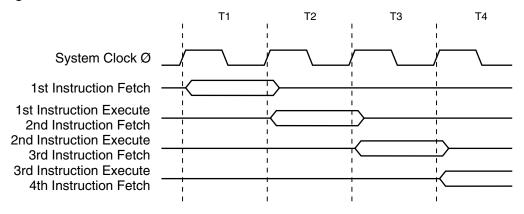
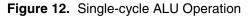



Figure 11. The Parallel Instruction Fetches and Instruction Executions

Figure 12 shows the internal timing concept for the register file. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register.

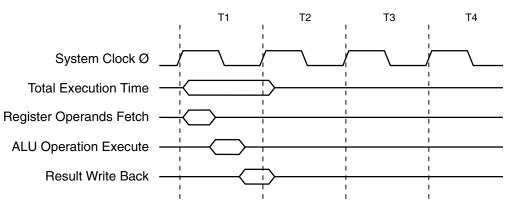
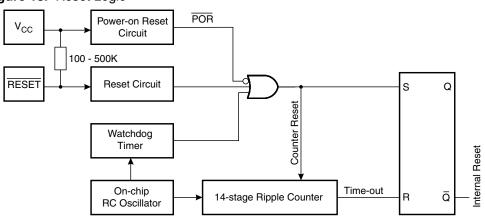
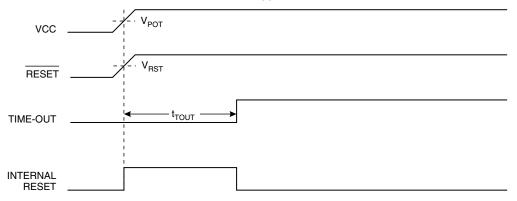



Figure 13. Reset Logic

Table 3. Reset Characteristics ($V_{CC} = 5.0V$)


Symbol	Parameter	Min	Тур	Max	Units
V (1)	Power-on Reset Threshold Voltage (rising)	0.8	1.2	1.6	V
V _{POT} ⁽¹⁾	Power-on Reset Threshold Voltage (falling)	0.2	0.4	0.6	V
V _{RST}	Pin Threshold Voltage	_	_	0.85 V _{CC}	V
t _{POR}	Power-on Reset Period	2.0	3.0	4.0	ms
t _{TOUT}	Reset Delay Time-out Period (The Time-out period equals 16K WDT cycles. See "Typical Characteristics" on page 51. for typical WDT frequency at different voltages).	11.0	16.0	21.0	ms

Note: 1. The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).

Power-on Reset

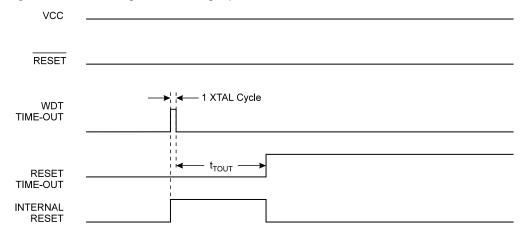

A Power-on Reset (POR) circuit ensures that the device is reset from power-on. As shown in Figure 13, an internal timer clocked from the Watchdog timer oscillator prevents the MCU from starting until after a certain period after V_{CC} has reached the Power-on Threshold voltage (V_{POT}), regardless of the V_{CC} rise time (see Figure 14).

Figure 14. MCU Start-up, RESET Tied to V_{CC}.

If the built-in start-up delay is sufficient, $\overline{\text{RESET}}$ can be connected to V_{CC} directly or via an external pull-up resistor. By holding the $\overline{\text{RESET}}$ pin low for a period after V_{CC} has

Figure 17. Watchdog Reset during Operation

Interrupt Handling

The AT90S1200 has two Interrupt Mask Control Registers: the GIMSK (General Interrupt Mask Register) at I/O space address \$3B and the TIMSK (Timer/Counter Interrupt Mask Register) at I/O address \$39.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all interrupts are disabled. The user software can set (one) the I-bit to enable interrupts. The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

When the Program Counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, hardware clears the corresponding flag that generated the interrupt. Some of the interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared.


If an interrupt condition occurs when the corresponding interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared (zero), the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set (one), and will be executed by order of priority.

Note that external level interrupt does not have a flag, and will only be remembered for as long as the interrupt condition is active.

Note that the Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt routine. This must be handled by software.

General Interrupt Mask Register – GIMSK

Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the AT90S1200 and always reads as zero.

External Interrupts The External Interrupt is triggered by the INT0 pin. The interrupt can trigger on rising edge, falling edge or low level. This is set up as described in the specification for the MCU Control Register (MCUCR). When INTO is level triggered, the interrupt is pending as long as INT0 is held low. The interrupt is triggered even if INT0 is configured as an output. This provides a way to generate a software interrupt. The interrupt flag can not be directly accessed by the user. If an external edge-triggered interrupt is suspected to be pending, the flag can be cleared as follows. 1. Disable the External Interrupt by clearing the INT0 flag in GIMSK. 2. Select level triggered interrupt. 3. Select desired interrupt edge. 4. Re-enable the external interrupt by setting INT0 in GIMSK. Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During this 4-clock-cycle period, the Program Counter (9 bits) is pushed onto the Stack. The vector is normally a relative jump to the interrupt routine, and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (9 bits) is popped back from the Stack and the I-flag in SREG is set. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

Note that the Subroutine and Interrupt Stack is a 3-level true hardware stack, and if more than three nested subroutines and interrupts are executed, only the most recent three return addresses are stored.

I/O Ports

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).

Port B

Port B is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port B, one each for the Data Register – PORTB (\$18), Data Direction Register – DDRB (\$17), and the Port B Input Pins – PINB (\$16). The Port B Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in Table 8.

Table 8. Port B Pin Alternate Functions

Port Pin	Alternate Functions
PB0	AIN0 (Analog Comparator positive input)
PB1	AIN1 (Analog Comparator negative input)
PB5	MOSI (Data Input line for memory downloading)
PB6	MISO (Data Output line for memory uploading)
PB7	SCK (Serial Clock input)

When the pins are used for the alternate function, the DDRB and PORTB register has to be set according to the alternate function description.

Port B Data Register – PORTB

	Bit	7	6	5	4	3	2	1	0	
	\$18	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Data Direction Register										
– DDRB	Bit	7	6	5	4	3	2	1	0	
	\$17	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Input Pin Address –										
PINB	Bit	7	6	5	4	3	2	1	0	
	\$16	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	N/A								

The Port B Input Pins address (PINB) is not a register, and this address enables access to the physical value on each Port B pin. When reading PORTB, the Port B Data Latch is read, and when reading PINB, the logical values present on the pins are read.

Figure 23. Port B Schematic Diagram (Pins PB2, PB3, and PB4)

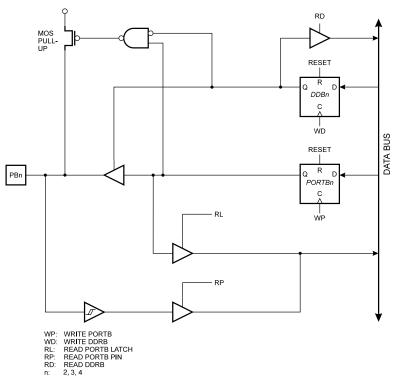
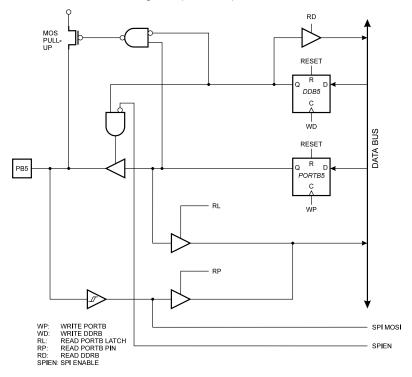
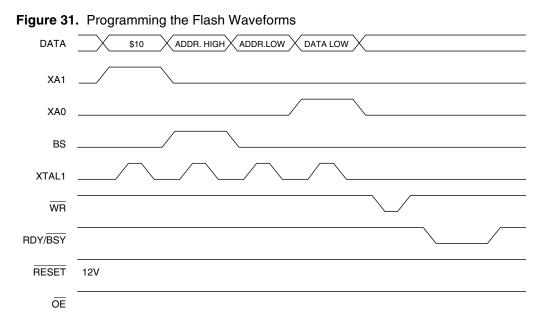
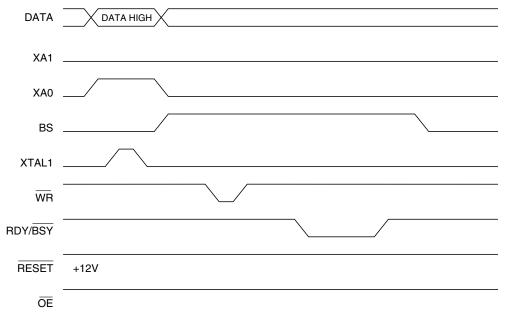
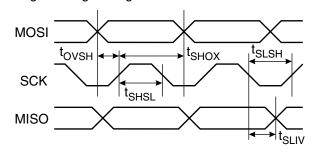
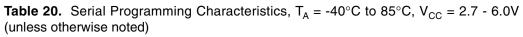





Figure 24. Port B Schematic Diagram (Pin PB5)

Figure 32. Programming the Flash Waveforms (Continued)

Reading the Flash


The algorithm for reading the Flash memory is as follows (refer to "Programming the Flash" for details on command and address loading):


- 1. A: Load Command "0000 0010".
- 2. B: Load Address High Byte (\$00 \$01).
- 3. C: Load Address Low Byte (\$00 \$FF).
- 4. Set \overline{OE} to "0", and BS to "0". The Flash word low byte can now be read at DATA.
- 5. Set BS to "1". The Flash word high byte can now be read from DATA.
- 6. Set OE to "1".

Serial Programming Characteristics

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 2.7 - 4.0V$)	0		4.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 2.7 - 4.0V$)	250.0			ns
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 4.0 - 6.0V$)	0		12.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 4.0 - 6.0V$)	83.3			ns
t _{SHSL}	SCK Pulse Width High	4.0 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	t _{CLCL}			ns
t _{OVSH}	MOSI Setup to SCK High	1.25 t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2.5 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10.0	16.0	32.0	ns

Table 21. Minimum Wait Delay after the Chip Erase Instruction

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_ERASE}	18 ms	14 ms	12 ms	8 ms

Table 22. Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_PROG}	9 ms	7 ms	6 ms	4 ms

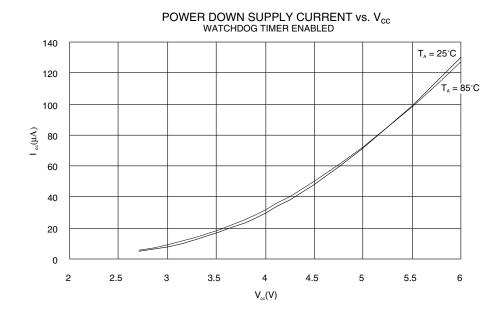
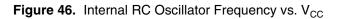
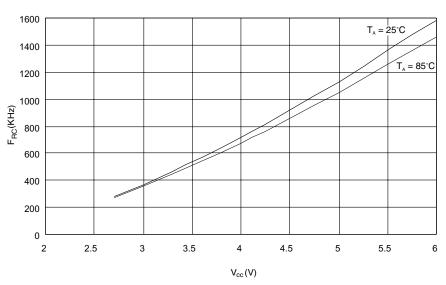
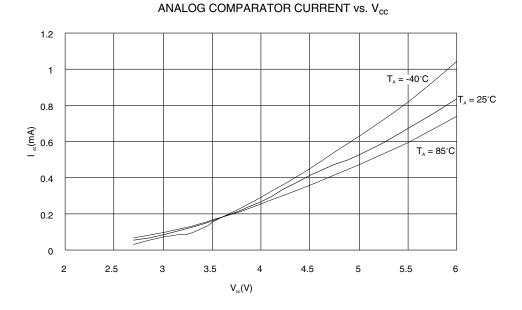
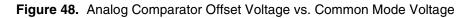
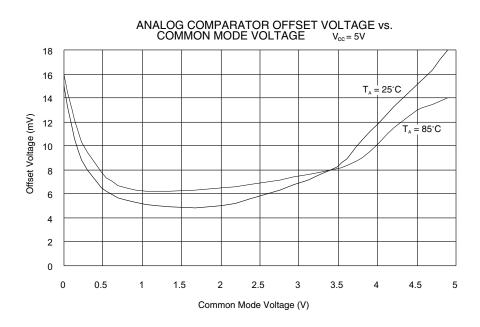




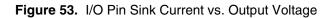
Figure 45. Power-down Supply Current vs. $V_{\text{CC}},$ Watchdog Timer Enabled



INTERNAL RC OSCILLATOR FREQUENCY vs. $\rm V_{cc}$






Figure 47. Analog Comparator Current vs. V_{CC}

Note: Analog comparator offset voltage is measured as absolute offset.

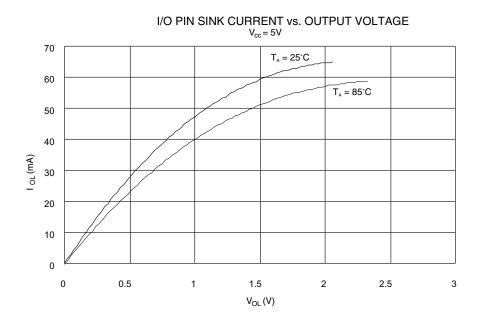
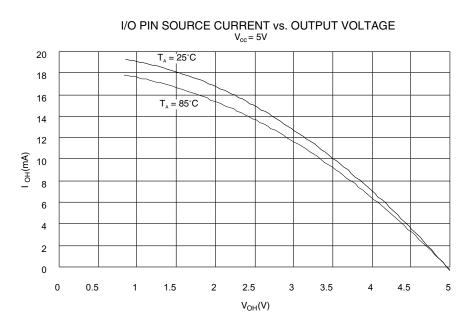



Figure 54. I/O Pin Source Current vs. Output Voltage

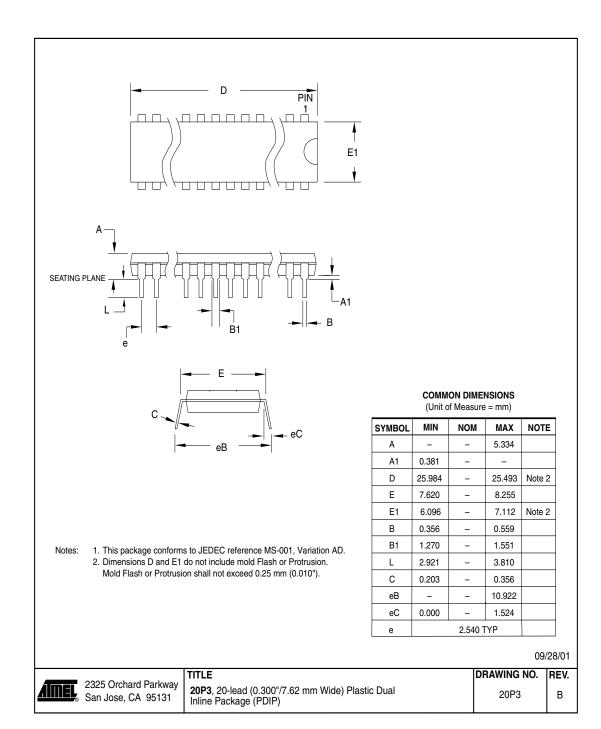
AT90S1200 Register Summary

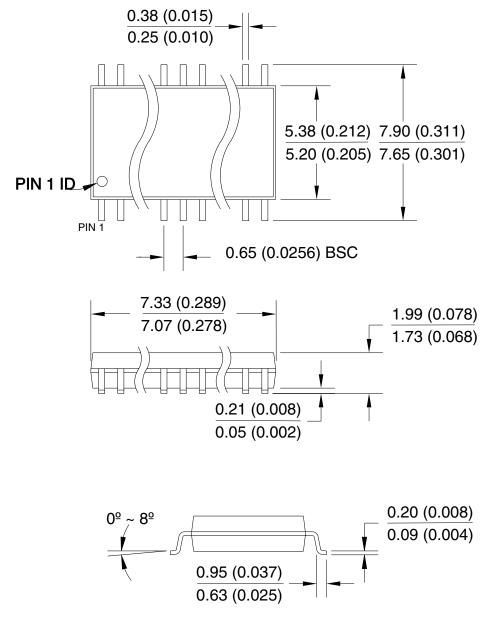
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	1	Т	Н	S	V	N	Z	С	page 1
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	-	-	-	-	-	-	page 1
\$3A	Reserved									
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 16
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 16
\$37	Reserved									
\$36	Reserved									
\$35	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 18
\$34	Reserved									
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 2
\$32	TCNT0				Timer/Cou	nter0 (8 Bits)				page 22
\$31	Reserved									
\$30	Reserved									
\$2F	Reserved									
\$2E	Reserved									
\$2D	Reserved									
\$2C	Reserved									
\$2B	Reserved									
\$2A	Reserved									
\$29	Reserved									
\$28	Reserved									
\$27	Reserved									
\$26	Reserved									
\$25	Reserved									
\$24	Reserved									
\$23	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	-	WDE	WDP2	WDP1	WDP0	page 23
\$20	Reserved									
\$1F	Reserved									
\$1E	EEAR	-			EEP	ROM Address R	egister			page 25
\$1D	EEDR				EEPROM	Data Register				page 25
\$1C	EECR	-	-	-	-	-	-	EEWE	EERE	page 25
\$1B	Reserved									
\$1A	Reserved									
	Reserved									
\$19				DODTDE	DODTD4	DODTDO	PORTB2	PORTB1	PORTB0	page 29
\$19 \$18	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	TOTTEL			page 29
		PORTB7 DDB7	PORTB6 DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	
\$18	PORTB							DDB1 PINB1	DDB0 PINB0	
\$18 \$17	PORTB DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2			
\$18 \$17 \$16	PORTB DDRB PINB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2			
\$18 \$17 \$16 \$15	PORTB DDRB PINB Reserved	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2			
\$18 \$17 \$16 \$15 \$14 \$13	PORTB DDRB PINB Reserved Reserved	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2			page 29
\$18 \$17 \$16 \$15 \$14	PORTB DDRB PINB Reserved Reserved Reserved	DDB7 PINB7	DDB6 PINB6	DDB5 PINB5	DDB4 PINB4	DDB3 PINB3	DDB2 PINB2	PINB1	PINBO	page 29 page 34
\$18 \$17 \$16 \$15 \$14 \$13 \$12	PORTB DDRB PINB Reserved Reserved Reserved PORTD	DDB7 PINB7	DDB6 PINB6 PORTD6	DDB5 PINB5 PORTD5	DDB4 PINB4 PORTD4	DDB3 PINB3 PORTD3	DDB2 PINB2 PORTD2	PINB1 PORTD1	PINB0 PORTD0	page 29 page 34 page 34
\$18 \$17 \$16 \$15 \$14 \$13 \$12 \$11	PORTB DDRB PINB Reserved Reserved Reserved PORTD DDRD	DDB7 PINB7 - -	DDB6 PINB6 PORTD6 DDD6	DDB5 PINB5 PORTD5 DDD5	DDB4 PINB4 PORTD4 DDD4	DDB3 PINB3 PORTD3 DDD3	DDB2 PINB2 PORTD2 DDD2	PINB1 PORTD1 DDD1	PINB0 PORTD0 DDD0	page 29 page 34 page 34
\$18 \$17 \$16 \$15 \$14 \$13 \$12 \$11 \$10	PORTB DDRB PINB Reserved Reserved PORTD DDRD PIND	DDB7 PINB7 - -	DDB6 PINB6 PORTD6 DDD6	DDB5 PINB5 PORTD5 DDD5	DDB4 PINB4 PORTD4 DDD4	DDB3 PINB3 PORTD3 DDD3	DDB2 PINB2 PORTD2 DDD2	PINB1 PORTD1 DDD1	PINB0 PORTD0 DDD0	page 29 page 34 page 34
\$18 \$17 \$16 \$15 \$14 \$13 \$12 \$11 \$10 \$0F	PORTB DDRB PINB Reserved Reserved PORTD DDRD PIND Reserved Reserved	DDB7 PINB7 - -	DDB6 PINB6 PORTD6 DDD6	DDB5 PINB5 PORTD5 DDD5	DDB4 PINB4 PORTD4 DDD4	DDB3 PINB3 PORTD3 DDD3	DDB2 PINB2 PORTD2 DDD2	PINB1 PORTD1 DDD1	PINB0 PORTD0 DDD0	page 29 page 34 page 34
\$18 \$17 \$16 \$15 \$14 \$13 \$12 \$11 \$10 \$0F 	PORTB DDRB PINB Reserved Reserved PORTD DDRD PIND Reserved	DDB7 PINB7 - -	DDB6 PINB6 PORTD6 DDD6	DDB5 PINB5 PORTD5 DDD5	DDB4 PINB4 PORTD4 DDD4	DDB3 PINB3 PORTD3 DDD3	DDB2 PINB2 PORTD2 DDD2	PINB1 PORTD1 DDD1	PINB0 PORTD0 DDD0	page 29 page 34 page 34 page 34 page 27

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary


Mnemonic	Operands	Description	Operation	Flags	# Clocks
	ND LOGIC INST			· · · · ·	
ADD	Rd, Rr	Add Two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract Two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
СОМ	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTR		Cott togistor			•
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
RET	ĸ	Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	PC ← STACK	INOTICE	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2
CP3E	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1/2
	· ·	•	-		
	Rd, Rr	Compare with Carry	Rd - Rr - C Rd - K	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate		Z,N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\text{Rr}(b) = 0) \text{ PC} \leftarrow \text{PC} + 2 \text{ or } 3$	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\text{Rr}(b) = 1) \text{ PC} \leftarrow \text{PC} + 2 \text{ or } 3$	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b) = 1) PC \leftarrow PC + 2 or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T-Flag Set	if $(T = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-Flag Cleared	if $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(I = 0)$ then PC \leftarrow PC + k + 1	None	1/2
		•		110110	1/6
LD	Rd, Z	Load Register Indirect	Rd ← (Z)	None	2
ST	Z, Rr	Store Register Indirect	$(Z) \leftarrow Rr$	None	2
	Z, NI Rd, Rr	Move between Registers	$(z) \leftarrow n$ Rd \leftarrow Rr	None	
MOV		INIOVE DELWEETT REGISTERS	nu — ni	NOTE	1
		Load Immodiate		None	4
MOV LDI IN	Rd, K Rd, P	Load Immediate	Rd ← K Rd ← P	None None	1


Packaging Information

20P3

20Y, 20-lead Plastic Shrink Small Outline (SSOP), 5.3mm body Width. Dimensions in Millimeters and (inches)*

*Controlling dimension: millimeters

REV. A 04/11/2001

20Y

Table of Contents	Features	. 1
	Pin Configuration	. 1
	Description	. 2
	Block Diagram	2
	Pin Descriptions	3
	Crystal Oscillator	3
	On-chip RC Oscillator	4
	Architectural Overview	. 5
	General Purpose Register File	6
	ALU – Arithmetic Logic Unit	6
	In-System Programmable Flash Program Memory	6
	Program and Data Addressing Modes	7
	Subroutine and Interrupt Hardware Stack	8
	EEPROM Data Memory	9
	Instruction Execution Timing	9
	I/O Memory	10
	Reset and Interrupt Handling	12
	Sleep Modes	19
	Timer/Counter0	20
	Timer/Counter0 Prescaler	20
	Watchdog Timer	23
	EEPROM Read/Write Access	25
	Prevent EEPROM Corruption	26
	Analog Comparator	27
	I/O Ports	29
	Port B	29
	Port D	34
	Memory Programming	37
	Program and Data Memory Lock Bits	37
	Fuse Bits	
	Signature Bytes	
	Programming the Flash and EEPROM	
	Parallel Programming	
	Parallel Programming Characteristics	
	Serial Downloading	
	Serial Programming Characteristics	

