

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	12MHz
Connectivity	SPI
Peripherals	POR, WDT
Number of I/O	15
Program Memory Size	1KB (512 x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	-
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s1200a-12yi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

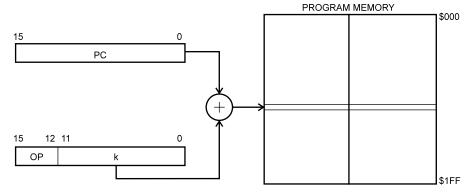
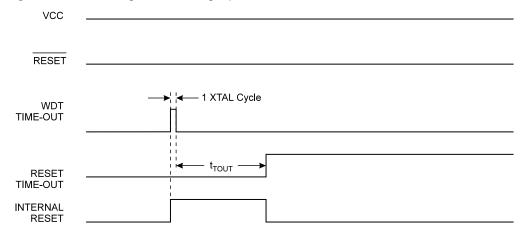

I/O Direct

Figure 9. I/O Direct Addressing

Operand address is contained in 6 bits of the instruction word. n is the destination or source register address.

Relative Program Addressing, RJMP and RCALL Figure 10. Relative Program Memory Addressing


Program execution continues at address PC + k + 1. The relative address k is -2048 to 2047.

Subroutine and Interrupt Hardware Stack The AT90S1200 uses a 3 level deep hardware stack for subroutines and interrupts. The hardware stack is 9 bits wide and stores the Program Counter (PC) return address while subroutines and interrupts are executed.

RCALL instructions and interrupts push the PC return address onto stack level 0, and the data in the other stack levels 1 - 2 are pushed one level deeper in the stack. When a RET or RETI instruction is executed the returning PC is fetched from stack level 0, and the data in the other stack levels 1 - 2 are popped one level in the stack.

If more than three subsequent subroutine calls or interrupts are executed, the first values written to the stack are overwritten.

8

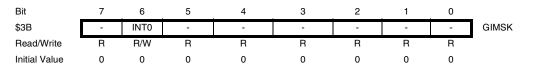
Figure 17. Watchdog Reset during Operation

Interrupt Handling

The AT90S1200 has two Interrupt Mask Control Registers: the GIMSK (General Interrupt Mask Register) at I/O space address \$3B and the TIMSK (Timer/Counter Interrupt Mask Register) at I/O address \$39.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all interrupts are disabled. The user software can set (one) the I-bit to enable interrupts. The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

When the Program Counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, hardware clears the corresponding flag that generated the interrupt. Some of the interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared.

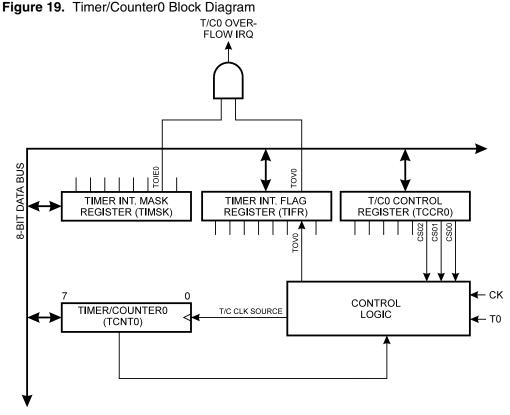

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared (zero), the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set (one), and will be executed by order of priority.

Note that external level interrupt does not have a flag, and will only be remembered for as long as the interrupt condition is active.

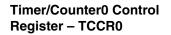
Note that the Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt routine. This must be handled by software.

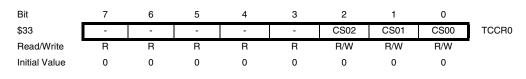
General Interrupt Mask Register – GIMSK


Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the AT90S1200 and always reads as zero.

Sleep Modes	To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruc- tion must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU awakes, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the register file and the I/O memory are unaltered. If a Reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.
ldle Mode	When the SM bit is cleared (zero), the SLEEP instruction makes the MCU enter the Idle mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt system to continue operating. This enables the MCU to wake up from external triggered interrupts as well as internal ones like Timer Overflow interrupt and Watchdog Reset. If wakeup from the Analog Comparator interrupt is not required, the Analog Comparator can be powered down by setting the ACD-bit in the Analog Comparator Control and Status Register (ACSR). This will reduce power consumption in Idle mode. When the MCU wakes up from Idle mode, the CPU starts program execution immediately.
Power-down Mode	When the SM bit is set (one), the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the External Oscillator is stopped while the External Interrupts and the Watchdog (if enabled) continue operating. Only an External Reset, a Watchdog Reset (if enabled), an external level interrupt on INT0 can wake up the MCU.
	Note that when a level triggered interrupt is used for wake-up from Power-down, the low level must be held for a time longer than the reset delay time-out period t _{TOUT} . Otherwise, the device will not wake up.





The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK or an external pin. In addition it can be stopped as described in the specification for the Timer/Counter0 Control Register (TCCR0). The overflow status flag is found in the Timer/Counter Interrupt Flag Register (TIFR). Control signals are found in the Timer/Counter0 Control Register (TCCR0). The interrupt enable/disable settings for Timer/Counter0 are found in the Timer/Counter Interrupt Mask Register (TIMSK).

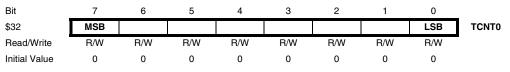
When Timer/Counter0 is externally clocked, the external signal is synchronized with the oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum time between two external clock transitions must be at least one internal CPU clock period. The external clock signal is sampled on the rising edge of the internal CPU clock.

The 8-bit Timer/Counter0 features both a high-resolution and a high-accuracy usage with the lower prescaling opportunities. Similarly, the high prescaling opportunities make the Timer/Counter0 useful for lower speed functions or exact timing functions with infrequent actions.

Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and always read as zero.

• Bits 2, 1, 0 – CS02, CS01, CS00: Clock Select0, Bits 2, 1 and 0


The Clock Select0 bits 2, 1 and 0 define the prescaling source of Timer/Counter0.

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	СК/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

Table 5. Clock 0 Prescale Select

The Stop condition provides a Timer Enable/Disable function. The CK down divided modes are scaled directly from the CK Oscillator clock. If the external pin modes are used for Timer/Counter0, transitions on PD4/(T0) will clock the counter even if the pin is configured as an output. This feature can give the user SW control of the counting.

Timer/Counter0 – TCNT0

The Timer/Counter0 is realized as an up-counter with read and write access. If the Timer/Counter0 is written and a clock source is present, the Timer/Counter0 continues counting in the timer clock cycle following the write operation.

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K cycles	47 ms	15 ms
0	0	1	32K cycles	94 ms	30 ms
0	1	0	64K cycles	0.19 s	60 ms
0	1	1	128K cycles	0.38 s	0.12 s
1	0	0	256K cycles	0.75 s	0,24 s
1	0	1	512K cycles	1.5 s	0.49 s
1	1	0	1,024K cycles	3.0 s	0.97 s
1	1	1	2,048K cycles	6.0 s	1.9 s

Table 6. Watchdog Timer Prescale Select

Note: The frequency of the Watchdog Oscillator is voltage dependent as shown in "Typical Characteristics" on page 51.

The WDR (Watchdog Reset) instruction should always be executed before the Watchdog Timer is enabled. This ensures that the reset period will be in accordance with the Watchdog Timer prescale settings. If the Watchdog Timer is enabled without Reset, the Watchdog Timer may not start to count from zero.

To avoid unintentional MCU resets, the Watchdog Timer should be disabled or reset before changing the Watchdog Timer Prescale Select.

I/O Ports

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).

Port B

Port B is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port B, one each for the Data Register – PORTB (\$18), Data Direction Register – DDRB (\$17), and the Port B Input Pins – PINB (\$16). The Port B Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in Table 8.

Table 8. Port B Pin Alternate Functions

Port Pin	Alternate Functions			
PB0	AIN0 (Analog Comparator positive input)			
PB1	AIN1 (Analog Comparator negative input)			
PB5	MOSI (Data Input line for memory downloading)			
PB6	MISO (Data Output line for memory uploading)			
PB7	SCK (Serial Clock input)			

When the pins are used for the alternate function, the DDRB and PORTB register has to be set according to the alternate function description.

Port B Data Register – PORTB

	Bit	7	6	5	4	3	2	1	0	
	\$18	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Data Direction Register										
– DDRB	Bit	7	6	5	4	3	2	1	0	
	\$17	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Input Pin Address –										
PINB	Bit	7	6	5	4	3	2	1	0	
	\$16	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	N/A								

The Port B Input Pins address (PINB) is not a register, and this address enables access to the physical value on each Port B pin. When reading PORTB, the Port B Data Latch is read, and when reading PINB, the logical values present on the pins are read.

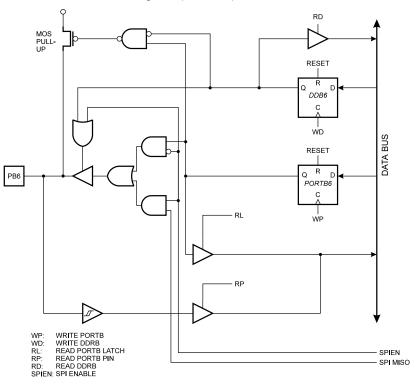
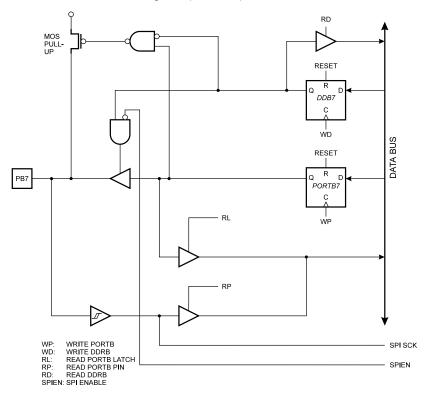



Figure 26. Port B Schematic Diagram (Pin PB7)

Port D

Three I/O memory address locations are allocated for Port D, one each for the Data Register – PORTD (\$12), Data Direction Register – DDRD (\$11), and the Port D Input Pins – PIND (\$10). The Port D Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 10.

Table 10	Port D Pin	Alternate	Functions
		Allemale	i unctions

Port Pin	Alternate Function			
PD2	INT0 (External Interrupt 0 input)			
PD4	T0 (Timer/Counter 0 external input)			

Port D Data Register - PORTD

•										
	Bit	7	6	5	4	3	2	1	0	
	\$12	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Data Direction Register										
– DDRD	Bit	7	6	5	4	3	2	1	0	
	\$11	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Input Pins Address –										
PIND	Bit	7	6	5	4	3	2	1	0	
	\$10	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	The Port D to the physi is read; and	ical valu	ie on eac	h Port D	pin. Wh	en readii	ng PORT	D, the F	ort D Da	ta Latch
Port D as General Digital I/O	PDn, general I/O pin: The DDDn bit in the DDRD Register selects the direction of this pin. If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero),									

PDn, general I/O pin: The DDDn bit in the DDRD Register selects the direction of this pin. If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero), PDn is configured as an input pin. If PORTDn is set (one) when DDDn is configured as an input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off, the PORTDn bit has to be cleared (zero) or the pin has to be configured as an output pin. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

DDDn	PORTDn	I/O	Pull-up	Comment
0	0	Input	No	Tri-state (High-Z)
0	1	Input	Yes	PDn will source current if ext. pulled low.
1	0	Output	No	Push-pull Zero Output
1	1	Output	No	Push-pull One Output

Table 11. DDDn Bits' Effect on Port D Pins

Note: n: 6...0, pin number.

Alternate Functions for Port D The alternate functions of Port D are:

• T0 – Port D, Bit 4

T0, Timer/Counter0 clock source. See the timer description for further details.

• INT0 - Port D, Bit 2

INTO, External Interrupt source 0. See the interrupt description for further details.

Port D Schematics Note that all port pins are synchronized. The synchronization latches are, however, not shown in the figures.

Figure 27. Port D Schematic Diagram (Pins PD0, PD1, PD3, PD5, and PD6)

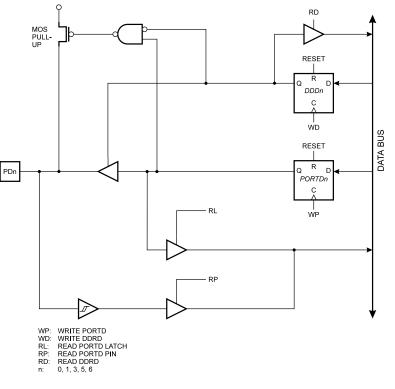


Table 15. XA1 and XA0 Coding

XA1	XA0	Action when XTAL1 is Pulsed
0	0	Load Flash or EEPROM Address (High or low address byte for Flash determined by BS).
0	1	Load Data (High or low data byte for Flash determined by BS).
1	0	Load Command
1	1	No Action, Idle

Table 16. Command Byte Coding

Command Byte	Command Executed
1000 0000	Chip Erase
0100 0000	Write Fuse Bits
0010 0000	Write Lock Bits
0001 0000	Write Flash
0001 0001	Write EEPROM
0000 1000	Read Signature Bytes
0000 0100	Read Fuse and Lock Bits
0000 0010	Read Flash
0000 0011	Read EEPROM

The following algorithm puts the device in Parallel Programming mode:

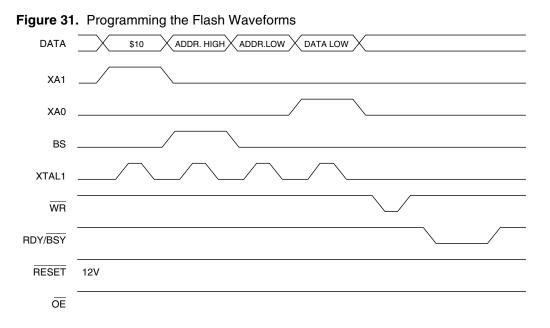
- 1. Apply supply voltage according to Table 13, between V_{CC} and GND.
- 2. Set the RESET and BS pin to "0" and wait at least 100 ns.
- Apply 11.5 12.5V to RESET. Any activity on BS within 100 ns after +12V has been applied to RESET, will cause the device to fail entering Programming mode.

The Chip Erase command will erase the Flash and EEPROM memories, and the Lock bits. The Lock bits are not Reset until the Flash and EEPROM have been completely erased. The Fuse bits are not changed. Chip Erase must be performed before the Flash or EEPROM is reprogrammed.

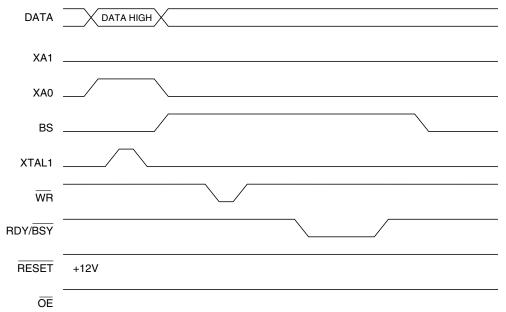
Load Command "Chip Erase"

- 1. Set XA1, XA0 to "10". This enables command loading.
- 2. Set BS to "0".
- 3. Set DATA to "1000 0000". This is the command for Chip Erase.
- 4. Give XTAL1 a positive pulse. This loads the command.
- Give WR a t_{WLWH_CE} wide negative pulse to execute Chip Erase, t_{WLWH_CE} is found in Table 17. Chip Erase does not generate any activity on the RDY/BSY pin.

Programming the Flash


Enter Programming Mode

Chip Erase


- A: Load Command "Write Flash"
 - 1. Set XA1, XA0 to "10". This enables command loading.
 - 2. Set BS to "0".
 - 3. Set DATA to "0001 0000". This is the command for Write Flash.

AT90S1200

Figure 32. Programming the Flash Waveforms (Continued)

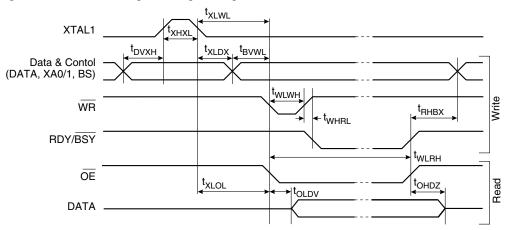
Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to "Programming the Flash" for details on command and address loading):

- 1. A: Load Command "0000 0010".
- 2. B: Load Address High Byte (\$00 \$01).
- 3. C: Load Address Low Byte (\$00 \$FF).
- 4. Set \overline{OE} to "0", and BS to "0". The Flash word low byte can now be read at DATA.
- 5. Set BS to "1". The Flash word high byte can now be read from DATA.
- 6. Set OE to "1".

Reading the Signature Bytes

Parallel Programming

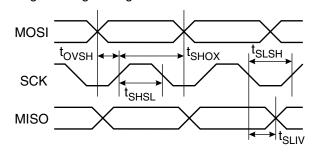

Characteristics

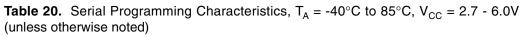
The algorithm for reading the signature bytes is as follows (refer to "Programming the Flash" on page 39 for details on command and address loading):

- 1. A: Load Command "0000 1000".
- 2. C: Load Address Low Byte (\$00 \$02).

Set \overline{OE} to "0", and BS to "0". The selected signature byte can now be read at DATA. Set OE to "1".

Figure 33. Parallel Programming Timing


Symbol	Parameter	Min	Тур	Max	Units
V _{PP}	Programming Enable Voltage	11.5		12.5	V
I _{PP}	Programming Enable Current			250.0	μA
t _{DVXH}	Data and Control Setup before XTAL1 High	67.0			ns
t _{XHXL}	XTAL1 Pulse Width High	67.0			ns
t _{XLDX}	Data and Control Hold after XTAL1 Low	67.0			ns
t _{XLWL}	XTAL1 Low to WR Low	67.0			ns
t _{BVWL}	BS Valid to WR Low	67.0			ns
t _{RHBX}	BS Hold after RDY/BSY High				ns
t _{wLWH}	WR Pulse Width Low ⁽¹⁾	67.0			ns
t _{WHRL}	WR High to RDY/BSY Low ⁽²⁾		20.0		ns
t _{WLRH}	WR Low to RDY/BSY High ⁽²⁾	0.5	0.7	0.9	ms
t _{xLOL}	XTAL1 Low to OE Low	67.0			ns
t _{OLDV}	OE Low to DATA Valid		20.0		ns
t _{OHDZ}	OE High to DATA Tri-stated			20.0	ns
t _{WLWH_CE}	WR Pulse Width Low for Chip Erase	5.0	10.0	15.0	ms
t _{wLWH_PFB}	WR Pulse Width Low for Programming the Fuse Bits	1.0	1.5	1.8	ms


Notes:

Serial Programming Characteristics

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 2.7 - 4.0V$)	0		4.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 2.7 - 4.0V$)	250.0			ns
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 4.0 - 6.0V$)	0		12.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 4.0 - 6.0V$)	83.3			ns
t _{SHSL}	SCK Pulse Width High	4.0 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	t _{CLCL}			ns
t _{OVSH}	MOSI Setup to SCK High	1.25 t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2.5 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10.0	16.0	32.0	ns

Table 21. Minimum Wait Delay after the Chip Erase Instruction

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_ERASE}	18 ms	14 ms	12 ms	8 ms

Table 22. Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_PROG}	9 ms	7 ms	6 ms	4 ms

DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$			40.0	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50.0		50.0	nA
t _{ACPD}	Analog Comparator Propagation Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750.0 500.0		ns

 $T_A = -40 \times C$ to $85 \times C$, $V_{CC} = 2.7V$ to 6.0V (unless otherwise noted) (Continued)

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low.

2. "Min" means the lowest value where the pin is guaranteed to be read as high.

Although each I/O port can sink more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all I_{OL} , for all ports, should not exceed 200 mA.

2] The sum of all I_{OL} , for port D0 - D5 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OL} , for ports B0 - B7 and D6, should not exceed 100 mA.

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

Although each I/O port can source more than the test conditions (3 mA at V_{CC} = 5V, 1.5 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all $\rm I_{OH},$ for all ports, should not exceed 200 mA.

2] The sum of all I_{OH} , for port D0 - D5 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OH} , for ports B0 - B7 and D6, should not exceed 100 mA.

If I_{OH} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for power-down is 2V.

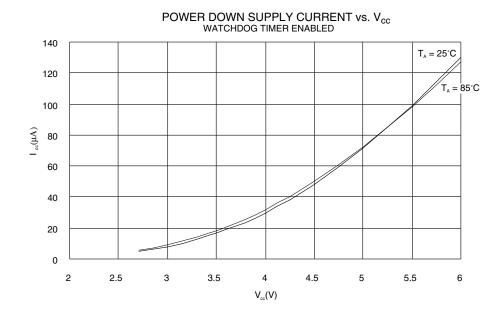
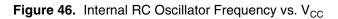
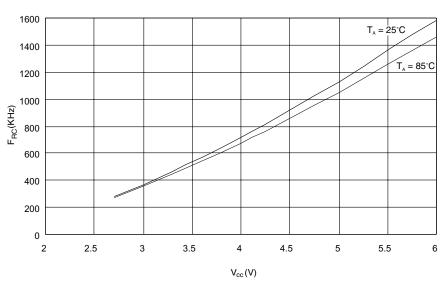




Figure 45. Power-down Supply Current vs. $V_{\text{CC}},$ Watchdog Timer Enabled

INTERNAL RC OSCILLATOR FREQUENCY vs. $\rm V_{cc}$

AT90S1200 Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	Т	Н	S	V	N	Z	С	page 1
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	-	-	-	-	-	-	page 1
\$3A	Reserved								-	
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 16
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 16
\$37	Reserved									
\$36	Reserved								-	
\$35	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 18
\$34	Reserved									
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 2
\$32	TCNT0				Timer/Cou	nter0 (8 Bits)				page 22
\$31	Reserved									
\$30	Reserved									
\$2F	Reserved									
\$2E	Reserved									
\$2D	Reserved									
\$2C	Reserved									
\$2B	Reserved									
\$2A	Reserved									
\$29	Reserved									
\$28	Reserved									
\$27	Reserved									
\$26	Reserved									
\$25	Reserved									
\$24	Reserved									
\$23	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	-	WDE	WDP2	WDP1	WDP0	page 23
\$20	Reserved									
\$1F	Reserved									
\$1E	EEAR	-			EEP	ROM Address R	egister			page 25
\$1D	EEDR				EEPROM	Data Register				page 25
\$1C	EECR	-	-	-	-	-	-	EEWE	EERE	page 25
\$1B	Reserved									
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 29
\$17	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 29
	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 29
\$16										-
\$16 \$15	Reserved									
	Reserved Reserved									
\$15	Reserved									
\$15 \$14 \$13	Reserved Reserved		PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 34
\$15 \$14 \$13 \$12	Reserved	- -	PORTD6 DDD6	PORTD5 DDD5	PORTD4 DDD4	PORTD3 DDD3	PORTD2 DDD2	PORTD1 DDD1	PORTD0 DDD0	
\$15 \$14 \$13 \$12 \$11	Reserved Reserved PORTD DDRD		DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 34
\$15 \$14 \$13 \$12 \$11 \$10	Reserved Reserved PORTD DDRD PIND	-							1	page 34
\$15 \$14 \$13 \$12 \$11 \$10 \$0F	Reserved Reserved PORTD DDRD PIND Reserved	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 34
\$15 \$14 \$13 \$12 \$11 \$10 \$0F 	Reserved Reserved PORTD DDRD PIND Reserved Reserved	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 34
\$15 \$14 \$13 \$12 \$11 \$10 \$0F	Reserved Reserved PORTD DDRD PIND Reserved	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 34 page 34 page 34 page 27

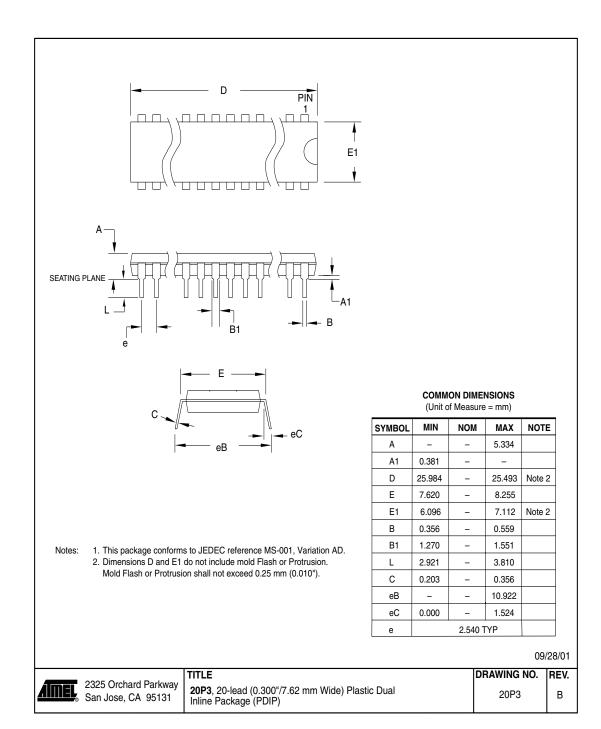
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

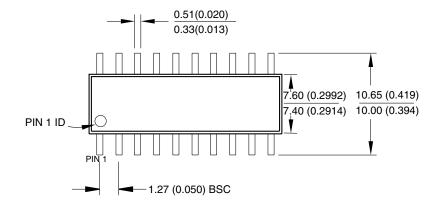
2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

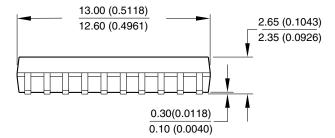
Ordering Information⁽¹⁾

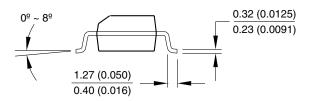
Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S1200-4PC	20P3	Commercial
		AT90S1200-4SC	20S	(0°C to 70°C)
		AT90S1200-4YC	20Y	
		AT90S1200-4PI	20P3	Industrial
		AT90S1200-4SI	20S	(-40°C to 85°C)
		AT90S1200-4YI	20Y	
12	4.0 - 6.0V	AT90S1200-12PC	20P3	Commercial
		AT90S1200-12SC	20S	(0°C to 70°C)
		AT90S1200-12YC	20Y	
		AT90S1200-12PI	20P3	Industrial
		AT90S1200-12SI	20S	(-40°C to 85°C)
		AT90S1200-12YI	20Y	

Note: 1. Order AT90S1200A-XXX for devices with the RCEN Fuse programmed.


	Package Type
20P3	20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
20Y	20-lead, 5.3 mm Wide, Plastic Shrink Small Outline Package (SSOP)


Packaging Information


20P3



20S, 20-lead, Plastic Gull Wing Small Outline (SOIC), 0.300" body. Dimensions in Millineters and (Inches)* JEDEC STANDARD MS-013

20S

*Controlling dimension: Inches

REV. A 04/11/2001

