

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI
Peripherals	POR, WDT
Number of I/O	15
Program Memory Size	1KB (512 x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	·
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s1200a-4pi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

been applied, the Power-on Reset period can be extended. Refer to Figure 15 for a timing example on this.

Figure 15. MCU Start-up, RESET Controlled Externally

External Reset

An External Reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage (V_{RST}) on its positive edge, the delay timer starts the MCU after the Time-out period t_{TOUT} has expired.

Figure 16. External Reset during Operation

Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle duration. On the falling edge of this pulse, the delay timer starts counting the Time-out period t_{TOUT} . Refer to page 23 for details on operation of the Watchdog.

MCU Control Register – MCUCR

The MCU Control Register contains general microcontroller control bits for general MCU control functions.

Bit	7	6	5	4	3	2	1	0	_
\$35	-	-	SE	SM	-	-	ISC01	ISC00	MCUCR
Read/Write	R	R	R/W	R/W	R	R	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and always read as zero.

• Bit 5 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the Sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the Sleep mode unless it is the programmers purpose, it is recommended to set the Sleep Enable SE bit just before the execution of the SLEEP instruction.

• Bit 4 – SM: Sleep Mode

This bit selects between the two available sleep modes. When SM is cleared (zero), Idle mode is selected as sleep mode. When SM is set (one), Power-down mode is selected as sleep mode. For details, refer to the paragraph "Sleep Modes" on the following page.

• Bits 3, 2 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and always read as zero.

• Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask in the GIMSK register is set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 4.

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Reserved
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Table 4. Interrupt 0 Sense Control

The value on the INT0 pin is sampled before detecting edges. If edge interrupt is selected, pulses with a duration longer than one CPU clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an interrupt request as long as the pin is held low.

Sleep Modes	To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruc- tion must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU awakes, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the register file and the I/O memory are unaltered. If a Reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.
Idle Mode	When the SM bit is cleared (zero), the SLEEP instruction makes the MCU enter the Idle mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt system to continue operating. This enables the MCU to wake up from external triggered interrupts as well as internal ones like Timer Overflow interrupt and Watchdog Reset. If wakeup from the Analog Comparator interrupt is not required, the Analog Comparator can be powered down by setting the ACD-bit in the Analog Comparator Control and Status Register (ACSR). This will reduce power consumption in Idle mode. When the MCU wakes up from Idle mode, the CPU starts program execution immediately.
Power-down Mode	When the SM bit is set (one), the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the External Oscillator is stopped while the External Interrupts and the Watchdog (if enabled) continue operating. Only an External Reset, a Watchdog Reset (if enabled), an external level interrupt on INTO can wake up the MCU.
	Note that when a level triggered interrupt is used for wake-up from Power-down, the low level must be held for a time longer than the reset delay time-out period t_{TOUT} . Otherwise, the device will not wake up.

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K cycles	47 ms	15 ms
0	0	1	32K cycles	94 ms	30 ms
0	1	0	64K cycles	0.19 s	60 ms
0	1	1	128K cycles	0.38 s	0.12 s
1	0	0	256K cycles	0.75 s	0,24 s
1	0	1	512K cycles	1.5 s	0.49 s
1	1	0	1,024K cycles	3.0 s	0.97 s
1	1	1	2,048K cycles	6.0 s	1.9 s

Table 6. Watchdog Timer Prescale Select

Note: The frequency of the Watchdog Oscillator is voltage dependent as shown in "Typical Characteristics" on page 51.

The WDR (Watchdog Reset) instruction should always be executed before the Watchdog Timer is enabled. This ensures that the reset period will be in accordance with the Watchdog Timer prescale settings. If the Watchdog Timer is enabled without Reset, the Watchdog Timer may not start to count from zero.

To avoid unintentional MCU resets, the Watchdog Timer should be disabled or reset before changing the Watchdog Timer Prescale Select.

Port B Schematics

Note that all port pins are synchronized. The synchronization latches are, however, not shown in the figures.

Port D

Three I/O memory address locations are allocated for Port D, one each for the Data Register – PORTD (\$12), Data Direction Register – DDRD (\$11), and the Port D Input Pins – PIND (\$10). The Port D Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 10.

Table 10	Port D Pin	Alternate	Functions
		Allemale	i uncuons

Port Pin	Alternate Function
PD2	INT0 (External Interrupt 0 input)
PD4	T0 (Timer/Counter 0 external input)

Port D Data Register - PORTD

	Bit	7	6	5	4	3	2	1	0	
	\$12	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Data Direction Register										
– DDRD	Bit	7	6	5	4	3	2	1	0	
	\$11	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Input Pins Address –										
PIND	Bit	7	6	5	4	3	2	1	0	
	\$10	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	The Port D to the physi	Input Pi ical valu	ns addre: e on eac	ss (PIND h Port D) is not a pin. Whe	register en readii	, and this	address D. the P	s enables ort D Da	s access ta Latch
	is read; and	d when r	eading P	IND, the	logical v	alues pro	esent on	the pins	are read	l.
Port D as General Digital I/O	PDn, gener	ral I/O p n is set (in: The D)DDn bit)n is con	in the D	DRD Re	gister se	elects the	e directio	n of this d (zero)

PDn, general I/O pin: The DDDn bit in the DDRD Register selects the direction of this pin. If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero), PDn is configured as an input pin. If PORTDn is set (one) when DDDn is configured as an input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off, the PORTDn bit has to be cleared (zero) or the pin has to be configured as an output pin. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

AT90S1200

Figure 32. Programming the Flash Waveforms (Continued)

Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to "Programming the Flash" for details on command and address loading):

- 1. A: Load Command "0000 0010".
- 2. B: Load Address High Byte (\$00 \$01).
- 3. C: Load Address Low Byte (\$00 \$FF).
- 4. Set \overline{OE} to "0", and BS to "0". The Flash word low byte can now be read at DATA.
- 5. Set BS to "1". The Flash word high byte can now be read from DATA.
- 6. Set OE to "1".

Programming the EEPROM	The programming algorithm for the EEPROM data memory is as follows (refer to "Pro- gramming the Flash" for details on command, address and data loading):						
	1. A: Load Command "0001 0001".						
	2. C: Load Address Low Byte (\$00 - \$3F).						
	3. D: Load Data Low Byte (\$00 - \$FF).						
	4. E: Write Data Low Byte.						
Reading the EEPROM	The algorithm for reading the EEPROM memory is as follows (refer to "Programming the Flash" for details on command and address loading):						
	1. A: Load Command "0000 0011".						
	2. C: Load Address Low Byte (\$00 - \$3F).						
	3. Set \overline{OE} to "0", and BS to "0". The EEPROM data byte can now be read at DATA.						
	4. Set OE to "1".						
Programming the Fuse Bits	The algorithm for programming the Fuse bits is as follows (refer to "Programming the Flash" for details on command and data loading):						
	1. A: Load Command "0100 0000".						
	2. D: Load Data Low Byte. Bit $n = 0^{\circ}$ programs and bit $n = 1^{\circ}$ erases the Fuse bit.						
	Bit 5 = SPIEN Fuse Bit 0 = RCEN Fuse						
	Bit 7 - 6, 4 - 1 = "1". These bits are reserved and should be left unprogrammed ("1").						
	 Give WR a t_{WLWH_PFB} wide negative pulse to execute the programming; t_{WLWH_PFB} is found in Table 17. Programming the Fuse bits does not generate any activity on the RDY/BSY pin. 						
Programming the Lock Bits	The algorithm for programming the Lock bits is as follows (refer to "Programming the						
	Flash" for details on command and data loading):						
	Flash" for details on command and data loading): 1. A: Load Command "0010 0000".						
	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. 						
	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 						
	 Flash" for details on command and data loading): A: Load Command "0010 0000". D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 						
	 Flash" for details on command and data loading): A: Load Command "0010 0000". D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). E: Write Data Low Byte. 						
	 Flash" for details on command and data loading): A: Load Command "0010 0000". D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 2. Set OE to "0", and BS to "1". The status of Fuse and Lock bits can now be read at DATA ("0" means programmed). 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 2. Set OE to "0", and BS to "1". The status of Fuse and Lock bits can now be read at DATA ("0" means programmed). Bit 7 = Lock Bit1 Dit 0 = Lock Bit1 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 2. Set OE to "0", and BS to "1". The status of Fuse and Lock bits can now be read at DATA ("0" means programmed). Bit 7 = Lock Bit1 Bit 6 = Lock Bit2 Bit 5 = SPIEN Fuse 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 2. Set OE to "0", and BS to "1". The status of Fuse and Lock bits can now be read at DATA ("0" means programmed). Bit 7 = Lock Bit1 Bit 6 = Lock Bit2 Bit 5 = SPIEN Fuse Bit 0 = RCEN Fuse 						
Reading the Fuse and Lock Bits	 Flash" for details on command and data loading): 1. A: Load Command "0010 0000". 2. D: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock Bit2 Bit 1 = Lock Bit1 Bit 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 3. E: Write Data Low Byte. The Lock bits can only be cleared by executing Chip Erase. The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" on page 39 for details on command loading): 1. A: Load Command "0000 0100". 2. Set OE to "0", and BS to "1". The status of Fuse and Lock bits can now be read at DATA ("0" means programmed). Bit 7 = Lock Bit1 Bit 6 = Lock Bit2 Bit 5 = SPIEN Fuse Bit 0 = RCEN Fuse 3. Set OE to "1". 						

Observe especially that BS needs to be set to "1".

Figure 35. Serial Programming Waveforms

		Instructio	on Format		
Instruction	Byte 1	Byte 2	Byte 3	Byte4	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	XXXX XXXX	Enable serial programming while RESET is low.
Chip Erase	1010 1100	100x xxxx	XXXX XXXX	XXXX XXXX	Chip erase both Flash and EEPROM memory arrays.
Read Program Memory	0010 H 000	0000 000 a	bbbb bbbb	0000 0000	Read H (high or low) byte o from program memory at word address a : b .
Write Program Memory	0100 H 000	0000 000 a	bbbb bbbb	iiii iiii	Write H (high or low) byte i to program memory at word address a : b .
Read EEPROM Memory	1010 0000	0000 0000	00 bb bbbb	0000 0000	Read data o from EEPROM memory at address b .
Write EEPROM Memory	1100 0000	0000 0000	00 bb bbbb	iiii iiii	Write data i to EEPROM memory at address b .
Write Lock Bits	1010 1100	1111 1 21 1	xxxx xxxx	xxxx xxxx	Write Lock bits. Set bits 1 , 2 = "0" to program Lock bits.
Read Signature Byte	0011 0000	xxxx xxxx	xxxx xx bb	0000 0000	Read signature byte o from address b . ⁽¹⁾

Note: **a** = address high bits, **b** = address low bits, **H** = 0 – Low byte, 1 – High byte, **o** = data out, **i** = data in, x = don't care, 1 = Lock Bit 1, 2 = Lock Bit 2

Note: 1. The signature bytes are not readable in lock mode 3 (i.e., both Lock bits programmed).

Serial Programming Characteristics

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 2.7 - 4.0V$)	0		4.0	MHz
t _{CLCL}	Oscillator Period (V _{CC} = 2.7 - 4.0V)	250.0			ns
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 4.0 - 6.0V$)	0		12.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 4.0 - 6.0V$)	83.3			ns
t _{SHSL}	SCK Pulse Width High	4.0 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	t _{CLCL}			ns
t _{ovsH}	MOSI Setup to SCK High	1.25 t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2.5 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10.0	16.0	32.0	ns

Table 21. Minimum Wait Delay after the Chip Erase Instruction

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_ERASE}	18 ms	14 ms	12 ms	8 ms

Table 22. Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol	3.2V	3.6V	4.0V	5.0V
t _{WD_PROG}	9 ms	7 ms	6 ms	4 ms

Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as $C_L \bullet V_{CC} \bullet f$ where C_L = load capacitance, V_{CC} = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Figure 41. Idle Supply Current vs. Frequency

Figure 47. Analog Comparator Current vs. V_{CC}

Note: Analog comparator offset voltage is measured as absolute offset.

Figure 49. Analog Comparator Offset Voltage vs. Common Mode Voltage

Note: Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 51. Pull-up Resistor Current vs. Input Voltage

Figure 52. Pull-up Resistor Current vs. Input Voltage

AT90S1200 Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	Т	Н	S	V	N	Z	С	page 11
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	-	-	-	-	-	-	page 15
\$3A	Reserved		•		•	•	•			
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 16
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 16
\$37	Reserved		•		•	•	•			
\$36	Reserved									
\$35	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 18
\$34	Reserved		•		•		•			
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 21
\$32	TCNT0		•	•	Timer/Cou	nter0 (8 Bits)		•	•	page 22
\$31	Reserved									
\$30	Reserved									
\$2F	Reserved									
\$2E	Reserved									
\$2D	Reserved									
\$2C	Reserved									
\$2B	Reserved									
\$2A	Reserved									
\$29	Reserved									
\$28	Reserved									
\$27	Reserved									
\$26	Reserved									
\$25	Reserved									
\$24	Reserved									
\$23	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	-	WDE	WDP2	WDP1	WDP0	page 23
\$20	Reserved		•		•		•	•		
\$1F	Reserved									
\$1E	EEAR	-			EEP	ROM Address Re	egister			page 25
\$1D	EEDR				EEPROM	Data Register	•			page 25
\$1C	EECR	-	-	-	-	-	-	EEWE	EERE	page 25
\$1B	Reserved							-		
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 29
\$17	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 29
\$16	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 29
\$15	Reserved									
\$14	Reserved									
\$13	Reserved									
\$12	PORTD	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 34
\$11	DDRD	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 34
\$10	PIND	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 34
\$0F	Reserved									
	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	-	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 27
	Reserved									
\$00	Reserved									

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

AT90S1200

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks			
	ND LOGIC INST	BUCTIONS		1				
	Rd Br	Add Two Begisters	Bd ← Bd + Br	ZCNVH	1			
ADC	Rd, Br	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z.C.N.V.H	1			
SUB	Rd, Rr	Subtract Two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1			
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1			
SBC	Rd, Rr	Subtract with Carry Two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1			
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1			
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1			
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1			
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1			
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd v K$	Z,N,V	1			
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1			
COM	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	1			
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1			
SBR	Rd, K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1			
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1			
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1			
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1			
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1			
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1			
SER	Rd	Set Register	Rd ← \$FF	None	1			
BRANCH INST	RUCTIONS							
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2			
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3			
RET		Subroutine Return	$PC \leftarrow STACK$	None	4			
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4			
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2			
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1			
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1			
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z,N,V,C,H	1			
SBRC	Rr, b	Skip if Bit in Register Cleared	If $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2			
SBRS	Rr, b	Skip if Bit in Register is Set	If $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2			
SBIC	P, D	Skip II Bit in I/O Register Cleared	$ (P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2			
	P, D	Skip II Bit In I/O Register is Set	$ (P(D) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2			
	S, K	Branch if Status Flag Cloared	$II (SREG(s) = I) III (III FC \leftarrow FC + K + I)$	None	1/2			
BREO	s, k	Branch if Equal	if $(7-1)$ then PC \leftarrow PC + k + 1	None	1/2			
BBNE	k	Branch if Not Equal	if $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2			
BBCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRLT	k	Branch if Less than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2			
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRTS	k	Branch if T-Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRTC	k	Branch if T-Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2			
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2			
BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then PC \leftarrow PC + k + 1	None	1/2			
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2			
DATA TRANSF	DATA TRANSFER INSTRUCTIONS							
LD	Rd, Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2			
ST	Z, Rr	Store Register Indirect	$(\angle) \leftarrow \operatorname{Rr}$	None	2			
MOV	Rd, Kr	Move between Registers		None	1			
	Ha, K			None	1			
	Ka, P			ivone				
	P, Hr	Ουι Ροπ	r ← Hr	ivone	I			

Ordering Information⁽¹⁾

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S1200-4PC	20P3	Commercial
		AT90S1200-4SC	20S	(0°C to 70°C)
		AT90S1200-4YC	20Y	
		AT90S1200-4PI	20P3	Industrial
		AT90S1200-4SI	20S	(-40°C to 85°C)
		AT90S1200-4YI	20Y	
12	4.0 - 6.0V	AT90S1200-12PC	20P3	Commercial
		AT90S1200-12SC	20S	(0°C to 70°C)
		AT90S1200-12YC	20Y	
		AT90S1200-12PI	20P3	Industrial
		AT90S1200-12SI	20S	(-40°C to 85°C)
		AT90S1200-12YI	20Y	

Note: 1. Order AT90S1200A-XXX for devices with the RCEN Fuse programmed.

Package Type				
20P3	20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
20S	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)			
20Y	20-lead, 5.3 mm Wide, Plastic Shrink Small Outline Package (SSOP)			

20Y, 20-lead Plastic Shrink Small Outline (SSOP), 5.3mm body Width. Dimensions in Millimeters and (inches)*

*Controlling dimension: millimeters

REV. A 04/11/2001

20Y

Electrical Characteristics	48
Absolute Maximum Ratings*	. 48
DC Characteristics	. 48
External Clock Drive Waveforms	. 50
External Clock Drive	. 50
Typical Characteristics	51
AT90S1200 Register Summary	62
Instruction Set Summary	63
Ordering Information ⁽¹⁾	65
Packaging Information	66
20P3	. 66
20S	. 67
20Y	. 68
Table of Contents	i

ii