

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI
Peripherals	POR, WDT
Number of I/O	15
Program Memory Size	1KB (512 x 16)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	-
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s1200a-4yi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Description

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with the 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The AT90S1200 Block Diagram

The architecture supports high-level languages efficiently as well as extremely dense assembler code programs. The AT90S1200 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers, internal and external interrupts, programmable watchdog timer with internal oscillator, an SPI serial port for program downloading and two software selectable power-saving modes. The Idle Mode stops the CPU while allow-

AT90S1200

EEPROM Data Memory The AT90S1200 contains 64 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described on page 25 specifying the EEPROM address register, the EEPROM data register, and the EEPROM control register. For the SPI data download-ing, see page 44 for a detailed description.

Instruction ExecutionThis section describes the general access timing concepts for instruction execution and
internal memory access.

The AVR CPU is driven by the System Clock \emptyset , directly generated from the external clock crystal for the chip. No internal clock division is used.

Figure 11 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 11. The Parallel Instruction Fetches and Instruction Executions

Figure 12 shows the internal timing concept for the register file. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register.

I/O Memory

The I/O space definition of the AT90S1200 is shown in the following table.

Table 1.	The AT90S1200 I/O Space	
----------	-------------------------	--

Address Hex	Name	Function			
\$3F	SREG	Status REGister			
\$3B	GIMSK	General Interrupt MaSK register			
\$39	TIMSK	Timer/Counter Interrupt MaSK register			
\$38	TIFR	Timer/Counter Interrupt Flag register			
\$35	MCUCR	MCU general Control Register			
\$33	TCCR0	Timer/Counter0 Control Register			
\$32	TCNT0	Timer/Counter0 (8-bit)			
\$21	WDTCR Watchdog Timer Control Register				
\$1E	EEAR	R EEPROM Address Register			
\$1D	EEDR	EEPROM Data Register			
\$1C	EECR	EEPROM Control Register			
\$18	PORTB	Data Register, Port B			
\$17	DDRB	Data Direction Register, Port B			
\$16	PINB	Input Pins, Port B			
\$12	PORTD	D Data Register, Port D			
\$11	DDRD	Data Direction Register, Port D			
\$10	PIND	Input Pins, Port D			
\$08	ACSR	Analog Comparator Control and Status Register			

Note: Reserved and unused locations are not shown in the table.

All AT90S1200 I/Os and peripherals are placed in the I/O space. The different I/O locations are accessed by the IN and OUT instructions transferring data between the 32 general purpose working registers and the I/O space. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set chapter for more details.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The different I/O and peripherals control registers are explained in the following sections.

Status Register – SREG

The AVR status register (SREG) at I/O space location \$3F is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable bit is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source and destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the register file by the BLD instruction.

• Bit 5 – H: Half-carry Flag

The half-carry flag H indicates a half carry in some arithmetic operations. See the Instruction Set description for detailed information.

• Bit 4 – S: Sign Bit, S = N⊕V

The S-bit is always an exclusive or between the negative flag N and the two's complement overflow flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two's Complement Overflow Flag

The two's complement overflow flag V supports two's complement arithmetics. See the Instruction Set description for detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result after the different arithmetic and logic operations. See the Instruction Set description for detailed information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result after the different arithmetic and logic operations. See the Instruction Set description for detailed information.

• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set description for detailed information.

Note that the status register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt routine. This must be handled by software.

been applied, the Power-on Reset period can be extended. Refer to Figure 15 for a timing example on this.

Figure 15. MCU Start-up, RESET Controlled Externally

External Reset

An External Reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage (V_{RST}) on its positive edge, the delay timer starts the MCU after the Time-out period t_{TOUT} has expired.

Figure 16. External Reset during Operation

Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle duration. On the falling edge of this pulse, the delay timer starts counting the Time-out period t_{TOUT} . Refer to page 23 for details on operation of the Watchdog.

MCU Control Register – MCUCR

The MCU Control Register contains general microcontroller control bits for general MCU control functions.

Bit	7	6	5	4	3	2	1	0	_
\$35	-	-	SE	SM	-	-	ISC01	ISC00	MCUCR
Read/Write	R	R	R/W	R/W	R	R	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and always read as zero.

• Bit 5 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the Sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the Sleep mode unless it is the programmers purpose, it is recommended to set the Sleep Enable SE bit just before the execution of the SLEEP instruction.

• Bit 4 – SM: Sleep Mode

This bit selects between the two available sleep modes. When SM is cleared (zero), Idle mode is selected as sleep mode. When SM is set (one), Power-down mode is selected as sleep mode. For details, refer to the paragraph "Sleep Modes" on the following page.

• Bits 3, 2 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and always read as zero.

• Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask in the GIMSK register is set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 4.

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Reserved
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Table 4. Interrupt 0 Sense Control

The value on the INT0 pin is sampled before detecting edges. If edge interrupt is selected, pulses with a duration longer than one CPU clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an interrupt request as long as the pin is held low.

EEPROM Read/Write Access

The EEPROM access registers are accessible in the I/O space.

The write access time is in the range of 2.5 - 4 ms, depending on the V_{CC} voltages. A self-timing function, however, lets the user software detect when the next byte can be written. If the user code contains code that writes the EEPROM, some precaution must be taken. In heavily filtered power supplies, V_{CC} is likely to rise or fall slowly on Power-up/down. This causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used. CPU operation under these conditions is likely cause the program counter to perform unintentional jumps and eventually execute the EEPROM write code. To secure EEPROM integrity, the user is advised to use an external under-voltage reset circuit in this case.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to "EEPROM Control Register – EECR" on page 25 for details on this.

When the EEPROM is read or written, the CPU is halted for two clock cycles before the next instruction is executed.

EEPROM Address Register – EEAR

ARO EEAR	R
W	
)	
/	ARO EEAF /W 0

• Bit 7, 6 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and will always read as zero.

Bits 5..0 – EEAR5..0: EEPROM Address

The EEPROM Address Register (EEAR5..0) specifies the EEPROM address in the 64byte EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 63.

EEPROM Data Register – EEDR

• Bits 7..0 – EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM in the address given by the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address given by EEAR.

EEPROM Control Register – EECR

Bit	7	6	5	4	3	2	1	0	
\$1C	-	-	-	-	-	-	EEWE	EERE	EECR
Read/Write	R	R	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the AT90S1200 and will always be read as zero.

Analog Comparator

The Analog Comparator compares the input values on the positive input PB0 (AIN0) and the negative input PB1 (AIN1). When the voltage on the positive input PB0 (AIN0) is higher than the voltage on the negative input PB1 (AIN1), the Analog Comparator Output (ACO) is set (one). The comparator's output can be set to trigger the Analog Comparator interrupt. The user can select interrupt triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown in Figure 21.

Analog Comparator Control and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is set (one), the power to the Analog Comparator is switched off. This bit can be set at any time to turn off the analog comparator. This will reduce power consumption in Active and Idle modes. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise, an interrupt can occur when the bit is changed.

• Bit 6 – Res: Reserved Bit

This bit is a reserved bit in the AT90S1200 and will always read as zero.

• Bit 5 – ACO: Analog Comparator Output

ACO is directly connected to the comparator output.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set (one) when a comparator output event triggers the interrupt mode defined by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set (one) and the I-bit in SREG is set (one). ACI is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag. Observe however, that if another bit in this register is modified using the SBI or CBI instruction, ACI will be cleared if it has become set before the operation.

Port B as General Digital I/O All eight pins in Port B have equal functionality when used as digital I/O pins.

PBn, General I/O pin: The DDBn bit in the DDRB Register selects the direction of this pin, if DDBn is set (one), PBn is configured as an output pin. If DDBn is cleared (zero), PBn is configured as an input pin. If PORTBn is set (one) and the pin is configured as an input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off, PORTBn has to be cleared (zero) or the pin has to be configured as an output pin. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active.

DDBn	PORTBn	I/O	Pull-up	Comment
0	0	Input	No	Tri-state (High-Z)
0	1	Input	Yes	PBn will source current if ext. pulled low.
1	0	Output	No	Push-pull Zero Output
1	1	Output	No	Push-pull One Output

Table 9. DDBn Effect on Port B Pins

Note: n: 7,6...0, pin number.

Alternate Functions of Port B

The alternate pin functions of Port B are:

• SCK – Port B, Bit 7

SCK, Clock Input pin for memory up/downloading.

• MISO – Port B, Bit 6

MISO, Data Output pin for memory uploading.

• MOSI – Port B, Bit 5

MOSI, Data Input pin for memory downloading.

• AIN1 – Port B, Bit 1

AIN1, Analog Comparator Negative Input. When configured as an input (DDB1 is cleared [zero]) and with the internal MOS pull-up resistor switched off (PB1 is cleared [zero]), this pin also serves as the negative input of the On-chip Analog Comparator.

• AIN0 – Port B, Bit 0

AINO, Analog Comparator Positive Input. When configured as an input (DDB0 is cleared [zero]) and with the internal MOS pull-up resistor switched off (PB0 is cleared [zero]), this pin also serves as the positive input of the On-chip Analog Comparator.

Figure 23. Port B Schematic Diagram (Pins PB2, PB3, and PB4)

Figure 24. Port B Schematic Diagram (Pin PB5)

Port D

Three I/O memory address locations are allocated for Port D, one each for the Data Register – PORTD (\$12), Data Direction Register – DDRD (\$11), and the Port D Input Pins – PIND (\$10). The Port D Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 10.

Table 10	Port D Pin	Alternate	Functions
		Allemale	i unctions

Port Pin	Alternate Function
PD2	INT0 (External Interrupt 0 input)
PD4	T0 (Timer/Counter 0 external input)

Port D Data Register - PORTD

	Bit	7	6	5	4	3	2	1	0	
	\$12	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Data Direction Register										
– DDRD	Bit	7	6	5	4	3	2	1	0	
	\$11	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial Value	0	0	0	0	0	0	0	0	
Port D Input Pins Address –										
PIND	Bit	7	6	5	4	3	2	1	0	
	\$10	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	The Port D to the physi	Input Pi ical valu	ns addre: e on eac	ss (PIND h Port D) is not a pin. Whe	register en readii	, and this	address D. the P	s enables ort D Da	s access ta Latch
	is read; and	d when r	eading P	IND, the	logical v	alues pro	esent on	the pins	are read	l.
Port D as General Digital I/O	PDn, gener	ral I/O p n is set (in: The D)DDn bit)n is con	in the D	DRD Re	gister se	elects the	e directio	n of this d (zero)

PDn, general I/O pin: The DDDn bit in the DDRD Register selects the direction of this pin. If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero), PDn is configured as an input pin. If PORTDn is set (one) when DDDn is configured as an input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off, the PORTDn bit has to be cleared (zero) or the pin has to be configured as an output pin. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Memory Programming

Program and Data Memory Lock Bits

The AT90S1200 MCU provides two Lock bits that can be left unprogrammed ("1") or can be programmed ("0") to obtain the additional features listed in Table 12. The Lock bits can only be erased with the Chip Erase command.

Table 12. Lock Bit Protection Modes

Memory Lock Bits		
LB1	LB2	Protection Type
1	1	No memory lock features enabled.
0	1	Further programming of the Flash and EEPROM is disabled. ⁽¹⁾
0	0	Same as mode 2, and verify is also disabled.
	ry Lock LB1 1 0 0	LB1 LB2 1 1 0 1 0 0

Note: 1. In Parallel mode, further programming of the Fuse bits are also disabled. Program the Fuse bits before programming the Lock bits.

Fuse Bits The AT90S1200 has two Fuse bits: SPIEN and RCEN.

- When the SPIEN Fuse bit is programmed ("0"), Serial Program Downloading is enabled. Default value is programmed ("0").
- When the RCEN Fuse bit is programmed ("0"), MCU clocking from the Internal RC Oscillator is selected. Default value is erased ("1"). Parts with this bit pre-programmed ("0") can be delivered on demand.
- The Fuse bits are not accessible in Serial Programming mode. The status of the Fuse bits is not affected by Chip Erase.

Signature Bytes All Atmel microcontrollers have a 3-byte signature code that identifies the device. This code can be read in both Serial and Parallel modes. The three bytes reside in a separate address space.

For the AT90S1200 they are:

- 1. \$00: \$1E (indicates manufactured by Atmel)
- 2. \$01: \$90 (indicates 1 Kb Flash memory)
- 3. \$02: \$01 (indicates AT90S1200 device when \$01 is \$90)
- Note: When both Lock bits are programmed (lock mode 3), the signature bytes cannot be read in Serial mode. Reading the signature bytes will return: \$00, \$01 and \$02.

Programming the Flash
and EEPROMAtmel's AT90S1200 offers 1K byte of in-System Reprogrammable Flash program mem-
ory and 64 bytes of EEPROM data memory.

The AT90S1200 is normally shipped with the On-chip Flash program memory and EEPROM data memory arrays in the erased state (i.e., contents = \$FF) and ready to be programmed. This device supports a High-voltage (12V) Parallel Programming mode and a Low-voltage Serial Programming mode. The +12V is used for programming enable only, and no current of significance is drawn by this pin. The Serial Programming mode provides a convenient way to download program and data into the AT90S1200 inside the user's system.

The program and data memory arrays on the AT90S1200 are programmed byte-by-byte in either programming mode. For the EEPROM, an auto-erase cycle is provided within

the self-timed write instruction in the Serial Programming mode. During programming, the supply voltage must be in accordance with Table 13.

 Table 13.
 Supply Voltage during Programming

Part	Serial Programming	Parallel Programming		
AT90S1200	2.7 - 6.0V	4.5 - 5.5V		

Parallel Programming This section describes how to parallel program and verify Flash program memory, EEPROM data memory, Lock bits and Fuse bits in the AT90S1200.

Figure 30. Parallel Programming

Signal Names

In this section, some pins of the AT90S1200 are referenced by signal names describing their function during parallel programming rather than their pin names, see Figure 30 and Table 14. Pins not described in Table 14 are referenced by pin names.

The XA1/XA0 pins determines the action executed when the XTAL1 pin is given a positive pulse. The coding is shown in Table 15.

When pulsing \overline{WR} or \overline{OE} , the command loaded determines the action executed. The command is a byte where the different bits are assigned functions as shown in Table 16.

Table 14. Pin Name Mapping

Signal Name in Programming Mode	Pin Name	I/O	Function
RDY/BSY	PD1	0	0: Device is busy programming, 1: Device is ready for new command
ŌĒ	PD2	Ι	Output Enable (Active low)
WR	PD3	I	Write Pulse (Active low)
BS	PD4	Ι	Byte Select ("0" selects low byte, "1" selects high byte)
XA0	PD5	I	XTAL Action Bit 0
XA1	PD6	Ι	XTAL Action Bit 1
DATA	PB0-7	I/O	Bi-directional Data Bus (Output when $\overline{\text{OE}}$ is low)

Serial Downloading

Both the program and data memory arrays can be programmed using the SPI bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output) (see Figure 34). After RESET is set low, the Programming Enable instruction needs to be executed first before program/erase instructions can be executed.

Figure 34. Serial Programming and Verify

Note: If the device is clocked by the Internal Oscillator, it is no need to connect a clock source to the XTAL1 pin

For the EEPROM, an auto-erase cycle is provided within the self-timed write instruction and there is no need to first execute the Chip Erase instruction. The Chip Erase instruction turns the content of every memory location in both the Program and EEPROM arrays into \$FF.

The program and EEPROM memory arrays have separate address spaces: \$0000 to \$01FF for Flash program memory and \$000 to \$03F for EEPROM data memory.

Either an external system clock is supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The minimum low and high periods for the Serial Clock (SCK) input are defined as follows:

Low: > 1 XTAL1 clock cycle

High: > 4 XTAL1 clock cycles

When writing serial data to the AT90S1200, data is clocked on the rising edge of SCK.

When reading data from the AT90S1200, data is clocked on the falling edge of SCK. See Figure 35 and Table 20 for timing details.

To program and verify the AT90S1200 in the Serial Programming mode, the following sequence is recommended (See 4-byte instruction formats in Table 17):

1. Power-up sequence:

Apply power between V_{CC} and GND while RESET and SCK are set to "0". If a crystal is not connected across pins XTAL1 and XTAL2 or the device is not running from the Internal RC Oscillator, apply a clock signal to the XTAL1 pin. If the programmer can not guarantee that SCK is held low during power-up, RESET must be given a positive pulse after SCK has been set to "0".

2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to the MOSI (PB5) pin.

Serial Programming Algorithm

DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$			40.0	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50.0		50.0	nA
t _{ACPD}	Analog Comparator Propagation Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750.0 500.0		ns

 $T_A = -40 \times C$ to $85 \times C$, $V_{CC} = 2.7V$ to 6.0V (unless otherwise noted) (Continued)

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low.

2. "Min" means the lowest value where the pin is guaranteed to be read as high.

Although each I/O port can sink more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all I_{OL} , for all ports, should not exceed 200 mA.

2] The sum of all I_{OL} , for port D0 - D5 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OL} , for ports B0 - B7 and D6, should not exceed 100 mA.

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

Although each I/O port can source more than the test conditions (3 mA at V_{CC} = 5V, 1.5 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all $\rm I_{OH},$ for all ports, should not exceed 200 mA.

2] The sum of all I_{OH} , for port D0 - D5 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OH} , for ports B0 - B7 and D6, should not exceed 100 mA.

If I_{OH} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for power-down is 2V.

External Clock Drive Waveforms

Figure 37. External Clock Drive

External Clock Drive

Table 23. External Clock Drive

		V _{CC} = 2.7V to 4.0V		V _{CC} = 4.0V to 6.0V		
Symbol	Parameter	Min	Max	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency	0	4.0	0	12.0	MHz
t _{CLCL}	Clock Period	250.0		83.3		ns
t _{CHCX}	High Time	100.0		33.3		ns
t _{CLCX}	Low Time	100.0		33.3		ns
t _{CLCH}	Rise Time		1.6		0.5	μs
t _{CHCL}	Fall Time		1.6		0.5	μs

Figure 39. Active Supply Current vs. V_{CC}

Figure 40. Active Supply Current vs. V_{CC}, Device Clocked by Internal Oscillator

Note: Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 51. Pull-up Resistor Current vs. Input Voltage

Figure 52. Pull-up Resistor Current vs. Input Voltage

20S, 20-lead, Plastic Gull Wing Small Outline (SOIC), 0.300" body. Dimensions in Millineters and (Inches)* JEDEC STANDARD MS-013

20S

*Controlling dimension: Inches

REV. A 04/11/2001

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Microcontrollers Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Atmel Smart Card ICs Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 **RF**/Automotive

Atmel Heilbronn Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

