

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detano	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	444
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-1fg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³		
SSTL3 (I)	30	3.3	26.02	114.87		
SSTL3 (II)	30	3.3	42.21	131.76		
Differential	•					
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62		
LVPECL	-	3.3	19.42	168.02		
Notes:	•		1	1		

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Specific Dynamic Contributions (µW/MHz)							
Parameter	Definition	A3PE600	A3PE1500	A3PE3000					
PAC1	Clock contribution of a Global Rib	12.77	16.21	19.7					
PAC2	Clock contribution of a Global Spine	1.85	3.06	4.16					
PAC3	Clock contribution of a VersaTile row		0.88						
PAC4	Clock contribution of a VersaTile used as a sequential module	0.12							
PAC5	First contribution of a VersaTile used as a sequential 0.07 module								
PAC6	Second contribution of a VersaTile used as a sequential module	0.29							
PAC7	Contribution of a VersaTile used as a combinatorial module	0.29							
PAC8	Average contribution of a routing net		0.70						
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-8 on page 2-6.							
PAC10	Contribution of an I/O output pin (standard-dependent)	See	Table 2-9 on pag	ge 2-7					
PAC11	Average contribution of a RAM block during a read operation		25.00						
PAC12	Average contribution of a RAM block during a write operation		30.00						
PAC13	Static PLL contribution	2.55 mW							
PAC14	Dynamic contribution for PLL	2.60							

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

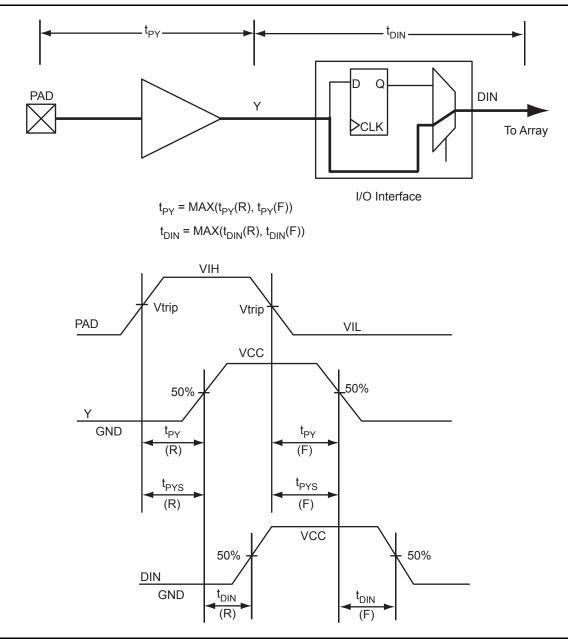


Figure 2-3 • Input Buffer Timing Model and Delays (example)

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)	
--	------------	--

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}(\Omega)^3$	
3.3 V GTL+	35 mA	12	-	
2.5 V GTL+	33 mA	15	-	
HSTL (I)	8 mA	50	50	
HSTL (II)	15 mA ⁴	25	25	
SSTL2 (I)	15 mA	27	31	
SSTL2 (II)	18 mA	13	15	
SSTL3 (I)	14 mA	44	69	
SSTL3 (II)	21 mA	18	32	

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

		CPULL-UP) ¹ (Ω)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

static Microsemi.

ProASIC3E DC and Switching Characteristics

Single-Ended I/O Characteristics

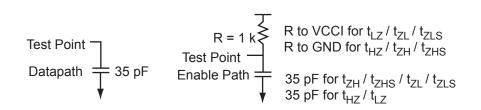
3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

3.3 V LVTTL / 3.3 V LVCMOS	VIL		VIH		VOL	vон	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Table 2-25 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

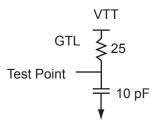
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-48 • Minimum and Maximum DC Input and Output Levels


3.3 V GTL		VIL V			VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-12 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

Timing Characteristics

Table 2-50 • 3.3 V GTL

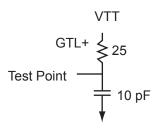
```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.51	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.45	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.


Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

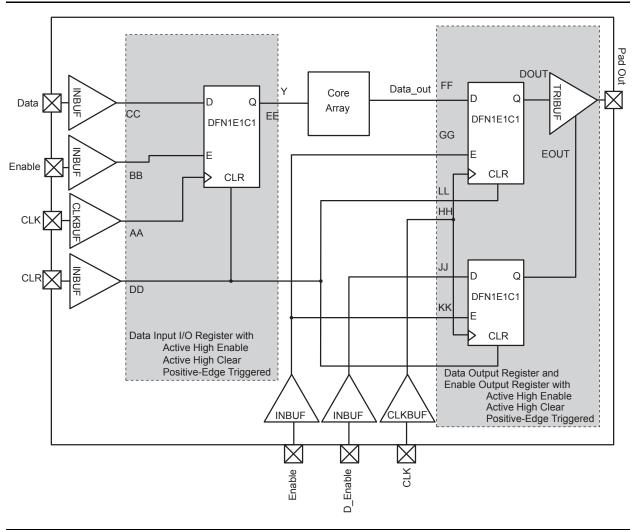
Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.


Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-85 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{онр}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{oclr2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
toesud	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
toesue	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-26 on page 2-55 for more information.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

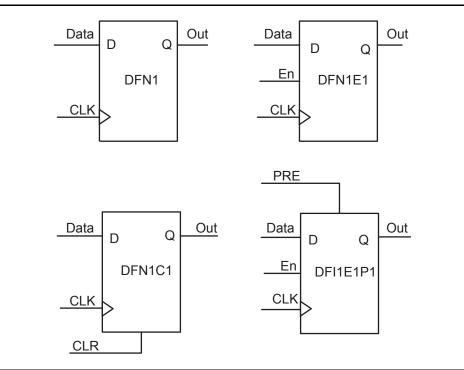


Figure 2-36 • Sample of Sequential Cells

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Inp	out Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Ou	tput Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programm	able Delay Blocks ^{1, 2}		160 ³		ps
Serial Clock (SCLK) for Dynam	ic PLL ⁴			125	MHz
Number of Programmable Valu Programmable Delay Block	es in Each			32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Per	od Jitter F _{CCC_OUT}	Max	<pre> Peak-to-Pe </pre>	ak Period Jitter	
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}		0.6		5.56	ns
Delay Range in Block: Program	imable Delay 2 ^{1,2}	0.025		5.56	ns
Delay Range in Block: Fixed D	elay ^{1,4}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings

2. $T_J = 25^{\circ}C$, VCC = 1.5 V.

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

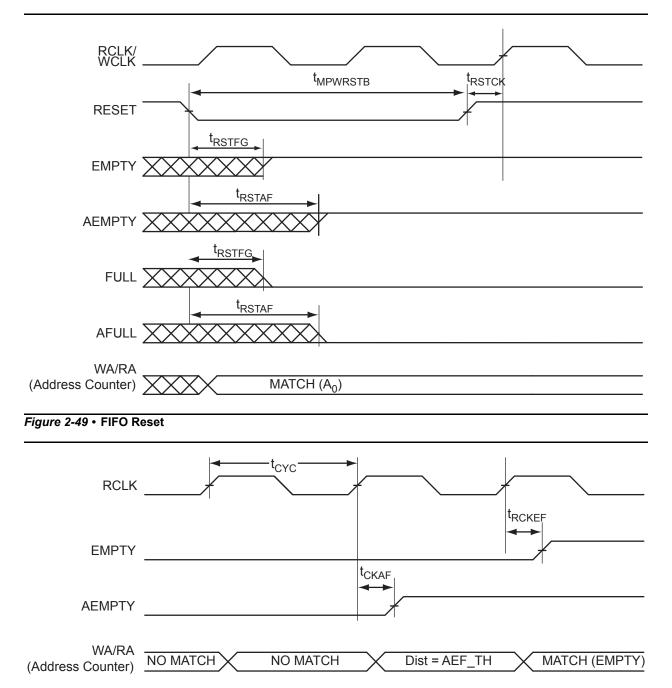
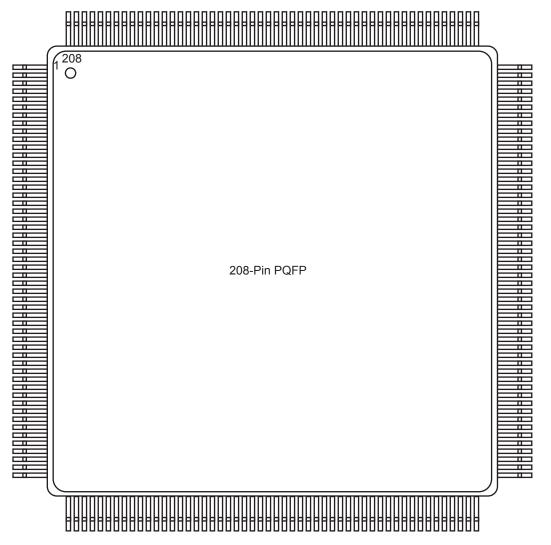



Figure 2-50 • FIFO EMPTY Flag and AEMPTY Flag Assertion

4 – Package Pin Assignments

PQ208

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG484		FG484		FG484
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
C21	NC	E13	IO41NDB1V1	G5	IO217PDB7V3
C22	VCCIB2	E14	IO41PDB1V1	G6	GAC2/IO219PDB7V3
D1	NC	E15	GBC1/IO55PDB1V3	G7	VCOMPLA
D2	NC	E16	GBB0/IO56NDB1V3	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO19NDB0V2
D4	GND	E18	GBA2/IO58PDB2V0	G10	IO19PDB0V2
D5	GAA0/IO00NDB0V0	E19	IO63NDB2V0	G11	IO25PDB0V3
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO33PDB1V0
D7	GAB0/IO01NDB0V0	E21	IO69NDB2V1	G13	IO39PDB1V0
D8	IO09PDB0V1	E22	NC	G14	IO45NDB1V1
D9	IO13PDB0V1	F1	IO218NPB7V3	G15	GNDQ
D10	IO21PDB0V2	F2	IO216NDB7V3	G16	VCOMPLB
D11	IO31NDB0V3	F3	IO216PDB7V3	G17	GBB2/IO59PDB2V0
D12	IO37NDB1V0	F4	IO220NDB7V3	G18	IO62PDB2V0
D13	IO37PDB1V0	F5	IO221NDB7V3	G19	IO62NDB2V0
D14	IO49NDB1V2	F6	VMV7	G20	IO71PDB2V2
D15	IO49PDB1V2	F7	VCCPLA	G21	IO71NDB2V2
D16	GBB1/IO56PDB1V3	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO57NDB1V3	F9	GAC1/IO02PDB0V0	H1	IO209PSB7V2
D18	GBA1/IO57PDB1V3	F10	IO23NDB0V2	H2	NC
D19	GND	F11	IO23PDB0V2	H3	VCC
D20	NC	F12	IO35PDB1V0	H4	IO214NDB7V3
D21	IO69PDB2V1	F13	IO39NDB1V0	H5	IO217NDB7V3
D22	NC	F14	IO45PDB1V1	H6	IO219NDB7V3
E1	NC	F15	GBC0/IO55NDB1V3	H7	IO215PDB7V3
E2	IO218PPB7V3	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO220PDB7V3	F18	IO58NDB2V0	H10	VCCIB0
E5	GAA2/IO221PDB7V3	F19	IO63PDB2V0	H11	IO25NDB0V3
E6	GNDQ	F20	NC	H12	IO33NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO09NDB0V1	F22	NC	H14	VCCIB1
E9	IO13NDB0V1	G1	IO211NDB7V2	H15	VMV1
E10	IO21NDB0V2	G2	IO211PDB7V2	H16	GBC2/IO60PDB2V0
E11	IO31PDB0V3	G3	NC	H17	IO59NDB2V0
E12	IO35NDB1V0	G4	IO214PDB7V3	H18	IO67NDB2V1

	FG484	
Pin Number	A3PE3000 Function	Pin Numb
V15	IO155NDB4V0	¥7
V16	GDB2/IO155PDB4V0	Y8
V17	TDI	Y9
V18	GNDQ	Y10
V19	TDO	Y11
V20	GND	Y12
V21	IO146PDB3V4	Y13
V22	IO142NDB3V3	Y14
W1	IO239NDB6V0	Y15
W2	IO237PDB6V0	Y16
W3	IO230PSB5V4	Y17
W4	GND	Y18
W5	IO232NDB5V4	Y19
W6	GEB2/IO232PDB5V4	Y20
W7	IO231NDB5V4	Y21
W8	IO214NDB5V2	Y22
W9	IO214PDB5V2	
W10	IO200NDB5V0	
W11	IO192NDB4V4	
W12	IO184NDB4V3	
W13	IO184PDB4V3	
W14	IO156NDB4V0	
W15	GDC2/IO156PDB4V0	
W16	IO154NDB4V0	
W17	GDA2/IO154PDB4V0	
W18	TMS	
W19	GND	
W20	IO150NDB3V4	
W21	IO146NDB3V4	
W22	IO148PPB3V4	
Y1	VCCIB6	
Y2	IO237NDB6V0	
Y3	IO228NDB5V4	
Y4	IO224NDB5V3	
Y5	GND	
Y6	IO220NDB5V3	

	FG484				
Pin Number	A3PE3000 Function				
¥7	IO220PDB5V3				
Y8	VCC				
Y9	VCC				
Y10	IO200PDB5V0				
Y11	IO192PDB4V4				
Y12	IO188NPB4V4				
Y13	IO187PSB4V4				
Y14	VCC				
Y15	VCC				
Y16	IO164NDB4V1				
Y17	IO164PDB4V1				
Y18	GND				
Y19	IO158PPB4V0				
Y20	IO150PDB3V4				
Y21	IO148NPB3V4				
Y22	VCCIB3				

	FG676
Pin Number	A3PE1500 Function
W25	IO96PDB3V1
W26	IO94NDB3V0
Y1	IO175NDB6V1
Y2	IO175PDB6V1
Y3	IO173NDB6V0
Y4	IO173PDB6V0
Y5	GEC1/IO169PPB6V0
Y6	GNDQ
Y7	VMV6
Y8	VCCIB5
Y9	IO163NDB5V3
Y10	IO159PDB5V3
Y11	IO153PDB5V2
Y12	IO147PDB5V1
Y13	IO139PDB5V0
Y14	IO137PDB5V0
Y15	IO125NDB4V1
Y16	IO125PDB4V1
Y17	IO115NDB4V0
Y18	IO115PDB4V0
Y19	VCC
Y20	VPUMP
Y21	VCOMPLD
Y22	VCCPLD
Y23	IO100NDB3V1
Y24	IO100PDB3V1
Y25	IO96NDB3V1
Y26	IO98PDB3V1

Package Pin Assignments

	FG896		FG896		FG896
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AK28	GND	C5	VCCIB0	D11	IO11PDB0V1
AK29	GND	C6	IO03PDB0V0	D12	IO23NDB0V2
B1	GND	C7	IO03NDB0V0	D13	IO23PDB0V2
B2	GND	C8	GAB1/IO01PDB0V0	D14	IO27PDB0V3
B3	GAA2/IO309PPB7V4	C9	IO05PDB0V0	D15	IO40PDB0V4
B4	VCC	C10	IO15NPB0V1	D16	IO47NDB1V0
B5	IO14PPB0V1	C11	IO25NDB0V3	D17	IO47PDB1V0
B6	VCC	C12	IO25PDB0V3	D18	IO55NPB1V1
B7	IO07PPB0V0	C13	IO31NPB0V3	D19	IO65NDB1V3
B8	IO09PDB0V1	C14	IO27NDB0V3	D20	IO65PDB1V3
B9	IO15PPB0V1	C15	IO39NDB0V4	D21	IO71NDB1V3
B10	IO19NDB0V2	C16	IO39PDB0V4	D22	IO71PDB1V3
B11	IO19PDB0V2	C17	IO55PPB1V1	D23	IO73NDB1V4
B12	IO29NDB0V3	C18	IO51PDB1V1	D24	IO73PDB1V4
B13	IO29PDB0V3	C19	IO59NDB1V2	D25	IO74NDB1V4
B14	IO31PPB0V3	C20	IO63NDB1V2	D26	GBB0/IO80NPB1V4
B15	IO37NDB0V4	C21	IO63PDB1V2	D27	GND
B16	IO37PDB0V4	C22	IO67NDB1V3	D28	GBA0/IO81NPB1V4
B17	IO41PDB1V0	C23	IO67PDB1V3	D29	VCC
B18	IO51NDB1V1	C24	IO75NDB1V4	D30	GBA2/IO82PPB2V0
B19	IO59PDB1V2	C25	IO75PDB1V4	E1	GND
B20	IO53PDB1V1	C26	VCCIB1	E2	IO303NPB7V3
B21	IO53NDB1V1	C27	IO64PPB1V2	E3	VCCIB7
B22	IO61NDB1V2	C28	VCC	E4	IO305PPB7V3
B23	IO61PDB1V2	C29	GBA1/IO81PPB1V4	E5	VCC
B24	IO69NPB1V3	C30	GND	E6	GAC0/IO02NDB0V0
B25	VCC	D1	IO303PPB7V3	E7	VCCIB0
B26	GBC0/IO79NPB1V4	D2	VCC	E8	IO06PPB0V0
B27	VCC	D3	IO305NPB7V3	E9	IO24NDB0V2
B28	IO64NPB1V2	D4	GND	E10	IO24PDB0V2
B29	GND	D5	GAA1/IO00PPB0V0	E11	IO13NDB0V1
B30	GND	D6	GAC1/IO02PDB0V0	E12	IO13PDB0V1
C1	GND	D7	IO06NPB0V0	E13	IO34NDB0V4
C2	IO309NPB7V4	D8	GAB0/IO01NDB0V0	E14	IO34PDB0V4
C3	VCC	D9	IO05NDB0V0	E15	IO40NDB0V4
C4	GAA0/IO00NPB0V0	D10	IO11NDB0V1	E16	IO49NDB1V1

Datasheet Information

Revision	Changes	Page			
Revision 11 (August 2012)	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions ¹ (SAR 38322).	2-1 3-1 2-1			
	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924): "Summary of Maximum and Minimum DC Input and Output Levels" table "Summary of I/O Timing Characteristics—Software Default Settings" table "I/O Output Buffer Maximum Resistances ¹ " table "Minimum and Maximum DC Input and Output Levels" table)	2-16 2-19 2-20 2-39			
	"Minimum and Maximum DC Input and Output Levels" table Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19. Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714).	2-40			
	"Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934).				
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796): "It uses a 5 V-tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error.	2-30			
Revision 11 (continued)	Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-38			
	In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222).	2-52			
	Figure 2-47 and Figure 2-48 are new (SAR 34848).	2-79			
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.				

Revision	Changes	Page
Revision 9 (Aug 2009)	All references to speed grade –F have been removed from this document.	N/A
Product Brief v1.2		
	The "Pro I/Os with Advanced I/O Standards" section was revised to add definitions of hot-swap and cold-sparing.	1-6
DC and Switching Characteristics v1.3	3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data.	N/A
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	In the Table 2-2 • Recommended Operating Conditions ¹ "3.0 V DC supply voltage" and note 4 are new.	2-2
	The Table 2-4 • Overshoot and Undershoot Limits ¹ table was updated.	2-3
	The Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays table was updated.	2-5
	There are new parameters and data was updated in the Table 2-99 • RAM4K9 table.	2-76
	There are new parameters and data was updated in the Table 2-100 • RAM512X18 table.	2-77
Revision 8 (Feb 2008)	Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.	1-II
Product Brief v1.1		
Revision 7 (Jun 2008) DC and Switching Characteristics v1.2	The title of Table 2-4 • Overshoot and Undershoot Limits ¹ was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted.	2-3
	Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-50
Revision 6 (Jun 2008)	The A3PE600 "FG484" table was missing G22. The pin and its function were added to the table.	4-27
Revision 5 (Jun 2008) Packaging v1.4	The naming conventions changed for the following pins in the "FG484" for the A3PE600:	4-22
	Pin Number New Function Name	
	J19 IO45PPB2V1	
	K20 IO45NPB2V1	
	M2 IO114NPB6V1	
	N1 IO114PPB6V1	
	N4 GFC2/IO115PPB6V1	
	P3 IO115NPB6V1	
Revision 4 (Apr 2008) Product Brief v1.0	The product brief portion of the datasheet was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
Packaging v1.3	The "FG324" package diagram was replaced.	4-12

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.