

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿХF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	444
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-1fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE3000 ³		
Cortex-M1 Devices ²			M1A3PE3000				
			I/O T	ypes			
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	
PQ208	147	65	147	65	147	65	
FG256	165	79	-	_	-	-	
FG324	-	-	-	-	221	110	
FG484	270	135	280	139	341	168	
FG676	_	_	444	222	_	_	
FG896	-	-	-	-	620	310	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

ProASIC3E Device Family Overview

VersaTiles

The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The ProASIC3E VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-2 for VersaTile configurations.

User Nonvolatile FlashROM

ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3E development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

2 – ProASIC3E DC and Switching Characteristics

General Specifications

DC and switching characteristics for -F speed grade targets are based only on simulation.

The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI ²	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV ²	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	 -0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 	V
T _{STG} ³	Storage temperature	–65 to +150	°C
T _J ³	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2.

 VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Figure 2-4 • Output Buffer Model and Delays (example)

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)
--	------------

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}$ (Ω) ³
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	-
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA ⁴	25	25
SSTL2 (I)	15 mA	27	31
SSTL2 (II)	18 mA	13	15
SSTL3 (I)	14 mA	44	69
SSTL3 (II)	21 mA	18	32

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R(_(WEAK PULL-UP) 1 (Ω)		R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew	
Commercial-Case Conditions: T _J = 70°C,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed	toour	too	tow	tax	tava	trout	t-ı	t	t	tu-	truo	truo	Units
	4 mΔ	Std	0.66	17 02		1.83	2 38	0.43	•2L	• 2 н 13 74	•LZ 4 16	•н <u>г</u> 3.78	-2LS	•2H5 17 14	ne
100 μΛ		Old.	0.00	17.02	0.04	1.00	2.00	0.40	17.02	10.74	4.10	0.70	20.72	17.14	113
		-1	0.56	14.48	0.04	1.55	2.02	0.36	14.48	11.69	3.54	3.21	17.37	14.58	ns
		-2	0.49	12.71	0.03	1.36	1.78	0.32	12.71	10.26	3.11	2.82	15.25	12.80	ns
100 µA	8 mA	Std.	0.66	12.16	0.04	1.83	2.38	0.43	12.16	9.78	4.70	4.74	15.55	13.17	ns
		-1	0.56	10.34	0.04	1.55	2.02	0.36	10.34	8.32	4.00	4.03	13.23	11.20	ns
		-2	0.49	9.08	0.03	1.36	1.78	0.32	9.08	7.30	3.51	3.54	11.61	9.84	ns
100µA	12 mA	Std.	0.66	9.32	0.04	1.83	2.38	0.43	9.32	7.62	5.06	5.36	12.71	11.02	ns
		-1	0.56	7.93	0.04	1.55	2.02	0.36	7.93	6.48	4.31	4.56	10.81	9.37	ns
		-2	0.49	6.96	0.03	1.36	1.78	0.32	6.96	5.69	3.78	4.00	9.49	8.23	ns
100 µA	16 mA	Std.	0.66	8.69	0.04	1.83	2.38	0.43	8.69	7.17	5.14	5.53	12.08	10.57	ns
		-1	0.56	7.39	0.04	1.55	2.02	0.36	7.39	6.10	4.37	4.71	10.28	8.99	ns
		-2	0.49	6.49	0.03	1.36	1.78	0.32	6.49	5.36	3.83	4.13	9.02	7.89	ns
100 µA	24 mA	Std.	0.66	8.11	0.04	1.83	2.38	0.43	8.11	7.13	5.23	6.13	11.50	10.52	ns
		-1	0.56	6.90	0.04	1.55	2.02	0.36	6.90	6.06	4.45	5.21	9.78	8.95	ns
		-2	0.49	6.05	0.03	1.36	1.78	0.32	6.05	5.32	3.91	4.57	8.59	7.86	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default extension birblighted in grave

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-69 •	Minimum a	and Maximum	DC Input and	Output Levels
--------------	-----------	-------------	---------------------	----------------------

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-71 • SSTL 2 Class II

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	0.66	2.17	0.04	1.33	0.43	2.21	1.77			4.44	ns
-1	0.56	0.56	1.84	0.04	1.14	0.36	1.88	1.51			3.78	ns
-2	0.49	0.49	1.62	0.03	1.00	0.32	1.65	1.32			3.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

Input Register

Timing Characteristics

Table 2-86 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Figure 2-29 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-88 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

FG324			FG324	FG324		
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	
N1	IO247NDB6V1	R1	IO245NDB6V1	U1	IO241NDB6V0	
N2	IO247PDB6V1	R2	VCCIB6	U2	GEA2/IO233PPB5V4	
N3	IO251NPB6V2	R3	GEA1/IO234PPB6V0	U3	GEC2/IO231PPB5V4	
N4	GEC0/IO236NDB6V0	R4	IO232NDB5V4	U4	VCCIB5	
N5	VCOMPLE	R5	GEB2/IO232PDB5V4	U5	GNDQ	
N6	IO212NDB5V2	R6	IO214NDB5V2	U6	IO208PDB5V1	
N7	IO212PDB5V2	R7	IO202PDB5V1	U7	IO198PPB5V0	
N8	IO192NPB4V4	R8	IO194PDB5V0	U8	VCCIB5	
N9	IO174PDB4V2	R9	IO186PDB4V4	U9	IO182NPB4V3	
N10	IO170PDB4V2	R10	IO178PDB4V3	U10	IO180NPB4V3	
N11	GDA2/IO154PPB4V0	R11	IO168NSB4V1	U11	VCCIB4	
N12	GDB2/IO155PPB4V0	R12	IO164PDB4V1	U12	IO166PPB4V1	
N13	GDA1/IO153PPB3V4	R13	GDC2/IO156PDB4V0	U13	IO162PDB4V1	
N14	VCOMPLD	R14	ТСК	U14	GNDQ	
N15	GDB0/IO152NDB3V4	R15	VPUMP	U15	VCCIB4	
N16	GDB1/IO152PDB3V4	R16	TRST	U16	TMS	
N17	IO138NDB3V3	R17	VCCIB3	U17	VMV3	
N18	IO138PDB3V3	R18	IO142NDB3V3	U18	IO146NDB3V4	
P1	IO245PDB6V1	T1	IO241PDB6V0	V1	GND	
P2	GNDQ	T2	GEA0/IO234NPB6V0	V2	IO218NDB5V3	
P3	VMV6	Т3	IO233NPB5V4	V3	IO218PDB5V3	
P4	GEC1/IO236PDB6V0	T4	IO231NPB5V4	V4	IO206NDB5V1	
P5	VCCPLE	Т5	VMV5	V5	IO206PDB5V1	
P6	IO214PDB5V2	Т6	IO208NDB5V1	V6	IO198NPB5V0	
P7	VCCIB5	T7	IO202NDB5V1	V7	GND	
P8	GND	Т8	IO194NDB5V0	V8	IO190NDB4V4	
P9	IO174NDB4V2	Т9	IO186NDB4V4	V9	IO190PDB4V4	
P10	IO170NDB4V2	T10	IO178NDB4V3	V10	IO182PPB4V3	
P11	GND	T11	IO166NPB4V1	V11	IO180PPB4V3	
P12	VCCIB4	T12	IO164NDB4V1	V12	GND	
P13	IO155NPB4V0	T13	IO156NDB4V0	V13	IO162NDB4V1	
P14	VCCPLD	T14	VMV4	V14	IO160NDB4V0	
P15	VJTAG	T15	TDI	V15	IO160PDB4V0	
P16	GDC0/IO151NDB3V4	T16	GNDQ	V16	IO158NDB4V0	
P17	GDC1/IO151PDB3V4	T17	TDO	V17	IO158PDB4V0	
P18	IO142PDB3V3	T18	IO146PDB3V4	V18	GND	

	FG484		FG484	FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4	
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4	
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4	
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF	
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4	
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4	
J3	VMV7	K17	IO108NDB2V3	M9	VCC	
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND	
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND	
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND	
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND	
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC	
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0	
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0	
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0	
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC	
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0	
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0	
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1	
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1	
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2	
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2	
J19	IO106PPB2V3	L11	GND	N3	VMV6	
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4	
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3	
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3	
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3	
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6	
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC	
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND	
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND	
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND	
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND	
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC	
K9	VCC	M1	GNDQ	N15	VCCIB3	
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0	

Package Pin Assignments

	FG484		FG484	FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
N17	IO132NPB3V2	R9	VCCIB5	U1	IO240PPB6V0	
N18	IO117NPB3V0	R10	VCCIB5	U2	IO238PDB6V0	
N19	IO132PPB3V2	R11	IO196NDB5V0	U3	IO238NDB6V0	
N20	GNDQ	R12	IO196PDB5V0	U4	GEB1/IO235PDB6V0	
N21	IO126NDB3V1	R13	VCCIB4	U5	GEB0/IO235NDB6V0	
N22	IO128PDB3V1	R14	VCCIB4	U6	VMV6	
P1	IO247PDB6V1	R15	VMV3	U7	VCCPLE	
P2	IO253PDB6V2	R16	VCCPLD	U8	IO233NPB5V4	
P3	IO270NPB6V4	R17	GDB1/IO152PPB3V4	U9	IO222PPB5V3	
P4	IO261NPB6V3	R18	GDC1/IO151PDB3V4	U10	IO206PDB5V1	
P5	IO249PPB6V1	R19	IO138NDB3V3	U11	IO202PDB5V1	
P6	IO259PDB6V3	R20	VCC	U12	IO194PDB5V0	
P7	IO259NDB6V3	R21	IO130NDB3V2	U13	IO176NDB4V2	
P8	VCCIB6	R22	IO134PDB3V2	U14	IO176PDB4V2	
P9	GND	T1	IO243PPB6V1	U15	VMV4	
P10	VCC	T2	IO245NDB6V1	U16	TCK	
P11	VCC	Т3	IO243NPB6V1	U17	VPUMP	
P12	VCC	T4	IO241PDB6V0	U18	TRST	
P13	VCC	T5	IO241NDB6V0	U19	GDA0/IO153NDB3V4	
P14	GND	Т6	GEC1/IO236PPB6V0	U20	IO144NDB3V3	
P15	VCCIB3	T7	VCOMPLE	U21	IO140NDB3V3	
P16	GDB0/IO152NPB3V4	Т8	GNDQ	U22	IO142PDB3V3	
P17	IO136NDB3V2	Т9	GEA2/IO233PPB5V4	V1	IO239PDB6V0	
P18	IO136PDB3V2	T10	IO206NDB5V1	V2	IO240NPB6V0	
P19	IO138PDB3V3	T11	IO202NDB5V1	V3	GND	
P20	VMV3	T12	IO194NDB5V0	V4	GEA1/IO234PDB6V0	
P21	IO130PDB3V2	T13	IO186NDB4V4	V5	GEA0/IO234NDB6V0	
P22	IO128NDB3V1	T14	IO186PDB4V4	V6	GNDQ	
R1	IO247NDB6V1	T15	GNDQ	V7	GEC2/IO231PDB5V4	
R2	IO245PDB6V1	T16	VCOMPLD	V8	IO222NPB5V3	
R3	VCC	T17	VJTAG	V9	IO204NDB5V1	
R4	IO249NPB6V1	T18	GDC0/IO151NDB3V4	V10	IO204PDB5V1	
R5	IO251NDB6V2	T19	GDA1/IO153PDB3V4	V11	IO195NDB5V0	
R6	IO251PDB6V2	T20	IO144PDB3V3	V12	IO195PDB5V0	
R7	GEC0/IO236NPB6V0	T21	IO140PDB3V3	V13	IO178NDB4V3	
R8	VMV5	T22	IO134NDB3V2	V14	IO178PDB4V3	

Microsemi

Package Pin Assignments

	FG676		FG676	FG676			
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function		
G13	IO21NDB0V2	H23	IO69PDB2V1	K7	IO217NDB7V3		
G14	IO27PDB0V3	H24	IO76PDB2V2	K8	VCCIB7		
G15	IO35NDB1V0	H25	IO76NDB2V2	K9	VCC		
G16	IO39PDB1V0	H26	IO78NDB2V2	K10	GND		
G17	IO51NDB1V2	J1	IO197NDB7V0	K11	GND		
G18	IO53NDB1V2	J2	IO197PDB7V0	K12	GND		
G19	VCCIB1	J3	VMV7	K13	GND		
G20	GBA2/IO58PPB2V0	J4	IO215NDB7V3	K14	GND		
G21	GNDQ	J5	IO215PDB7V3	K15	GND		
G22	IO64NDB2V1	J6	IO214PDB7V3	K16	GND		
G23	IO64PDB2V1	J7	IO214NDB7V3	K17	GND		
G24	IO72PDB2V2	J8	VCCIB7	K18	VCC		
G25	IO72NDB2V2	J9	VCC	K19	VCCIB2		
G26	IO78PDB2V2	J10	VCC	K20	IO65PDB2V1		
H1	IO208NDB7V2	J11	VCC	K21	IO65NDB2V1		
H2	IO208PDB7V2	J12	VCC	K22	IO74PDB2V2		
H3	IO209NDB7V2	J13	VCC	K23	IO74NDB2V2		
H4	IO209PDB7V2	J14	VCC	K24	IO75PDB2V2		
H5	IO219NDB7V3	J15	VCC	K25	IO75NDB2V2		
H6	GAC2/IO219PDB7V3	J16	VCC	K26	IO84PDB2V3		
H7	VCCIB7	J17	VCC	L1	IO195NDB7V0		
H8	VCC	J18	VCC	L2	IO198PPB7V0		
H9	VCCIB0	J19	VCCIB2	L3	GNDQ		
H10	VCCIB0	J20	IO62PDB2V0	L4	IO201PDB7V1		
H11	VCCIB0	J21	IO62NDB2V0	L5	IO201NDB7V1		
H12	VCCIB0	J22	IO70NDB2V1	L6	IO210NDB7V2		
H13	VCCIB0	J23	IO69NDB2V1	L7	IO210PDB7V2		
H14	VCCIB1	J24	VMV2	L8	VCCIB7		
H15	VCCIB1	J25	IO80PDB2V3	L9	VCC		
H16	VCCIB1	J26	IO80NDB2V3	L10	GND		
H17	VCCIB1	K1	IO195PDB7V0	L11	GND		
H18	VCCIB1	K2	IO199NDB7V1	L12	GND		
H19	VCC	K3	IO199PDB7V1	L13	GND		
H20	VCC	K4	IO205NDB7V1	L14	GND		
H21	IO58NPB2V0	K5	IO205PDB7V1	L15	GND		
H22	IO70PDB2V1	K6	IO217PDB7V3	L16	GND		

Revision		Changes	Page
Revision 9 (Aug 2009)	All references to speed grade	-F have been removed from this document.	N/A
Product Brief v1.2			
	The "Pro I/Os with Advance definitions of hot-swap and co	ed I/O Standards" section was revised to add Id-sparing.	1-6
DC and Switching Characteristics v1.3	3.3 V LVCMOS and 1.2 V L datasheet. This affects all ta LVCMOS data.	VCMOS Wide Range support was added to the ables that contained 3.3 V LVCMOS and 1.2 V	N/A
	IIL and IIH input leakage cur Maximum DC Input and Outpu	rrent information was added to all "Minimum and it Levels" tables.	N/A
	–F was removed from the data	asheet. The speed grade is no longer supported.	N/A
	In the Table 2-2 • Recomme voltage" and note 4 are new.	ended Operating Conditions ¹ "3.0 V DC supply	2-2
	The Table 2-4 • Overshoot and	d Undershoot Limits ¹ table was updated.	2-3
	The Table 2-6 • Temperature table was updated.	and Voltage Derating Factors for Timing Delays	2-5
	There are new parameters an table.	nd data was updated in the Table 2-99 • RAM4K9	2-76
	There are new parameters • RAM512X18 table.	s and data was updated in the Table 2-100	2-77
Revision 8 (Feb 2008)	Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.		
Product Brief v1.1			
Revision 7 (Jun 2008) DC and Switching	The title of Table 2-4 • Overshoot and Undershoot Limits ¹ was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted		
	Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was updated.		2-50
Revision 6 (Jun 2008)	The A3PE600 "FG484" table was missing G22. The pin and its function were added to the table.		4-27
Revision 5 (Jun 2008) Packaging v1.4	The naming conventions changed for the following pins in the "FG484" for the A3PE600:		4-22
	Pin Number	New Function Name	
	J19	IO45PPB2V1	
	K20	IO45NPB2V1	
	M2	IO114NPB6V1	
	N1	IO114PPB6V1	
	N4	GFC2/IO115PPB6V1	
	P3	IO115NPB6V1	
Revision 4 (Apr 2008) Product Brief v1.0	The product brief portion of the datasheet was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.		N/A
Packaging v1.3	The "FG324" package diagram	n was replaced.	4-12

Datasheet Information

Revision	Changes	Page
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2
	36, 62, 171	
	Note: There were no pin function changes in this update.	
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12
	E2, E3, E16, E17, P2, P3, T16, U17	
	Note: There were no pin function changes in this update.	
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41
	AD6, AE5, AE28, AF29, F5, F26, G6, G25	
	Note: There were no pin function changes in this update.	
Revision 2 (Mar 2008) Product Brief rev. 1	The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.	I, II, IV
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83
Revision 1 (cont'd)	The "PQ208" pin table for A3PE3000 was updated.	4-2
Packaging v1.1	The "FG324" pin table for A3PE3000 is new.	4-13
	The "FG484" pin table for A3PE3000 is new.	4-17
	The "FG896" pin table for A3PE3000 is new.	4-41
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	N/A
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-1
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	1-I
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	2-9
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.