E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	147
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-2pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Device Family Overview

VersaTiles

The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The ProASIC3E VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-2 for VersaTile configurations.

User Nonvolatile FlashROM

ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3E development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³	
SSTL3 (I)	30	3.3	26.02	114.87	
SSTL3 (II)	30	3.3	42.21	131.76	
Differential					
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62	
LVPECL	-	3.3	19.42	168.02	
Notes:	· · · ·		•		

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Spec	ific Dynamic C (μW/MHz)	contributions						
Parameter	Definition	A3PE600	A3PE1500	A3PE3000						
PAC1	Clock contribution of a Global Rib	12.77	16.21	19.7						
PAC2	Clock contribution of a Global Spine	1.85	3.06	4.16						
PAC3	Clock contribution of a VersaTile row		0.88							
PAC4	Clock contribution of a VersaTile used as a sequential module		0.12							
PAC5	First contribution of a VersaTile used as a sequential 0.07 module									
PAC6	Second contribution of a VersaTile used as a sequential module		0.29							
PAC7	Contribution of a VersaTile used as a combinatorial module		0.29							
PAC8	Average contribution of a routing net		0.70							
PAC9	Contribution of an I/O input pin (standard-dependent)	See T	able 2-8 on pag	je 2-6.						
PAC10	Contribution of an I/O output pin (standard-dependent)	See	Table 2-9 on pag	ge 2-7						
PAC11	Average contribution of a RAM block during a read operation		25.00							
PAC12	Average contribution of a RAM block during a write operation		30.00							
PAC13	Static PLL contribution		2.55 mW							
PAC14	Dynamic contribution for PLL		2.60							

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

User I/O Characteristics

Timing Model

Figure 2-2 • Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	_	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	-	0.75 V
3.3 V PCI	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))
3.3 V PCI-X	_	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	_	-	Cross point
LVPECL	_	_	Cross point

Table 2-15 • Summary of AC Measuring Points

Table 2-16 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-22	 Duration o 	f Short Ci	cuit Event	Before	Failure	(continued)
------------	--------------------------------	------------	------------	--------	---------	-------------

Temperature	Time before Failure
85°C	2 years
100°C	6 months

Table 2-23 • Schmitt Trigger Input Hysteresis

Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns *	20 years (110°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (110°C)
HSTL/SSTL/GTL	No requirement	10 ns *	10 years (100°C)
LVDS/B-LVDS/M-LVDS/ LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User's Guide. The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

Drivo	Speed				Ū									
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.88	0.04	1.20	1.57	0.43	8.03	6.70	2.69	2.59	10.26	8.94	ns
	-1	0.56	6.71	0.04	1.02	1.33	0.36	6.83	5.70	2.29	2.20	8.73	7.60	ns
	-2	0.49.	5.89	0.03	0.90	1.17	0.32	6.00	5.01	2.01	1.93	7.67	6.67	ns
4 mA	Std.	0.66	7.88	0.04	1.20	1.57	0.43	8.03	6.70	2.69	2.59	10.26	8.94	ns
	-1	0.56	6.71	0.04	1.02	1.33	0.36	6.83	5.70	2.29	2.20	8.73	7.60	ns
	-2	0.49	5.89	0.03	0.90	1.17	0.32	6.00	5.01	2.01	1.93	7.67	6.67	ns
6 mA	Std.	0.66	5.08	0.04	1.20	1.57	0.43	5.17	4.14	3.05	3.21	7.41	6.38	ns
	-1	0.56	4.32	0.04	1.02	1.33	0.36	4.40	3.52	2.59	2.73	6.30	5.43	ns
	-2	0.49	3.79	0.03	0.90	1.17	0.32	3.86	3.09	2.28	2.40	5.53	4.76	ns
8 mA	Std.	0.66	5.08	0.04	1.20	1.57	0.43	5.17	4.14	3.05	3.21	7.41	6.38	ns
	-1	0.56	4.32	0.04	1.02	1.33	0.36	4.40	3.52	2.59	2.73	6.30	5.43	ns
	-2	0.49	3.79	0.03	0.90	1.17	0.32	3.86	3.09	2.28	2.40	5.53	4.76	ns
12 mA	Std.	0.66	3.67	0.04	1.20	1.57	0.43	3.74	2.87	3.28	3.61	5.97	5.11	ns
	-1	0.56	3.12	0.04	1.02	1.33	0.36	3.18	2.44	2.79	3.07	5.08	4.34	ns
	-2	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
16 mA	Std.	0.66	3.46	0.04	1.20	1.57	0.43	3.53	2.61	3.33	3.72	5.76	4.84	ns
	-1	0.56	2.95	0.04	1.02	1.33	0.36	3.00	2.22	2.83	3.17	4.90	4.12	ns
	-2	0.49	2.59	0.03	0.90	1.17	0.32	2.63	1.95	2.49	2.78	4.30	3.62	ns
24 mA	Std.	0.66	3.21	0.04	1.20	1.57	0.43	3.27	2.16	3.39	4.13	5.50	4.39	ns
	-1	0.56	2.73	0.04	1.02	1.33	0.36	2.78	1.83	2.88	3.51	4.68	3.74	ns
	-2	0.49	2.39	0.03	0.90	1.17	0.32	2.44	1.61	2.53	3.08	4.11	3.28	ns

Table 2-27 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_{.1} = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	11.01	0.04	1.20	1.57	0.43	11.21	9.05	2.69	2.44	13.45	11.29	ns
	-1	0.56	9.36	0.04	1.02	1.33	0.36	9.54	7.70	2.29	2.08	11.44	9.60	ns
	-2	0.49	8.22	0.03	0.90	1.17	0.32	8.37	6.76	2.01	1.82	10.04	8.43	ns
4 mA	Std.	0.66	11.01	0.04	1.20	1.57	0.43	11.21	9.05	2.69	2.44	13.45	11.29	ns
	-1	0.56	9.36	0.04	1.02	1.33	0.36	9.54	7.70	2.29	2.08	11.44	9.60	ns
	-2	0.49	8.22	0.03	0.90	1.17	0.32	8.37	6.76	2.01	1.82	10.04	8.43	ns
6 mA	Std.	0.66	7.86	0.04	1.20	1.57	0.43	8.01	6.44	3.04	3.06	10.24	8.68	ns
	-1	0.56	6.69	0.04	1.02	1.33	0.36	6.81	5.48	2.58	2.61	8.71	7.38	ns
	-2	0.49	5.87	0.03	0.90	1.17	0.32	5.98	4.81	2.27	2.29	7.65	6.48	ns
8 mA	Std.	0.66	7.86	0.04	1.20	1.57	0.43	8.01	6.44	3.04	3.06	10.24	8.68	ns
	-1	0.56	6.69	0.04	1.02	1.33	0.36	6.81	5.48	2.58	2.61	8.71	7.38	ns
	-2	0.49	5.87	0.03	0.90	1.17	0.32	5.98	4.81	2.27	2.29	7.65	6.48	ns

Kicrosemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew	
Commercial-Case Conditions: T _J = 70°C,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed	toour	too	tow	tav	tava	trout	t-ı	t	t	tu-	truo	truo	Units
	4 mΔ	Std	0.66	17 02		1.83	2 38	0.43	•2L	• 2 н 13 74	•LZ 4 16	•н <u>г</u> 3.78	-2LS	•2H5 17 14	ne
100 μΛ		Old.	0.00	17.02	0.04	1.00	2.00	0.40	17.02	10.74	4.10	0.70	20.72	17.14	113
		-1	0.56	14.48	0.04	1.55	2.02	0.36	14.48	11.69	3.54	3.21	17.37	14.58	ns
		-2	0.49	12.71	0.03	1.36	1.78	0.32	12.71	10.26	3.11	2.82	15.25	12.80	ns
100 µA	8 mA	Std.	0.66	12.16	0.04	1.83	2.38	0.43	12.16	9.78	4.70	4.74	15.55	13.17	ns
		-1	0.56	10.34	0.04	1.55	2.02	0.36	10.34	8.32	4.00	4.03	13.23	11.20	ns
		-2	0.49	9.08	0.03	1.36	1.78	0.32	9.08	7.30	3.51	3.54	11.61	9.84	ns
100µA	12 mA	Std.	0.66	9.32	0.04	1.83	2.38	0.43	9.32	7.62	5.06	5.36	12.71	11.02	ns
		-1	0.56	7.93	0.04	1.55	2.02	0.36	7.93	6.48	4.31	4.56	10.81	9.37	ns
		-2	0.49	6.96	0.03	1.36	1.78	0.32	6.96	5.69	3.78	4.00	9.49	8.23	ns
100 µA	16 mA	Std.	0.66	8.69	0.04	1.83	2.38	0.43	8.69	7.17	5.14	5.53	12.08	10.57	ns
		-1	0.56	7.39	0.04	1.55	2.02	0.36	7.39	6.10	4.37	4.71	10.28	8.99	ns
		-2	0.49	6.49	0.03	1.36	1.78	0.32	6.49	5.36	3.83	4.13	9.02	7.89	ns
100 µA	24 mA	Std.	0.66	8.11	0.04	1.83	2.38	0.43	8.11	7.13	5.23	6.13	11.50	10.52	ns
		-1	0.56	6.90	0.04	1.55	2.02	0.36	6.90	6.06	4.45	5.21	9.78	8.95	ns
		-2	0.49	6.05	0.03	1.36	1.78	0.32	6.05	5.32	3.91	4.57	8.59	7.86	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default extension birblighted in grave

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max., V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10

Table 2-33 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\xrightarrow{1}{1}$$
 35 pF
 $R = 1 k$
Test Point
Enable Path $\xrightarrow{1}{1}$ R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $35 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $35 pF$ for $t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
–1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-85 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-26 on page 2-55 for more information.

Global Resource Characteristics

A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

Wicrosemi. ProASIC3E DC and Switching Characteristics

Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.

Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

Refer to the I/O Structure section of the *ProASIC3E FPGA Fabric User's Guide* for an explanation of the naming of global pins.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 W to 1 k Ω will satisfy the requirements. Refer to Table 3-1 for more information.

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI

TMS

Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Package Pin Assignments

FG484			FG484	FG484			
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function		
C21	IO94PPB2V1	E13	IO58NDB1V2	G5	IO297PDB7V2		
C22	VCCIB2	E14	IO58PDB1V2	G6	GAC2/IO307PDB7V4		
D1	IO293PDB7V2	E15	GBC1/IO79PDB1V4	G7	VCOMPLA		
D2	IO303NDB7V3	E16	GBB0/IO80NDB1V4	G8	GNDQ		
D3	IO305NDB7V3	E17	GNDQ	G9	IO26NDB0V3		
D4	GND	E18	GBA2/IO82PDB2V0	G10	IO26PDB0V3		
D5	GAA0/IO00NDB0V0	E19	IO86NDB2V0	G11	IO36PDB0V4		
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO42PDB1V0		
D7	GAB0/IO01NDB0V0	E21	IO90NDB2V1	G13	IO50PDB1V1		
D8	IO20PDB0V2	E22	IO98PDB2V2	G14	IO60NDB1V2		
D9	IO22PDB0V2	F1	IO299NPB7V3	G15	GNDQ		
D10	IO30PDB0V3	F2	IO301NDB7V3	G16	VCOMPLB		
D11	IO38NDB0V4	F3	IO301PDB7V3	G17	GBB2/IO83PDB2V0		
D12	IO52NDB1V1	F4	IO308NDB7V4	G18	IO92PDB2V1		
D13	IO52PDB1V1	F5	IO309NDB7V4	G19	IO92NDB2V1		
D14	IO66NDB1V3	F6	VMV7	G20	IO102PDB2V2		
D15	IO66PDB1V3	F7	VCCPLA	G21	IO102NDB2V2		
D16	GBB1/IO80PDB1V4	F8	GAC0/IO02NDB0V0	G22	IO105NDB2V2		
D17	GBA0/IO81NDB1V4	F9	GAC1/IO02PDB0V0	H1	IO286PSB7V1		
D18	GBA1/IO81PDB1V4	F10	IO32NDB0V3	H2	IO291NPB7V2		
D19	GND	F11	IO32PDB0V3	H3	VCC		
D20	IO88PDB2V0	F12	IO44PDB1V0	H4	IO295NDB7V2		
D21	IO90PDB2V1	F13	IO50NDB1V1	H5	IO297NDB7V2		
D22	IO94NPB2V1	F14	IO60PDB1V2	H6	IO307NDB7V4		
E1	IO293NDB7V2	F15	GBC0/IO79NDB1V4	H7	IO287PDB7V1		
E2	IO299PPB7V3	F16	VCCPLB	H8	VMV0		
E3	GND	F17	VMV2	H9	VCCIB0		
E4	GAB2/IO308PDB7V4	F18	IO82NDB2V0	H10	VCCIB0		
E5	GAA2/IO309PDB7V4	F19	IO86PDB2V0	H11	IO36NDB0V4		
E6	GNDQ	F20	IO96PDB2V1	H12	IO42NDB1V0		
E7	GAB1/IO01PDB0V0	F21	IO96NDB2V1	H13	VCCIB1		
E8	IO20NDB0V2	F22	IO98NDB2V2	H14	VCCIB1		
E9	IO22NDB0V2	G1	IO289NDB7V1	H15	VMV1		
E10	IO30NDB0V3	G2	IO289PDB7V1	H16	GBC2/IO84PDB2V0		
E11	IO38PDB0V4	G3	IO291PPB7V2	H17	IO83NDB2V0		
E12	IO44NDB1V0	G4	IO295PDB7V2	H18	IO100NDB2V2		

FG676						
Pin Number	A3PE1500 Function	Pin N				
A1	GND	A/				
A2	GND	AA				
A3	GAA0/IO00NDB0V0	AA				
A4	GAA1/IO00PDB0V0	AA				
A5	IO06NDB0V0	AA				
A6	IO09NDB0V1	AA				
A7	IO09PDB0V1	AA				
A8	IO14NDB0V1	AA				
A9	IO14PDB0V1	AA				
A10	IO22NDB0V2	AA				
A11	IO22PDB0V2	AA				
A12	IO26NDB0V3	AA				
A13	IO26PDB0V3	AA				
A14	IO30NDB0V3	AA				
A15	IO30PDB0V3	AA				
A16	IO34NDB1V0	AA				
A17	IO34PDB1V0	A				
A18	IO38NDB1V0	A				
A19	IO38PDB1V0	A				
A20	IO41PDB1V1	A				
A21	IO44PDB1V1	A				
A22	IO49PDB1V2	A				
A23	IO50PDB1V2	A				
A24	GBC1/IO55PDB1V3	A				
A25	GND	A				
A26	GND	AE				
AA1	IO174PDB6V0	A				
AA2	IO171PDB6V0	AE				
AA3	GEA1/IO167PPB6V0	AE				
AA4	GEC0/IO169NPB6V0	AE				
AA5	VCOMPLE	AE				
AA6	GND	AE				
AA7	IO165NDB5V3	AE				
AA8	GEB2/IO165PDB5V3	AE				
AA9	IO163PDB5V3	AE				
AA10	IO159NDB5V3	AE				

FG676							
Pin Number	A3PE1500 Function						
AA11	IO153NDB5V2						
AA12	IO147NDB5V1						
AA13	IO139NDB5V0						
AA14	IO137NDB5V0						
AA15	IO123NDB4V1						
AA16	IO123PDB4V1						
AA17	IO117NDB4V0						
AA18	IO117PDB4V0						
AA19	GDB2/IO112PDB4V0						
AA20	GNDQ						
AA21	TDO						
AA22	GND						
AA23	GND						
AA24	IO102NDB3V1						
AA25	IO102PDB3V1						
AA26	IO98NDB3V1						
AB1	IO174NDB6V0						
AB2	IO171NDB6V0						
AB3	GEB1/IO168PPB6V0						
AB4	GEA0/IO167NPB6V0						
AB5	VCCPLE						
AB6	GND						
AB7	GND						
AB8	IO156NDB5V2						
AB9	IO156PDB5V2						
AB10	IO150PDB5V1						
AB11	IO155PDB5V2						
AB12	IO142PDB5V0						
AB13	IO135NDB5V0						
AB14	IO135PDB5V0						
AB15	IO132PDB4V2						
AB16	IO129PDB4V2						
AB17	IO121PDB4V1						
AB18	IO119NDB4V1						
AB19	IO112NDB4V0						
AB20	VMV4						

FG676				
Pin Number	A3PE1500 Function			
AB21	ТСК			
AB22	TRST			
AB23	GDC0/IO108NDB3V2			
AB24	GDC1/IO108PDB3V2			
AB25	IO104NDB3V2			
AB26	IO104PDB3V2			
AC1	IO170PDB6V0			
AC2	GEB0/IO168NPB6V0			
AC3	IO166NPB5V3			
AC4	GNDQ			
AC5	GND			
AC6	IO160PDB5V3			
AC7	IO161PDB5V3			
AC8	IO154PDB5V2			
AC9	GND			
AC10	IO150NDB5V1			
AC11	IO155NDB5V2			
AC12	IO142NDB5V0			
AC13	IO138NDB5V0			
AC14	IO138PDB5V0			
AC15	IO132NDB4V2			
AC16	IO129NDB4V2			
AC17	IO121NDB4V1			
AC18	IO119PDB4V1			
AC19	IO118NDB4V0			
AC20	IO118PDB4V0			
AC21	IO114PPB4V0			
AC22	TMS			
AC23	VJTAG			
AC24	VMV3			
AC25	IO106NDB3V2			
AC26	IO106PDB3V2			
AD1	IO170NDB6V0			
AD2	GEA2/IO166PPB5V3			
AD3	VMV5			
AD4	GEC2/IO164PDB5V3			

Package Pin Assignments

	FG676	FG676			FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
R21	IO89NDB3V0	U5	IO182PDB6V1	V15	VCC	
R22	GCB2/IO89PDB3V0	U6	IO178PDB6V1	V16	VCC	
R23	IO90NDB3V0	U7	IO178NDB6V1	V17	VCC	
R24	GCC2/IO90PDB3V0	U8	VCCIB6	V18	VCC	
R25	IO91PDB3V0	U9	VCC	V19	VCCIB3	
R26	IO91NDB3V0	U10	GND	V20	IO107PDB3V2	
T1	IO186PDB6V2	U11	GND	V21	IO107NDB3V2	
T2	IO185NDB6V2	U12	GND	V22	IO103NDB3V2	
Т3	GNDQ	U13	GND	V23	IO103PDB3V2	
T4	IO180PDB6V1	U14	GND	V24	VMV3	
T5	IO180NDB6V1	U15	GND	V25	IO95NDB3V1	
Т6	IO188NDB6V2	U16	GND	V26	IO94PDB3V0	
T7	GFB2/IO188PDB6V2	U17	GND	W1	IO179NDB6V1	
Т8	VCCIB6	U18	VCC	W2	IO179PDB6V1	
Т9	VCC	U19	VCCIB3	W3	IO177NDB6V1	
T10	GND	U20	NC	W4	IO177PDB6V1	
T11	GND	U21	IO101NDB3V1	W5	IO172PDB6V0	
T12	GND	U22	IO101PDB3V1	W6	IO172NDB6V0	
T13	GND	U23	IO92NDB3V0	W7	VCC	
T14	GND	U24	IO92PDB3V0	W8	VCC	
T15	GND	U25	IO95PDB3V1	W9	VCCIB5	
T16	GND	U26	IO93NPB3V0	W10	VCCIB5	
T17	GND	V1	IO183PDB6V2	W11	VCCIB5	
T18	VCC	V2	IO183NDB6V2	W12	VCCIB5	
T19	VCCIB3	V3	VMV6	W13	VCCIB5	
T20	IO99PDB3V1	V4	IO181PDB6V1	W14	VCCIB4	
T21	IO99NDB3V1	V5	IO181NDB6V1	W15	VCCIB4	
T22	IO97PDB3V1	V6	IO176PDB6V1	W16	VCCIB4	
T23	IO97NDB3V1	V7	IO176NDB6V1	W17	VCCIB4	
T24	GNDQ	V8	VCCIB6	W18	VCCIB4	
T25	IO93PPB3V0	V9	VCC	W19	VCC	
T26	NC	V10	VCC	W20	VCCIB3	
U1	IO186NDB6V2	V11	VCC	W21	GDB0/IO109NDB3V2	
U2	IO184NDB6V2	V12	VCC	W22	GDB1/IO109PDB3V2	
U3	IO184PDB6V2	V13	VCC	W23	IO105NDB3V2	
U4	IO182NDB6V1	V14	VCC	W24	IO105PDB3V2	

Datasheet Information

Revision	Changes	Page		
Revision 11 (August 2012)	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions ¹ (SAR 38322).			
	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924):			
	"Summary of Maximum and Minimum DC Input and Output Levels" table			
	"Summary of I/O Timing Characteristics—Software Default Settings" table	2-19		
	"I/O Output Buffer Maximum Resistances ¹ " table			
	"Minimum and Maximum DC Input and Output Levels" table)			
	"Minimum and Maximum DC Input and Output Levels" table	2-40		
	Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19.			
	Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714).			
	"Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934).	2-22		
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796):	2-30		
	"It uses a 5 V–tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error.			
Revision 11 (continued)	Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-38		
	In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222).	2-52		
	Figure 2-47and Figure 2-48 are new (SAR 34848).	2-79		
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1		