## E·XFL



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                                             |
|--------------------------------|-----------------------------------------------------------------------------|
| Product Status                 | Active                                                                      |
| Number of LABs/CLBs            |                                                                             |
| Number of Logic Elements/Cells | -                                                                           |
| Total RAM Bits                 | 276480                                                                      |
| Number of I/O                  | 147                                                                         |
| Number of Gates                | 1500000                                                                     |
| Voltage - Supply               | 1.425V ~ 1.575V                                                             |
| Mounting Type                  | Surface Mount                                                               |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                          |
| Package / Case                 | 208-BFQFP                                                                   |
| Supplier Device Package        | 208-PQFP (28x28)                                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-2pqg208i |
|                                |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



ProASIC3E Device Family Overview

#### Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

#### Instant On

Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

#### Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

#### Low Power

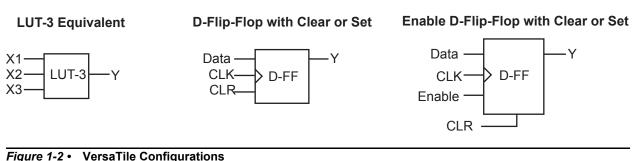
Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3E devices also have low dynamic power consumption to further maximize power savings.

### **Advanced Flash Technology**

The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.




ProASIC3E Device Family Overview

#### VersaTiles

The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASIC<sup>PLUS®</sup> core tiles. The ProASIC3E VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-2 for VersaTile configurations.



#### User Nonvolatile FlashROM

ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3E development software solutions, Libero<sup>®</sup> System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

## Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

#### Methodology

#### Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$ 

P<sub>STAT</sub> is the total static power consumption.

P<sub>DYN</sub> is the total dynamic power consumption.

#### Total Static Power Consumption—P<sub>STAT</sub>

P<sub>STAT</sub> = PDC1 + N<sub>INPUTS</sub> \* PDC2 + N<sub>OUTPUTS</sub> \* PDC3

N<sub>INPUTS</sub> is the number of I/O input buffers used in the design.

N<sub>OUTPUTS</sub> is the number of I/O output buffers used in the design.

#### Total Dynamic Power Consumption—P<sub>DYN</sub>

P<sub>DYN</sub> = P<sub>CLOCK</sub> + P<sub>S-CELL</sub> + P<sub>C-CELL</sub> + P<sub>NET</sub> + P<sub>INPUTS</sub> + P<sub>OUTPUTS</sub> + P<sub>MEMORY</sub> + P<sub>PLL</sub>

#### Global Clock Contribution—P<sub>CLOCK</sub>

P<sub>CLOCK</sub> = (PAC1 + N<sub>SPINE</sub> \* PAC2 + N<sub>ROW</sub> \* PAC3 + N<sub>S-CELL</sub> \* PAC4) \* F<sub>CLK</sub>

N<sub>SPINE</sub> is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N<sub>ROW</sub> is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F<sub>CLK</sub> is the global clock signal frequency.

N<sub>S-CELL</sub> is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

#### Sequential Cells Contribution—P<sub>S-CELL</sub>

 $P_{S-CELL}$  =  $N_{S-CELL}$  \* (PAC5 +  $\alpha_1$  / 2 \* PAC6) \*  $F_{CLK}$ 

 $N_{S\text{-}CELL}$  is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 $\alpha_1$  is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F<sub>CLK</sub> is the global clock signal frequency.



## **Detailed I/O DC Characteristics**

#### Table 2-18 • Input Capacitance

| Symbol          | Definition                         | Conditions           | Min. | Max. | Units |
|-----------------|------------------------------------|----------------------|------|------|-------|
| C <sub>IN</sub> | Input capacitance                  | VIN = 0, f = 1.0 MHz |      | 8    | pF    |
| CINCLK          | Input capacitance on the clock pin | VIN = 0, f = 1.0 MHz |      | 8    | pF    |

#### Table 2-19 • I/O Output Buffer Maximum Resistances<sup>1</sup>

| Standard                   | Drive Strength              | R <sub>PULL-DOWN</sub> (Ω) <sup>2</sup> | R <sub>PULL-UP</sub> (Ω) <sup>3</sup> |
|----------------------------|-----------------------------|-----------------------------------------|---------------------------------------|
| 3.3 V LVTTL / 3.3 V LVCMOS | 4 mA                        | 100                                     | 300                                   |
|                            | 8 mA                        | 50                                      | 150                                   |
|                            | 12 mA                       | 25                                      | 75                                    |
|                            | 16 mA                       | 17                                      | 50                                    |
|                            | 24 mA                       | 11                                      | 33                                    |
| 3.3 V LVCMOS Wide Range    | 100 µA                      | Same as regular<br>3.3 V LVCMOS         | Same as regular<br>3.3 V LVCMOS       |
| 2.5 V LVCMOS               | 4 mA                        | 100                                     | 200                                   |
| Ī                          | 8 mA                        | 50                                      | 100                                   |
| T                          | 12 mA                       | 25                                      | 50                                    |
|                            | 16 mA                       | 20                                      | 40                                    |
| Ī                          | 24 mA                       | 11                                      | 22                                    |
| 1.8 V LVCMOS               | 2 mA                        | 200                                     | 225                                   |
|                            | 4 mA                        | 100                                     | 112                                   |
|                            | 6 mA                        | 50                                      | 56                                    |
|                            | 8 mA                        | 50                                      | 56                                    |
|                            | 12 mA                       | 20                                      | 22                                    |
|                            | 16 mA                       | 20                                      | 22                                    |
| 1.5 V LVCMOS               | 2 mA                        | 200                                     | 224                                   |
|                            | 4 mA                        | 100                                     | 112                                   |
|                            | 6 mA                        | 67                                      | 75                                    |
|                            | 8 mA                        | 33                                      | 37                                    |
|                            | 12 mA                       | 33                                      | 37                                    |
| 3.3 V PCI/PCI-X            | Per PCI/PCI-X specification | 25                                      | 75                                    |
| 3.3 V GTL                  | 20 mA <sup>4</sup>          | 11                                      | _                                     |
| 2.5 V GTL                  | 20 mA <sup>4</sup>          | 14                                      | _                                     |

Notes:

- These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com\_content&id=1671&lang=en&view=article.
- 2. R<sub>(PULL-DOWN-MAX)</sub> = (VOLspec) / IOLspec
- 3. R<sub>(PULL-UP-MAX)</sub> = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

| Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew                                                        |
|------------------------------------------------------------------------------------------------------|
| Commercial-Case Conditions: T <sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V |

| Drive<br>Strength | Equivalent<br>Software<br>Default<br>Drive<br>Strength<br>Option <sup>1</sup> | Speed<br>Grade |      | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>eout</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>zLS</sub> | t <sub>zhs</sub> | Units |
|-------------------|-------------------------------------------------------------------------------|----------------|------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 100 µA            | 4 mA                                                                          | Std.           | 0.66 | 17.02           | 0.04             | 1.83            | 2.38             | 0.43              | 17.02           | 13.74           | 4.16            | 3.78            | 20.42            | 17.14            | ns    |
|                   |                                                                               | -1             | 0.56 | 14.48           | 0.04             | 1.55            | 2.02             | 0.36              | 14.48           | 11.69           | 3.54            | 3.21            | 17.37            | 14.58            | ns    |
|                   |                                                                               | -2             | 0.49 | 12.71           | 0.03             | 1.36            | 1.78             | 0.32              | 12.71           | 10.26           | 3.11            | 2.82            | 15.25            | 12.80            | ns    |
| 100 µA            | 8 mA                                                                          | Std.           | 0.66 | 12.16           | 0.04             | 1.83            | 2.38             | 0.43              | 12.16           | 9.78            | 4.70            | 4.74            | 15.55            | 13.17            | ns    |
|                   |                                                                               | -1             | 0.56 | 10.34           | 0.04             | 1.55            | 2.02             | 0.36              | 10.34           | 8.32            | 4.00            | 4.03            | 13.23            | 11.20            | ns    |
|                   |                                                                               | -2             | 0.49 | 9.08            | 0.03             | 1.36            | 1.78             | 0.32              | 9.08            | 7.30            | 3.51            | 3.54            | 11.61            | 9.84             | ns    |
| 100µA             | 12 mA                                                                         | Std.           | 0.66 | 9.32            | 0.04             | 1.83            | 2.38             | 0.43              | 9.32            | 7.62            | 5.06            | 5.36            | 12.71            | 11.02            | ns    |
|                   |                                                                               | -1             | 0.56 | 7.93            | 0.04             | 1.55            | 2.02             | 0.36              | 7.93            | 6.48            | 4.31            | 4.56            | 10.81            | 9.37             | ns    |
|                   |                                                                               | -2             | 0.49 | 6.96            | 0.03             | 1.36            | 1.78             | 0.32              | 6.96            | 5.69            | 3.78            | 4.00            | 9.49             | 8.23             | ns    |
| 100 µA            | 16 mA                                                                         | Std.           | 0.66 | 8.69            | 0.04             | 1.83            | 2.38             | 0.43              | 8.69            | 7.17            | 5.14            | 5.53            | 12.08            | 10.57            | ns    |
|                   |                                                                               | -1             | 0.56 | 7.39            | 0.04             | 1.55            | 2.02             | 0.36              | 7.39            | 6.10            | 4.37            | 4.71            | 10.28            | 8.99             | ns    |
|                   |                                                                               | -2             | 0.49 | 6.49            | 0.03             | 1.36            | 1.78             | 0.32              | 6.49            | 5.36            | 3.83            | 4.13            | 9.02             | 7.89             | ns    |
| 100 µA            | 24 mA                                                                         | Std.           | 0.66 | 8.11            | 0.04             | 1.83            | 2.38             | 0.43              | 8.11            | 7.13            | 5.23            | 6.13            | 11.50            | 10.52            | ns    |
|                   |                                                                               | -1             | 0.56 | 6.90            | 0.04             | 1.55            | 2.02             | 0.36              | 6.90            | 6.06            | 4.45            | 5.21            | 9.78             | 8.95             | ns    |
|                   |                                                                               | -2             | 0.49 | 6.05            | 0.03             | 1.36            | 1.78             | 0.32              | 6.05            | 5.32            | 3.91            | 4.57            | 8.59             | 7.86             | ns    |

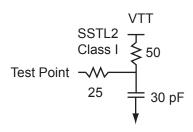
Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default extension birblighted in grave

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

#### SSTL2 Class I


Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

| SSTL2 Class I     |           | VIL VIH    |            |           | VOL       | VOH         | IOL | IOH | IOSL                    | IOSH                    | IIL | IIH |
|-------------------|-----------|------------|------------|-----------|-----------|-------------|-----|-----|-------------------------|-------------------------|-----|-----|
| Drive<br>Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V   | mA  | mA  | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| 15 mA             | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.54      | VCCI – 0.62 | 15  | 15  | 87                      | 83                      | 10  | 10  |

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.



#### Figure 2-18 • AC Loading

| Input Low (V) | Input High (V) | Measuring<br>Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.25                    | 1.25            | 1.25           | 30                     |

Note: \*Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

#### **Timing Characteristics**

Table 2-68 • SSTL 2 Class I

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

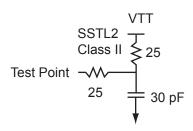
| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.13            | 0.04             | 1.33            | 0.43              | 2.17            | 1.85            |                 |                 | 4.40             | 4.08             | ns    |
| –1             | 0.56              | 1.81            | 0.04             | 1.14            | 0.36              | 1.84            | 1.57            |                 |                 | 3.74             | 3.47             | ns    |
| -2             | 0.49              | 1.59            | 0.03             | 1.00            | 0.32              | 1.62            | 1.38            |                 |                 | 3.29             | 3.05             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

## 🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

#### SSTL2 Class II


Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

| SSTL2 Class II    | VIL       |            | VIL VIH    |           | VOL       | VOH         | IOL | ЮН | IOSL                    | IOSH                    | IIL | IIH |
|-------------------|-----------|------------|------------|-----------|-----------|-------------|-----|----|-------------------------|-------------------------|-----|-----|
| Drive<br>Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V   | mA  | mA | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| 18 mA             | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.35      | VCCI - 0.43 | 18  | 18 | 124                     | 169                     | 10  | 10  |

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.



#### Figure 2-19 • AC Loading

| Input Low (V) | Input High (V) | Measuring<br>Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.25                    | 1.25            | 1.25           | 30                     |

Note: \*Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

#### **Timing Characteristics**

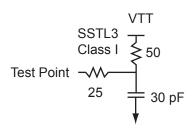
Table 2-71 • SSTL 2 Class II

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 0.66            | 2.17             | 0.04            | 1.33              | 0.43            | 2.21            | 1.77            |                 |                  | 4.44             | ns    |
| -1             | 0.56              | 0.56            | 1.84             | 0.04            | 1.14              | 0.36            | 1.88            | 1.51            |                 |                  | 3.78             | ns    |
| -2             | 0.49              | 0.49            | 1.62             | 0.03            | 1.00              | 0.32            | 1.65            | 1.32            |                 |                  | 3.32             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

#### SSTL3 Class I


Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

| SSTL3 Class I     |           | VIL VI     |            | VOL VOH I |           | IOL        | ЮН | IOSL | IOSH                    | IIL                     | IIH |     |
|-------------------|-----------|------------|------------|-----------|-----------|------------|----|------|-------------------------|-------------------------|-----|-----|
| Drive<br>Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V  | mA | mA   | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| 14 mA             | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.7       | VCCI – 1.1 | 14 | 14   | 54                      | 51                      | 10  | 10  |

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.



#### Figure 2-20 • AC Loading

| Input Low (V) | Input High (V) | Measuring<br>Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.5                     | 1.5             | 1.485          | 30                     |

*Note:* \*Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

#### **Timing Characteristics**

Table 2-74 • SSTL3 Class I

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.31            | 0.04             | 1.25            | 0.43              | 2.35            | 1.84            |                 |                 | 4.59             | 4.07             | ns    |
| -1             | 0.56              | 1.96            | 0.04             | 1.06            | 0.36              | 2.00            | 1.56            |                 |                 | 3.90             | 3.46             | ns    |
| -2             | 0.49              | 1.72            | 0.03             | 0.93            | 0.32              | 1.75            | 1.37            |                 |                 | 3.42             | 3.04             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

## **VersaTile Characteristics**

## VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.



Figure 2-34 • Sample of Combinatorial Cells

## **Global Resource Characteristics**

## A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

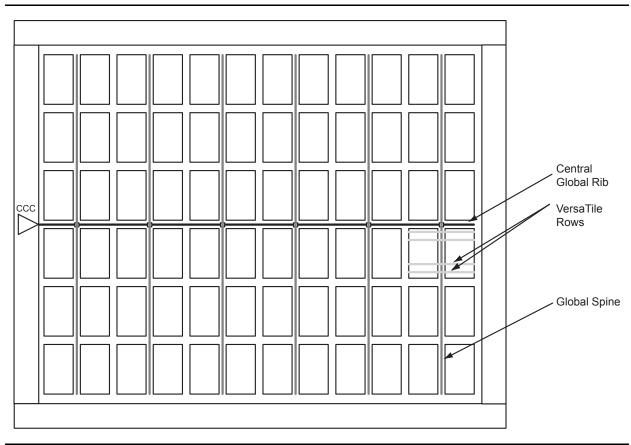
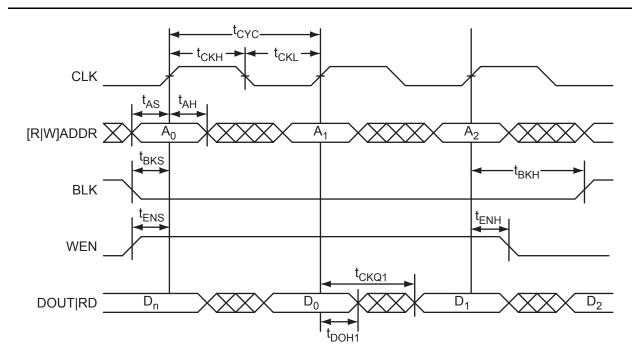




Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

### **Global Tree Timing Characteristics**

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

## Timing Waveforms





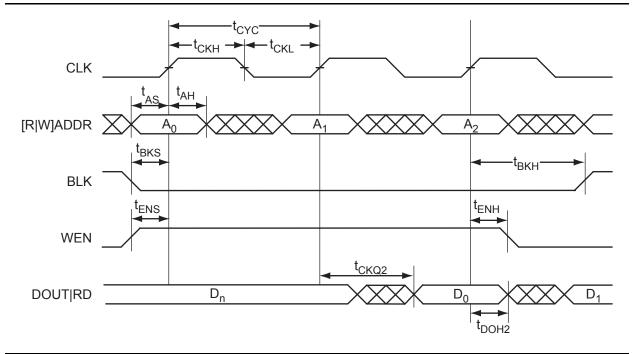



Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

## 🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

### FIFO

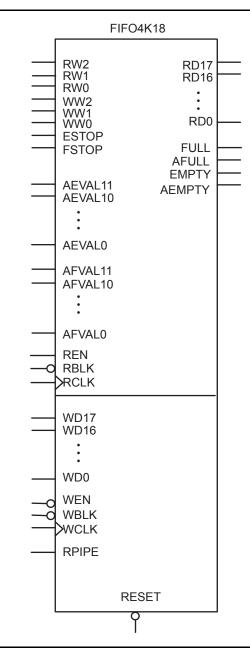
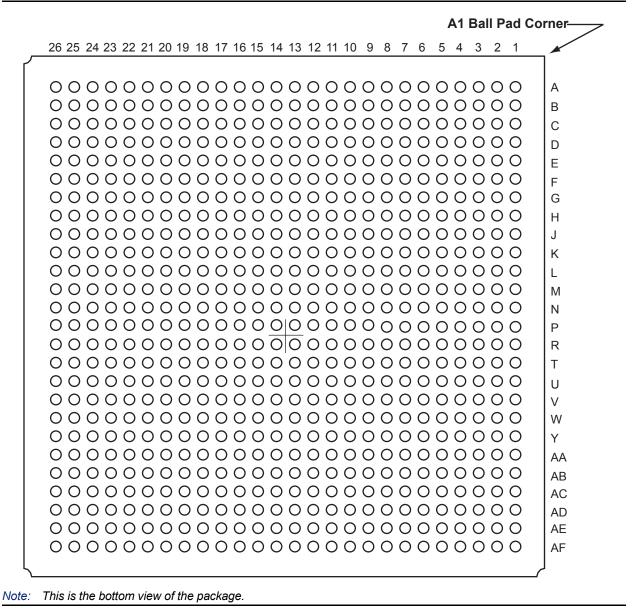



Figure 2-46 • FIFO Model



|            | FG256            |            | FG256            | FG256      |                  |  |  |
|------------|------------------|------------|------------------|------------|------------------|--|--|
| Pin Number | A3PE600 Function | Pin Number | A3PE600 Function | Pin Number | A3PE600 Function |  |  |
| A1         | GND              | C5         | GAC0/IO02NDB0V0  | E9         | IO21NDB1V0       |  |  |
| A2         | GAA0/IO00NDB0V0  | C6         | GAC1/IO02PDB0V0  | E10        | VCCIB1           |  |  |
| A3         | GAA1/IO00PDB0V0  | C7         | IO15NDB0V2       | E11        | VCCIB1           |  |  |
| A4         | GAB0/IO01NDB0V0  | C8         | IO15PDB0V2       | E12        | VMV1             |  |  |
| A5         | IO05PDB0V0       | C9         | IO20PDB1V0       | E13        | GBC2/IO38PDB2V0  |  |  |
| A6         | IO10PDB0V1       | C10        | IO25NDB1V0       | E14        | IO37NDB2V0       |  |  |
| A7         | IO12PDB0V2       | C11        | IO27PDB1V0       | E15        | IO41NDB2V0       |  |  |
| A8         | IO16NDB0V2       | C12        | GBC0/IO33NDB1V1  | E16        | IO41PDB2V0       |  |  |
| A9         | IO23NDB1V0       | C13        | VCCPLB           | F1         | IO124PDB7V0      |  |  |
| A10        | IO23PDB1V0       | C14        | VMV2             | F2         | IO125PDB7V0      |  |  |
| A11        | IO28NDB1V1       | C15        | IO36NDB2V0       | F3         | IO126PDB7V0      |  |  |
| A12        | IO28PDB1V1       | C16        | IO42PDB2V0       | F4         | IO130NDB7V1      |  |  |
| A13        | GBB1/IO34PDB1V1  | D1         | IO128PDB7V1      | F5         | VCCIB7           |  |  |
| A14        | GBA0/IO35NDB1V1  | D2         | IO129PDB7V1      | F6         | GND              |  |  |
| A15        | GBA1/IO35PDB1V1  | D3         | GAC2/IO132PDB7V1 | F7         | VCC              |  |  |
| A16        | GND              | D4         | VCOMPLA          | F8         | VCC              |  |  |
| B1         | GAB2/IO133PDB7V1 | D5         | GNDQ             | F9         | VCC              |  |  |
| B2         | GAA2/IO134PDB7V1 | D6         | IO09NDB0V1       | F10        | VCC              |  |  |
| B3         | GNDQ             | D7         | IO09PDB0V1       | F11        | GND              |  |  |
| B4         | GAB1/IO01PDB0V0  | D8         | IO13PDB0V2       | F12        | VCCIB2           |  |  |
| B5         | IO05NDB0V0       | D9         | IO21PDB1V0       | F13        | IO38NDB2V0       |  |  |
| B6         | IO10NDB0V1       | D10        | IO25PDB1V0       | F14        | IO40NDB2V0       |  |  |
| B7         | IO12NDB0V2       | D11        | IO27NDB1V0       | F15        | IO40PDB2V0       |  |  |
| B8         | IO16PDB0V2       | D12        | GNDQ             | F16        | IO45PSB2V1       |  |  |
| B9         | IO20NDB1V0       | D13        | VCOMPLB          | G1         | IO124NDB7V0      |  |  |
| B10        | IO24NDB1V0       | D14        | GBB2/IO37PDB2V0  | G2         | IO125NDB7V0      |  |  |
| B11        | IO24PDB1V0       | D15        | IO39PDB2V0       | G3         | IO126NDB7V0      |  |  |
| B12        | GBC1/IO33PDB1V1  | D16        | IO39NDB2V0       | G4         | GFC1/IO120PPB7V0 |  |  |
| B13        | GBB0/IO34NDB1V1  | E1         | IO128NDB7V1      | G5         | VCCIB7           |  |  |
| B14        | GNDQ             | E2         | IO129NDB7V1      | G6         | VCC              |  |  |
| B15        | GBA2/IO36PDB2V0  | E3         | IO132NDB7V1      | G7         | GND              |  |  |
| B16        | IO42NDB2V0       | E4         | IO130PDB7V1      | G8         | GND              |  |  |
| C1         | IO133NDB7V1      | E5         | VMV0             | G9         | GND              |  |  |
| C2         | IO134NDB7V1      | E6         | VCCIB0           | G10        | GND              |  |  |
| C3         | VMV7             | E7         | VCCIB0           | G11        | VCC              |  |  |
| C4         | VCCPLA           | E8         | IO13NDB0V2       | G12        | VCCIB2           |  |  |




| FG256      |                  |  |  |  |  |  |  |
|------------|------------------|--|--|--|--|--|--|
| Pin Number | A3PE600 Function |  |  |  |  |  |  |
| P9         | IO82PDB5V0       |  |  |  |  |  |  |
| P10        | IO76NDB4V1       |  |  |  |  |  |  |
| P11        | IO76PDB4V1       |  |  |  |  |  |  |
| P12        | VMV4             |  |  |  |  |  |  |
| P13        | TCK              |  |  |  |  |  |  |
| P14        | VPUMP            |  |  |  |  |  |  |
| P15        | TRST             |  |  |  |  |  |  |
| P16        | GDA0/IO67NDB3V1  |  |  |  |  |  |  |
| R1         | GEA1/IO102PDB6V0 |  |  |  |  |  |  |
| R2         | GEA0/IO102NDB6V0 |  |  |  |  |  |  |
| R3         | GNDQ             |  |  |  |  |  |  |
| R4         | GEC2/IO99PDB5V2  |  |  |  |  |  |  |
| R5         | IO95NPB5V1       |  |  |  |  |  |  |
| R6         | IO91NDB5V1       |  |  |  |  |  |  |
| R7         | IO91PDB5V1       |  |  |  |  |  |  |
| R8         | IO83NDB5V0       |  |  |  |  |  |  |
| R9         | IO83PDB5V0       |  |  |  |  |  |  |
| R10        | IO77NDB4V1       |  |  |  |  |  |  |
| R11        | IO77PDB4V1       |  |  |  |  |  |  |
| R12        | IO69NDB4V0       |  |  |  |  |  |  |
| R13        | GDB2/IO69PDB4V0  |  |  |  |  |  |  |
| R14        | TDI              |  |  |  |  |  |  |
| R15        | GNDQ             |  |  |  |  |  |  |
| R16        | TDO              |  |  |  |  |  |  |
| T1         | GND              |  |  |  |  |  |  |
| T2         | IO100NDB5V2      |  |  |  |  |  |  |
| Т3         | GEB2/IO100PDB5V2 |  |  |  |  |  |  |
| T4         | IO99NDB5V2       |  |  |  |  |  |  |
| Т5         | IO88NDB5V0       |  |  |  |  |  |  |
| Т6         | IO88PDB5V0       |  |  |  |  |  |  |
| T7         | IO89NSB5V0       |  |  |  |  |  |  |
| Т8         | IO80NSB4V1       |  |  |  |  |  |  |
| Т9         | IO81NDB4V1       |  |  |  |  |  |  |
| T10        | IO81PDB4V1       |  |  |  |  |  |  |
| T11        | IO70NDB4V0       |  |  |  |  |  |  |
| T12        | GDC2/IO70PDB4V0  |  |  |  |  |  |  |

| FG256      |                  |  |  |  |  |  |
|------------|------------------|--|--|--|--|--|
| Pin Number | A3PE600 Function |  |  |  |  |  |
| T13        | IO68NDB4V0       |  |  |  |  |  |
| T14        | GDA2/IO68PDB4V0  |  |  |  |  |  |
| T15        | TMS              |  |  |  |  |  |
| T16        | GND              |  |  |  |  |  |



## FG676



#### Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.



|            | FG676             |            | FG676             | FG676      |                   |  |  |
|------------|-------------------|------------|-------------------|------------|-------------------|--|--|
| Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function |  |  |
| C9         | IO10PDB0V1        | D19        | IO45PDB1V1        | F3         | IO213NDB7V2       |  |  |
| C10        | IO16PDB0V2        | D20        | IO46PPB1V1        | F4         | IO213PDB7V2       |  |  |
| C11        | IO20PDB0V2        | D21        | IO48PPB1V2        | F5         | GND               |  |  |
| C12        | IO24PDB0V3        | D22        | GBA0/IO57NPB1V3   | F6         | VCCPLA            |  |  |
| C13        | IO23PDB0V2        | D23        | GNDQ              | F7         | GAB0/IO01NDB0V0   |  |  |
| C14        | IO28PDB0V3        | D24        | GBB1/IO56PPB1V3   | F8         | GNDQ              |  |  |
| C15        | IO31PDB0V3        | D25        | GBB2/IO59PDB2V0   | F9         | IO03PDB0V0        |  |  |
| C16        | IO32NDB1V0        | D26        | IO59NDB2V0        | F10        | IO13PDB0V1        |  |  |
| C17        | IO36NDB1V0        | E1         | IO212PDB7V2       | F11        | IO15PDB0V1        |  |  |
| C18        | IO37NDB1V0        | E2         | IO211NDB7V2       | F12        | IO19PDB0V2        |  |  |
| C19        | IO45NDB1V1        | E3         | IO211PDB7V2       | F13        | IO21PDB0V2        |  |  |
| C20        | IO42PPB1V1        | E4         | IO220NPB7V3       | F14        | IO27NDB0V3        |  |  |
| C21        | IO46NPB1V1        | E5         | GNDQ              | F15        | IO35PDB1V0        |  |  |
| C22        | IO48NPB1V2        | E6         | GAB2/IO220PPB7V3  | F16        | IO39NDB1V0        |  |  |
| C23        | GBB0/IO56NPB1V3   | E7         | GAB1/IO01PDB0V0   | F17        | IO51PDB1V2        |  |  |
| C24        | VMV1              | E8         | IO05PDB0V0        | F18        | IO53PDB1V2        |  |  |
| C25        | GBC2/IO60PDB2V0   | E9         | IO08NDB0V1        | F19        | IO54PDB1V3        |  |  |
| C26        | IO60NDB2V0        | E10        | IO12PDB0V1        | F20        | VMV2              |  |  |
| D1         | IO218NDB7V3       | E11        | IO18PDB0V2        | F21        | VCOMPLB           |  |  |
| D2         | IO218PDB7V3       | E12        | IO17PDB0V2        | F22        | IO61PDB2V0        |  |  |
| D3         | GND               | E13        | IO25PDB0V3        | F23        | IO61NDB2V0        |  |  |
| D4         | VMV7              | E14        | IO29PDB0V3        | F24        | IO66PDB2V1        |  |  |
| D5         | IO221NDB7V3       | E15        | IO33PDB1V0        | F25        | IO66NDB2V1        |  |  |
| D6         | GAC0/IO02NDB0V0   | E16        | IO40NDB1V1        | F26        | IO68NDB2V1        |  |  |
| D7         | GAC1/IO02PDB0V0   | E17        | IO43PDB1V1        | G1         | IO203NPB7V1       |  |  |
| D8         | IO05NDB0V0        | E18        | IO47NDB1V1        | G2         | IO207NDB7V2       |  |  |
| D9         | IO08PDB0V1        | E19        | IO54NDB1V3        | G3         | IO207PDB7V2       |  |  |
| D10        | IO12NDB0V1        | E20        | IO52NDB1V2        | G4         | IO216NDB7V3       |  |  |
| D11        | IO18NDB0V2        | E21        | IO52PDB1V2        | G5         | IO216PDB7V3       |  |  |
| D12        | IO17NDB0V2        | E22        | VCCPLB            | G6         | VCOMPLA           |  |  |
| D13        | IO25NDB0V3        | E23        | GBA1/IO57PPB1V3   | G7         | VMV0              |  |  |
| D14        | IO29NDB0V3        | E24        | IO63PDB2V0        | G8         | VCC               |  |  |
| D15        | IO33NDB1V0        | E25        | IO63NDB2V0        | G9         | IO03NDB0V0        |  |  |
| D16        | IO40PDB1V1        | E26        | IO68PDB2V1        | G10        | IO13NDB0V1        |  |  |
| D17        | IO43NDB1V1        | F1         | IO212NDB7V2       | G11        | IO15NDB0V1        |  |  |
| D18        | IO47PDB1V1        | F2         | IO203PPB7V1       | G12        | IO19NDB0V2        |  |  |

## **Microsemi**

Package Pin Assignments

|            | FG676             |            | FG676             |            | FG676             |  |
|------------|-------------------|------------|-------------------|------------|-------------------|--|
| Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function |  |
| G13        | IO21NDB0V2        | H23        | IO69PDB2V1        | K7         | IO217NDB7V3       |  |
| G14        | IO27PDB0V3        | H24        | IO76PDB2V2        | K8         | VCCIB7            |  |
| G15        | IO35NDB1V0        | H25        | IO76NDB2V2        | K9         | VCC               |  |
| G16        | IO39PDB1V0        | H26        | IO78NDB2V2        | K10        | GND               |  |
| G17        | IO51NDB1V2        | J1         | IO197NDB7V0       | K11        | GND               |  |
| G18        | IO53NDB1V2        | J2         | IO197PDB7V0       | K12        | GND               |  |
| G19        | VCCIB1            | J3         | VMV7              | K13        | GND               |  |
| G20        | GBA2/IO58PPB2V0   | J4         | IO215NDB7V3       | K14        | GND               |  |
| G21        | GNDQ              | J5         | IO215PDB7V3       | K15        | GND               |  |
| G22        | IO64NDB2V1        | J6         | IO214PDB7V3       | K16        | GND               |  |
| G23        | IO64PDB2V1        | J7         | IO214NDB7V3       | K17        | GND               |  |
| G24        | IO72PDB2V2        | J8         | VCCIB7            | K18        | VCC               |  |
| G25        | IO72NDB2V2        | J9         | VCC               | K19        | VCCIB2            |  |
| G26        | IO78PDB2V2        | J10        | VCC               | K20        | IO65PDB2V1        |  |
| H1         | IO208NDB7V2       | J11        | VCC               | K21        | IO65NDB2V1        |  |
| H2         | IO208PDB7V2       | J12        | VCC               | K22        | IO74PDB2V2        |  |
| H3         | IO209NDB7V2       | J13        | VCC               | K23        | IO74NDB2V2        |  |
| H4         | IO209PDB7V2       | J14        | VCC               | K24        | IO75PDB2V2        |  |
| H5         | IO219NDB7V3       | J15        | VCC               | K25        | IO75NDB2V2        |  |
| H6         | GAC2/IO219PDB7V3  | J16        | VCC               | K26        | IO84PDB2V3        |  |
| H7         | VCCIB7            | J17        | VCC               | L1         | IO195NDB7V0       |  |
| H8         | VCC               | J18        | VCC               | L2         | IO198PPB7V0       |  |
| H9         | VCCIB0            | J19        | VCCIB2            | L3         | GNDQ              |  |
| H10        | VCCIB0            | J20        | IO62PDB2V0        | L4         | IO201PDB7V1       |  |
| H11        | VCCIB0            | J21        | IO62NDB2V0        | L5         | IO201NDB7V1       |  |
| H12        | VCCIB0            | J22        | IO70NDB2V1        | L6         | IO210NDB7V2       |  |
| H13        | VCCIB0            | J23        | IO69NDB2V1        | L7         | IO210PDB7V2       |  |
| H14        | VCCIB1            | J24        | VMV2              | L8         | VCCIB7            |  |
| H15        | VCCIB1            | J25        | IO80PDB2V3        | L9         | VCC               |  |
| H16        | VCCIB1            | J26        | IO80NDB2V3        | L10        | GND               |  |
| H17        | VCCIB1            | K1         | IO195PDB7V0       | L11        | GND               |  |
| H18        | VCCIB1            | K2         | IO199NDB7V1       | L12        | GND               |  |
| H19        | VCC               | K3         | IO199PDB7V1       | L13        | GND               |  |
| H20        | VCC               | K4         | IO205NDB7V1       | L14        | GND               |  |
| H21        | IO58NPB2V0        | K5         | IO205PDB7V1       | L15        | GND               |  |
| H22        | IO70PDB2V1        | K6         | IO217PDB7V3       | L16        | GND               |  |



|            | FG896             |  |  |  |  |  |
|------------|-------------------|--|--|--|--|--|
| Pin Number | A3PE3000 Function |  |  |  |  |  |
| W29        | IO131PDB3V2       |  |  |  |  |  |
| W30        | IO123NDB3V1       |  |  |  |  |  |
| Y1         | IO266PDB6V4       |  |  |  |  |  |
| Y2         | IO250PDB6V2       |  |  |  |  |  |
| Y3         | IO250NDB6V2       |  |  |  |  |  |
| Y4         | IO246PDB6V1       |  |  |  |  |  |
| Y5         | IO247NDB6V1       |  |  |  |  |  |
| Y6         | IO247PDB6V1       |  |  |  |  |  |
| Y7         | IO249NPB6V1       |  |  |  |  |  |
| Y8         | IO245PDB6V1       |  |  |  |  |  |
| Y9         | IO253NDB6V2       |  |  |  |  |  |
| Y10        | GEB0/IO235NPB6V0  |  |  |  |  |  |
| Y11        | VCC               |  |  |  |  |  |
| Y12        | VCC               |  |  |  |  |  |
| Y13        | VCC               |  |  |  |  |  |
| Y14        | VCC               |  |  |  |  |  |
| Y15        | VCC               |  |  |  |  |  |
| Y16        | VCC               |  |  |  |  |  |
| Y17        | VCC               |  |  |  |  |  |
| Y18        | VCC               |  |  |  |  |  |
| Y19        | VCC               |  |  |  |  |  |
| Y20        | VCC               |  |  |  |  |  |
| Y21        | IO142PPB3V3       |  |  |  |  |  |
| Y22        | IO134NDB3V2       |  |  |  |  |  |
| Y23        | IO138NDB3V3       |  |  |  |  |  |
| Y24        | IO140NDB3V3       |  |  |  |  |  |
| Y25        | IO140PDB3V3       |  |  |  |  |  |
| Y26        | IO136PPB3V2       |  |  |  |  |  |
| Y27        | IO141NDB3V3       |  |  |  |  |  |
| Y28        | IO135NDB3V2       |  |  |  |  |  |
| Y29        | IO131NDB3V2       |  |  |  |  |  |
| Y30        | IO133PDB3V2       |  |  |  |  |  |



| Revision             | Changes                                                                                                                                                                                                        | Page |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| v2.1<br>(continued)  | The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections. |      |
|                      | The "Clock Conditioning Circuit (CCC) and PLL" section was updated.                                                                                                                                            | 1-I  |
|                      | The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."                                                                                |      |
|                      | The $T_J$ parameter in Table 3-2 • Recommended Operating Conditions was changed to $T_A$ , ambient temperature, and table notes 4–6 were added.                                                                | 3-2  |
|                      | The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.                                                                                                             | 2-15 |
| v2.0<br>(April 2007) | In the "Temperature Grade Offerings" section, Ambient was deleted.                                                                                                                                             | iii  |
|                      | Ambient was deleted from "Temperature Grade Offerings".                                                                                                                                                        |      |
|                      | Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".                                                                                                                                       |      |
|                      | The "PLL Macro" section was updated to include power-up information.                                                                                                                                           |      |
|                      | Table 2-13 • ProASIC3E CCC/PLL Specification was updated.                                                                                                                                                      | 2-30 |
|                      | Figure 2-19 • Peak-to-Peak Jitter Definition is new.                                                                                                                                                           |      |
|                      | The "SRAM and FIFO" section was updated with operation and timing requirement information.                                                                                                                     |      |
|                      | The "RESET" section was updated with read and write information.                                                                                                                                               | 2-25 |
|                      | The "RESET" section was updated with read and write information.                                                                                                                                               | 2-25 |
|                      | The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.                                                                               |      |
|                      | In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.                                                                                          |      |
|                      | Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.                                                                                                               |      |
|                      | Notes 3, 4, and 5 were added to Table 2-17 $\cdot$ Comparison Table for 5 V–<br>Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum<br>current was updated from 4 x 52.7 to 5 x 52.7.     |      |
|                      | The "VCCPLF PLL Supply Voltage" section was updated.                                                                                                                                                           | 2-50 |
|                      | The "VPUMP Programming Supply Voltage" section was updated.                                                                                                                                                    | 2-50 |
|                      | The "GL Globals" section was updated to include information about direct input into quadrant clocks.                                                                                                           |      |
|                      | VJTAG was deleted from the "TCK Test Clock" section.                                                                                                                                                           | 2-51 |
|                      | In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.                                                                               |      |
|                      | Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".                                                                 | 3-2  |
|                      | Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).                                                                                                                      | 3-2  |
|                      | In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.                                                                                                                                              | 3-5  |



## **Datasheet Categories**

#### Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

#### **Product Brief**

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

#### Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

#### Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

#### Production

This version contains information that is considered to be final.

## **Export Administration Regulations (EAR)**

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

# Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.