

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	280
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)
--	------------

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}$ (Ω) ³
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	-
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA ⁴	25	25
SSTL2 (I)	15 mA	27	31
SSTL2 (II)	18 mA	13	15
SSTL3 (I)	14 mA	44	69
SSTL3 (II)	21 mA	18	32

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R(_{(WEAK}	Ω) Ω	R _(WEAK PULL-DOWN) ² (Ω)				
VCCI	Min.	Max.	Min.	Max.			
3.3 V	10 k	45 k	10 k	45 k			
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k			
2.5 V	11 k	55 k	12 k	74 k			
1.8 V	18 k	70 k	17 k	110 k			
1.5 V	19 k	90 k	19 k	140 k			

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew	
Commercial-Case Conditions: T _J = 70°C,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed	toour	too	tow	tav	tava	trout	t-ı	t	t	tu-	truo	truo	Units
	4 mΔ	Std	0.66	17 02		1.83	2 38	0.43	•2L	• 2 н 13 74	•LZ 4 16	•н <u>г</u> 3.78	-2LS	•2H5 17 14	ne
100 μΛ		Old.	0.00	17.02	0.04	1.00	2.00	0.40	17.02	10.74	4.10	0.70	20.72	17.14	113
		-1	0.56	14.48	0.04	1.55	2.02	0.36	14.48	11.69	3.54	3.21	17.37	14.58	ns
		-2	0.49	12.71	0.03	1.36	1.78	0.32	12.71	10.26	3.11	2.82	15.25	12.80	ns
100 µA	8 mA	Std.	0.66	12.16	0.04	1.83	2.38	0.43	12.16	9.78	4.70	4.74	15.55	13.17	ns
		-1	0.56	10.34	0.04	1.55	2.02	0.36	10.34	8.32	4.00	4.03	13.23	11.20	ns
		-2	0.49	9.08	0.03	1.36	1.78	0.32	9.08	7.30	3.51	3.54	11.61	9.84	ns
100µA	12 mA	Std.	0.66	9.32	0.04	1.83	2.38	0.43	9.32	7.62	5.06	5.36	12.71	11.02	ns
		-1	0.56	7.93	0.04	1.55	2.02	0.36	7.93	6.48	4.31	4.56	10.81	9.37	ns
		-2	0.49	6.96	0.03	1.36	1.78	0.32	6.96	5.69	3.78	4.00	9.49	8.23	ns
100 µA	16 mA	Std.	0.66	8.69	0.04	1.83	2.38	0.43	8.69	7.17	5.14	5.53	12.08	10.57	ns
		-1	0.56	7.39	0.04	1.55	2.02	0.36	7.39	6.10	4.37	4.71	10.28	8.99	ns
		-2	0.49	6.49	0.03	1.36	1.78	0.32	6.49	5.36	3.83	4.13	9.02	7.89	ns
100 µA	24 mA	Std.	0.66	8.11	0.04	1.83	2.38	0.43	8.11	7.13	5.23	6.13	11.50	10.52	ns
		-1	0.56	6.90	0.04	1.55	2.02	0.36	6.90	6.06	4.45	5.21	9.78	8.95	ns
		-2	0.49	6.05	0.03	1.36	1.78	0.32	6.05	5.32	3.91	4.57	8.59	7.86	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
Software default extension birblighted in grave

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+	VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
–1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

|--|

HSTL Class I	I VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8	39	32	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-16 • AC Loading

Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

Timing Characteristics

Table 2-62 • HSTL Class I

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = .4 V, VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	3.18	0.04	2.12	0.43	3.24	3.14			5.47	5.38	ns
-1	0.56	2.70	0.04	1.81	0.36	2.75	2.67			4.66	4.58	ns
-2	0.49	2.37	0.03	1.59	0.32	2.42	2.35			4.09	4.02	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

static Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-101 • FIFO

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.38	1.57	1.84	ns
t _{ENH}	REN, WEN Hold Time	0.02	0.02	0.02	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (pass-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (pass-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

	PQ208		PQ208	PQ208		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
108	TDO	144	IO47PDB2V1	180	IO19NPB0V2	
109	TRST	145	IO44NDB2V1	181	IO18NPB0V2	
110	VJTAG	146	IO44PDB2V1	182	IO17PPB0V2	
111	VMV3	147	IO43NDB2V0	183	IO16PPB0V2	
112	GDA0/IO67NPB3V1	148	IO43PDB2V0	184	IO17NPB0V2	
113	GDB0/IO66NPB3V1	149	IO40NDB2V0	185	IO16NPB0V2	
114	GDA1/IO67PPB3V1	150	IO40PDB2V0	186	VCCIB0	
115	GDB1/IO66PPB3V1	151	GBC2/IO38PSB2V0	187	VCC	
116	GDC0/IO65NDB3V1	152	GBA2/IO36PSB2V0	188	IO15PDB0V2	
117	GDC1/IO65PDB3V1	153	GBB2/IO37PSB2V0	189	IO15NDB0V2	
118	IO62NDB3V1	154	VMV2	190	IO13PDB0V2	
119	IO62PDB3V1	155	GNDQ	191	IO13NDB0V2	
120	IO58NDB3V0	156	GND	192	IO11PSB0V1	
121	IO58PDB3V0	157	VMV1	193	IO09PDB0V1	
122	GND	158	GNDQ	194	IO09NDB0V1	
123	VCCIB3	159	GBA1/IO35PDB1V1	195	GND	
124	GCC2/IO55PSB3V0	160	GBA0/IO35NDB1V1	196	IO07PDB0V1	
125	GCB2/IO54PSB3V0	161	GBB1/IO34PDB1V1	197	IO07NDB0V1	
126	NC	162	GND	198	IO05PDB0V0	
127	IO53NDB3V0	163	GBB0/IO34NDB1V1	199	IO05NDB0V0	
128	GCA2/IO53PDB3V0	164	GBC1/IO33PDB1V1	200	VCCIB0	
129	GCA1/IO52PPB3V0	165	GBC0/IO33NDB1V1	201	GAC1/IO02PDB0V0	
130	GND	166	IO31PDB1V1	202	GAC0/IO02NDB0V0	
131	VCCPLC	167	IO31NDB1V1	203	GAB1/IO01PDB0V0	
132	GCA0/IO52NPB3V0	168	IO27PDB1V0	204	GAB0/IO01NDB0V0	
133	VCOMPLC	169	IO27NDB1V0	205	GAA1/IO00PDB0V0	
134	GCB0/IO51NDB2V1	170	VCCIB1	206	GAA0/IO00NDB0V0	
135	GCB1/IO51PDB2V1	171	VCC	207	GNDQ	
136	GCC1/IO50PSB2V1	172	IO23PPB1V0	208	VMV0	
137	IO49NDB2V1	173	IO22PSB1V0		•	
138	IO49PDB2V1	174	IO23NPB1V0			
139	IO48PSB2V1	175	IO21PDB1V0			
140	VCCIB2	176	IO21NDB1V0			
141	GND	177	IO19PPB0V2			
142	VCC	178	GND			
143	IO47NDB2V1	179	IO18PPB0V2			

	FG324		FG324	FG324		
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	
N1	IO247NDB6V1	R1	IO245NDB6V1	U1	IO241NDB6V0	
N2	IO247PDB6V1	R2	VCCIB6	U2	GEA2/IO233PPB5V4	
N3	IO251NPB6V2	R3	GEA1/IO234PPB6V0	U3	GEC2/IO231PPB5V4	
N4	GEC0/IO236NDB6V0	R4	IO232NDB5V4	U4	VCCIB5	
N5	VCOMPLE	R5	GEB2/IO232PDB5V4	U5	GNDQ	
N6	IO212NDB5V2	R6	IO214NDB5V2	U6	IO208PDB5V1	
N7	IO212PDB5V2	R7	IO202PDB5V1	U7	IO198PPB5V0	
N8	IO192NPB4V4	R8	IO194PDB5V0	U8	VCCIB5	
N9	IO174PDB4V2	R9	IO186PDB4V4	U9	IO182NPB4V3	
N10	IO170PDB4V2	R10	IO178PDB4V3	U10	IO180NPB4V3	
N11	GDA2/IO154PPB4V0	R11	IO168NSB4V1	U11	VCCIB4	
N12	GDB2/IO155PPB4V0	R12	IO164PDB4V1	U12	IO166PPB4V1	
N13	GDA1/IO153PPB3V4	R13	GDC2/IO156PDB4V0	U13	IO162PDB4V1	
N14	VCOMPLD	R14	ТСК	U14	GNDQ	
N15	GDB0/IO152NDB3V4	R15	VPUMP	U15	VCCIB4	
N16	GDB1/IO152PDB3V4	R16	TRST	U16	TMS	
N17	IO138NDB3V3	R17	VCCIB3	U17	VMV3	
N18	IO138PDB3V3	R18	IO142NDB3V3	U18	IO146NDB3V4	
P1	IO245PDB6V1	T1	IO241PDB6V0	V1	GND	
P2	GNDQ	T2	GEA0/IO234NPB6V0	V2	IO218NDB5V3	
P3	VMV6	Т3	IO233NPB5V4	V3	IO218PDB5V3	
P4	GEC1/IO236PDB6V0	T4	IO231NPB5V4	V4	IO206NDB5V1	
P5	VCCPLE	T5	VMV5	V5	IO206PDB5V1	
P6	IO214PDB5V2	Т6	IO208NDB5V1	V6	IO198NPB5V0	
P7	VCCIB5	T7	IO202NDB5V1	V7	GND	
P8	GND	Т8	IO194NDB5V0	V8	IO190NDB4V4	
P9	IO174NDB4V2	Т9	IO186NDB4V4	V9	IO190PDB4V4	
P10	IO170NDB4V2	T10	IO178NDB4V3	V10	IO182PPB4V3	
P11	GND	T11	IO166NPB4V1	V11	IO180PPB4V3	
P12	VCCIB4	T12	IO164NDB4V1	V12	GND	
P13	IO155NPB4V0	T13	IO156NDB4V0	V13	IO162NDB4V1	
P14	VCCPLD	T14	VMV4	V14	IO160NDB4V0	
P15	VJTAG	T15	TDI	V15	IO160PDB4V0	
P16	GDC0/IO151NDB3V4	T16	GNDQ	V16	IO158NDB4V0	
P17	GDC1/IO151PDB3V4	T17	TDO	V17	IO158PDB4V0	
P18	IO142PDB3V3	T18	IO146PDB3V4	V18	GND	

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
A1	GND	AA15	NC	B7	IO10PDB0V1
A2	GND	AA16	IO117NDB4V0	B8	IO15NDB0V1
A3	VCCIB0	AA17	IO117PDB4V0	B9	IO17NDB0V2
A4	IO05NDB0V0	AA18	IO115NDB4V0	B10	IO20PDB0V2
A5	IO05PDB0V0	AA19	IO115PDB4V0	B11	IO29PDB0V3
A6	IO11NDB0V1	AA20	NC	B12	IO32NDB1V0
A7	IO11PDB0V1	AA21	VCCIB3	B13	IO43NDB1V1
A8	IO15PDB0V1	AA22	GND	B14	NC
A9	IO17PDB0V2	AB1	GND	B15	NC
A10	IO27NDB0V3	AB2	GND	B16	IO53NDB1V2
A11	IO27PDB0V3	AB3	VCCIB5	B17	IO53PDB1V2
A12	IO32PDB1V0	AB4	IO159NDB5V3	B18	IO54PDB1V3
A13	IO43PDB1V1	AB5	IO159PDB5V3	B19	NC
A14	IO47NDB1V1	AB6	IO149NDB5V1	B20	NC
A15	IO47PDB1V1	AB7	IO149PDB5V1	B21	VCCIB2
A16	IO51NDB1V2	AB8	IO138NDB5V0	B22	GND
A17	IO51PDB1V2	AB9	IO138PDB5V0	C1	VCCIB7
A18	IO54NDB1V3	AB10	NC	C2	NC
A19	NC	AB11	NC	C3	NC
A20	VCCIB1	AB12	IO127NDB4V2	C4	NC
A21	GND	AB13	IO127PDB4V2	C5	GND
A22	GND	AB14	IO125NDB4V1	C6	IO07NDB0V0
AA1	GND	AB15	IO125PDB4V1	C7	IO07PDB0V0
AA2	VCCIB6	AB16	IO122NDB4V1	C8	VCC
AA3	NC	AB17	IO122PDB4V1	C9	VCC
AA4	IO161PDB5V3	AB18	NC	C10	IO20NDB0V2
AA5	IO155NDB5V2	AB19	NC	C11	IO29NDB0V3
AA6	IO155PDB5V2	AB20	VCCIB4	C12	NC
AA7	IO154NDB5V2	AB21	GND	C13	NC
AA8	IO154PDB5V2	AB22	GND	C14	VCC
AA9	IO143PDB5V1	B1	GND	C15	VCC
AA10	IO143NDB5V1	B2	VCCIB7	C16	NC
AA11	IO131PPB4V2	B3	NC	C17	NC
AA12	IO129NDB4V2	B4	IO03NDB0V0	C18	GND
AA13	IO129PDB4V2	B5	IO03PDB0V0	C19	NC
AA14	NC	B6	IO10NDB0V1	C20	NC

	FG484		FG484	FG484	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
C21	NC	E13	IO41NDB1V1	G5	IO217PDB7V3
C22	VCCIB2	E14	IO41PDB1V1	G6	GAC2/IO219PDB7V3
D1	NC	E15	GBC1/IO55PDB1V3	G7	VCOMPLA
D2	NC	E16	GBB0/IO56NDB1V3	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO19NDB0V2
D4	GND	E18	GBA2/IO58PDB2V0	G10	IO19PDB0V2
D5	GAA0/IO00NDB0V0	E19	IO63NDB2V0	G11	IO25PDB0V3
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO33PDB1V0
D7	GAB0/IO01NDB0V0	E21	IO69NDB2V1	G13	IO39PDB1V0
D8	IO09PDB0V1	E22	NC	G14	IO45NDB1V1
D9	IO13PDB0V1	F1	IO218NPB7V3	G15	GNDQ
D10	IO21PDB0V2	F2	IO216NDB7V3	G16	VCOMPLB
D11	IO31NDB0V3	F3	IO216PDB7V3	G17	GBB2/IO59PDB2V0
D12	IO37NDB1V0	F4	IO220NDB7V3	G18	IO62PDB2V0
D13	IO37PDB1V0	F5	IO221NDB7V3	G19	IO62NDB2V0
D14	IO49NDB1V2	F6	VMV7	G20	IO71PDB2V2
D15	IO49PDB1V2	F7	VCCPLA	G21	IO71NDB2V2
D16	GBB1/IO56PDB1V3	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO57NDB1V3	F9	GAC1/IO02PDB0V0	H1	IO209PSB7V2
D18	GBA1/IO57PDB1V3	F10	IO23NDB0V2	H2	NC
D19	GND	F11	IO23PDB0V2	H3	VCC
D20	NC	F12	IO35PDB1V0	H4	IO214NDB7V3
D21	IO69PDB2V1	F13	IO39NDB1V0	H5	IO217NDB7V3
D22	NC	F14	IO45PDB1V1	H6	IO219NDB7V3
E1	NC	F15	GBC0/IO55NDB1V3	H7	IO215PDB7V3
E2	IO218PPB7V3	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO220PDB7V3	F18	IO58NDB2V0	H10	VCCIB0
E5	GAA2/IO221PDB7V3	F19	IO63PDB2V0	H11	IO25NDB0V3
E6	GNDQ	F20	NC	H12	IO33NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO09NDB0V1	F22	NC	H14	VCCIB1
E9	IO13NDB0V1	G1	IO211NDB7V2	H15	VMV1
E10	IO21NDB0V2	G2	IO211PDB7V2	H16	GBC2/IO60PDB2V0
E11	IO31PDB0V3	G3	NC	H17	IO59NDB2V0
E12	IO35NDB1V0	G4	IO214PDB7V3	H18	IO67NDB2V1

Microsemi

Package Pin Assignments

FG484						
Pin Number	A3PE1500 Function					
V15	IO112NDB4V0					
V16	GDB2/IO112PDB4V0					
V17	TDI					
V18	GNDQ					
V19	TDO					
V20	GND					
V21	NC					
V22	IO105NDB3V2					
W1	NC					
W2	NC					
W3	NC					
W4	GND					
W5	IO165NDB5V3					
W6	GEB2/IO165PDB5V3					
W7	IO164NDB5V3					
W8	IO153NDB5V2					
W9	IO153PDB5V2					
W10	IO147NDB5V1					
W11	IO133NDB4V2					
W12	IO130NDB4V2					
W13	IO130PDB4V2					
W14	IO113NDB4V0					
W15	GDC2/IO113PDB4V0					
W16	IO111NDB4V0					
W17	GDA2/IO111PDB4V0					
W18	TMS					
W19	GND					
W20	NC					
W21	NC					
W22	NC					
Y1	VCCIB6					
Y2	NC					
Y3	NC					
Y4	IO161NDB5V3					
Y5	GND					
Y6	IO163NDB5V3					

FG484					
Pin Number	A3PE1500 Function				
Y7	IO163PDB5V3				
Y8	VCC				
Y9	VCC				
Y10	IO147PDB5V1				
Y11	IO133PDB4V2				
Y12	IO131NPB4V2				
Y13	NC				
Y14	VCC				
Y15	VCC				
Y16	NC				
Y17	NC				
Y18	GND				
Y19	NC				
Y20	NC				
Y21	NC				
Y22	VCCIB3				

	FG484		FG484	FG484	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4
J3	VMV7	K17	IO108NDB2V3	M9	VCC
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2
J19	IO106PPB2V3	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0

	FG484	
Pin Number	A3PE3000 Function	Pin Numb
V15	IO155NDB4V0	¥7
V16	GDB2/IO155PDB4V0	Y8
V17	TDI	Y9
V18	GNDQ	Y10
V19	TDO	Y11
V20	GND	Y12
V21	IO146PDB3V4	Y13
V22	IO142NDB3V3	Y14
W1	IO239NDB6V0	Y15
W2	IO237PDB6V0	Y16
W3	IO230PSB5V4	Y17
W4	GND	Y18
W5	IO232NDB5V4	Y19
W6	GEB2/IO232PDB5V4	Y20
W7	IO231NDB5V4	Y21
W8	IO214NDB5V2	Y22
W9	IO214PDB5V2	
W10	IO200NDB5V0	
W11	IO192NDB4V4	
W12	IO184NDB4V3	
W13	IO184PDB4V3	
W14	IO156NDB4V0	
W15	GDC2/IO156PDB4V0	
W16	IO154NDB4V0	
W17	GDA2/IO154PDB4V0	
W18	TMS	
W19	GND	
W20	IO150NDB3V4	
W21	IO146NDB3V4	
W22	IO148PPB3V4	
Y1	VCCIB6	
Y2	IO237NDB6V0	
Y3	IO228NDB5V4	
Y4	IO224NDB5V3	
Y5	GND	
Y6	IO220NDB5V3	

FG484				
Pin Number	A3PE3000 Function			
Y7	IO220PDB5V3			
Y8	VCC			
Y9	VCC			
Y10	IO200PDB5V0			
Y11	IO192PDB4V4			
Y12	IO188NPB4V4			
Y13	IO187PSB4V4			
Y14	VCC			
Y15	VCC			
Y16	IO164NDB4V1			
Y17	IO164PDB4V1			
Y18	GND			
Y19	IO158PPB4V0			
Y20	IO150PDB3V4			
Y21	IO148NPB3V4			
Y22	VCCIB3			

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	1-I
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	2-9
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5

Revision	Changes	Page
Advance v0.5 (continued)	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Introduction" section was updated.	2-28
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
Tat Set The The info EX The 2-1 EX The Ca Tat The Ca Tat The Sec	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50

Revision	Changes	Page
Advance v0.3	The "Methodology" section was updated.	
(continued)	The A3PE3000 "208-Pin PQFP" pin table was updated.	4-6

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.