

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	280
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe1500-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
ľ	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
-	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential		•	-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended	•			
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

ProASIC3E DC and Switching Characteristics

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * PAC8 * F_{CLK}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

 $N_{\mbox{OUTPUTS}}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-12 on page 2-11.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-12 on page 2-11.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-12 on page 2-11.

PLL Contribution—P_{PLL}

P_{PLL} = PAC13 + PAC14 * F_{CLKOUT}

F_{CLKOUT} is the output clock frequency.¹

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC14 * F_{CLKOUT} product) to the total PLL contribution.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

		Equivalent			VIL	VIH		VOL	VOH	IOL ³	IOH ³
I/O Standard	Drive Strength		Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per PC	CI Specificatio	n				
3.3 V PCI-X					Per PCI	-X Specificati	on				
3.3 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ²	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

 Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels

 Applicable to Commercial and Industrial Conditions

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Output drive strength is below JEDEC specification.

3. Currents are measured at 85°C junction temperature.

4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

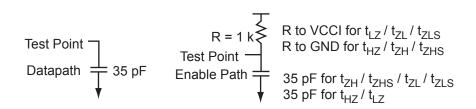
3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive	v	IL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	109	103	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	127	132	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	181	268	10	10

Table 2-29 • Minimum and Maximum DC Input and Output Levels

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.


2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

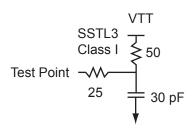
Figure 2-7 • AC Loading

Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	_	35

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

SSTL3 Class I


Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class I		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	54	51	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-74 • SSTL3 Class I

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	1.25	0.43	2.35	1.84			4.59	4.07	ns
-1	0.56	1.96	0.04	1.06	0.36	2.00	1.56			3.90	3.46	ns
-2	0.49	1.72	0.03	0.93	0.32	1.75	1.37			3.42	3.04	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

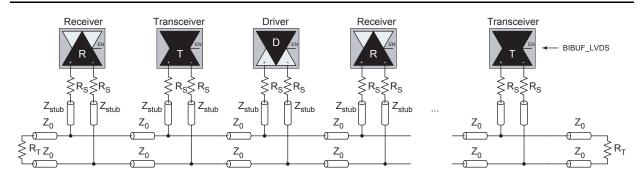
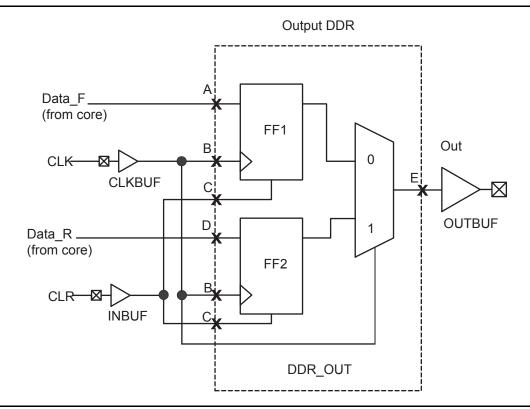



Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

ProASIC3E DC and Switching Characteristics

Output DDR Module

Figure 2-32 • Output DDR Timing Model

Table 2-91 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	C, B
t _{DDRORECCLR}	Clear Recovery	C, B
tDDROSUD1	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

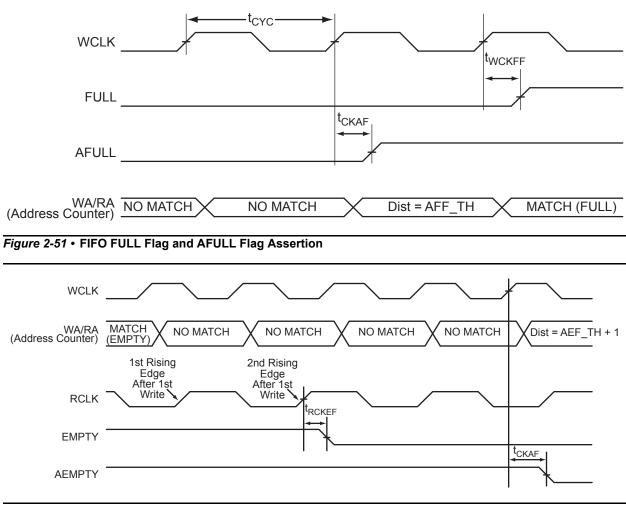
🌜 Microsemi.

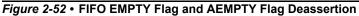
ProASIC3E DC and Switching Characteristics

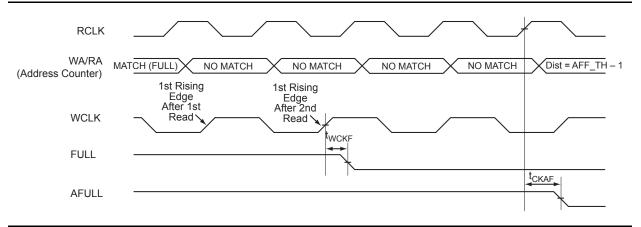
Timing Characteristics

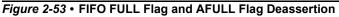
Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V


Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz


Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.


2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Pin Descriptions and Packaging

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User's Guides

ProASIC3E FPGA Fabric User's Guide

http://www.microsemi.com/document-portal/doc_download/130883-proasic3e-fpga-fabric-user-s-guide

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/document-portal/doc_download/131095-package-mechanical-drawings

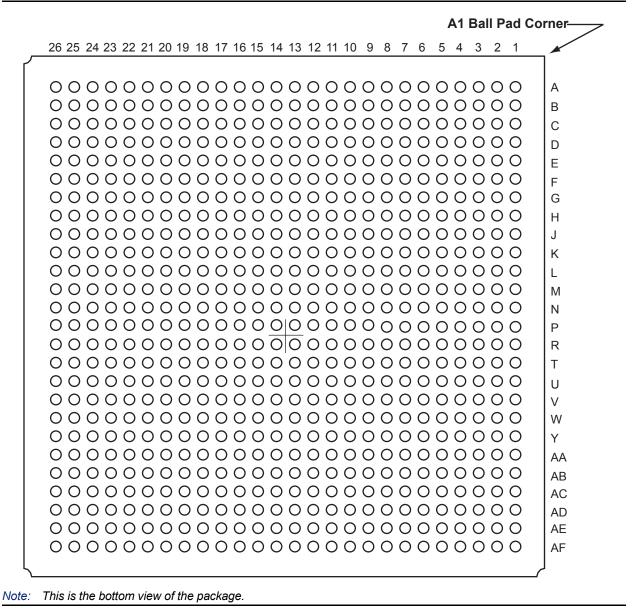
This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/products/fpga-soc/solutions.

	FG256				
Pin Number	A3PE600 Function				
P9	IO82PDB5V0				
P10	IO76NDB4V1				
P11	IO76PDB4V1				
P12	VMV4				
P13	TCK				
P14	VPUMP				
P15	TRST				
P16	GDA0/IO67NDB3V1				
R1	GEA1/IO102PDB6V0				
R2	GEA0/IO102NDB6V0				
R3	GNDQ				
R4	GEC2/IO99PDB5V2				
R5	IO95NPB5V1				
R6	IO91NDB5V1				
R7	IO91PDB5V1				
R8	IO83NDB5V0				
R9	IO83PDB5V0				
R10	IO77NDB4V1				
R11	IO77PDB4V1				
R12	IO69NDB4V0				
R13	GDB2/IO69PDB4V0				
R14	TDI				
R15	GNDQ				
R16	TDO				
T1	GND				
T2	IO100NDB5V2				
Т3	GEB2/IO100PDB5V2				
T4	IO99NDB5V2				
T5	IO88NDB5V0				
Т6	IO88PDB5V0				
T7	IO89NSB5V0				
Т8	IO80NSB4V1				
Т9	IO81NDB4V1				
T10	IO81PDB4V1				
T11	IO70NDB4V0				
T12	GDC2/IO70PDB4V0				

	FG256				
Pin Number	A3PE600 Function				
T13	IO68NDB4V0				
T14	GDA2/IO68PDB4V0				
T15	TMS				
T16	GND				

	FG484	FG484		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
A1	GND	AA15	NC	
A2	GND	AA16	IO71NDB4V0	
A3	VCCIB0	AA17	IO71PDB4V0	
A4	IO06NDB0V1	AA18	NC	
A5	IO06PDB0V1	AA19	NC	
A6	IO08NDB0V1	AA20	NC	
A7	IO08PDB0V1	AA21	VCCIB3	
A8	IO11PDB0V1	AA22	GND	
A9	IO17PDB0V2	AB1	GND	
A10	IO18NDB0V2	AB2	GND	
A11	IO18PDB0V2	AB3	VCCIB5	
A12	IO22PDB1V0	AB4	IO97NDB5V2	
A13	IO26PDB1V0	AB5	IO97PDB5V2	
A14	IO29NDB1V1	AB6	IO93NDB5V1	
A15	IO29PDB1V1	AB7	IO93PDB5V1	
A16	IO31NDB1V1	AB8	IO87NDB5V0	
A17	IO31PDB1V1	AB9	IO87PDB5V0	
A18	IO32NDB1V1	AB10	NC	
A19	NC	AB11	NC	
A20	VCCIB1	AB12	IO75NDB4V1	
A21	GND	AB13	IO75PDB4V1	
A22	GND	AB14	IO72NDB4V0	
AA1	GND	AB15	IO72PDB4V0	
AA2	VCCIB6	AB16	IO73NDB4V0	
AA3	NC	AB17	IO73PDB4V0	
AA4	IO98PDB5V2	AB18	NC	
AA5	IO96NDB5V2	AB19	NC	
AA6	IO96PDB5V2	AB20	VCCIB4	
AA7	IO86NDB5V0	AB21	GND	
AA8	IO86PDB5V0	AB22	GND	
AA9	IO85PDB5V0	B1	GND	
AA10	IO85NDB5V0	B2	VCCIB7	
AA11	IO78PPB4V1	B3	NC	
AA12	IO79NDB4V1	B4	IO03NDB0V0	
AA13	IO79PDB4V1	B5	IO03PDB0V0	
AA14	NC	B6	IO07NDB0V1	


	FG484
Pin Number	A3PE600 Function
B7	IO07PDB0V1
B8	IO11NDB0V1
B9	IO17NDB0V2
B10	IO14PDB0V2
B11	IO19PDB0V2
B12	IO22NDB1V0
B13	IO26NDB1V0
B14	NC
B15	NC
B16	IO30NDB1V1
B17	IO30PDB1V1
B18	IO32PDB1V1
B19	NC
B20	NC
B21	VCCIB2
B22	GND
C1	VCCIB7
C2	NC
C3	NC
C4	NC
C5	GND
C6	IO04NDB0V0
C7	IO04PDB0V0
C8	VCC
C9	VCC
C10	IO14NDB0V2
C11	IO19NDB0V2
C12	NC
C13	NC
C14	VCC
C15	VCC
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC

	FG484		FG484		FG484
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
C21	NC	E13	IO41NDB1V1	G5	IO217PDB7V3
C22	VCCIB2	E14	IO41PDB1V1	G6	GAC2/IO219PDB7V3
D1	NC	E15	GBC1/IO55PDB1V3	G7	VCOMPLA
D2	NC	E16	GBB0/IO56NDB1V3	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO19NDB0V2
D4	GND	E18	GBA2/IO58PDB2V0	G10	IO19PDB0V2
D5	GAA0/IO00NDB0V0	E19	IO63NDB2V0	G11	IO25PDB0V3
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO33PDB1V0
D7	GAB0/IO01NDB0V0	E21	IO69NDB2V1	G13	IO39PDB1V0
D8	IO09PDB0V1	E22	NC	G14	IO45NDB1V1
D9	IO13PDB0V1	F1	IO218NPB7V3	G15	GNDQ
D10	IO21PDB0V2	F2	IO216NDB7V3	G16	VCOMPLB
D11	IO31NDB0V3	F3	IO216PDB7V3	G17	GBB2/IO59PDB2V0
D12	IO37NDB1V0	F4	IO220NDB7V3	G18	IO62PDB2V0
D13	IO37PDB1V0	F5	IO221NDB7V3	G19	IO62NDB2V0
D14	IO49NDB1V2	F6	VMV7	G20	IO71PDB2V2
D15	IO49PDB1V2	F7	VCCPLA	G21	IO71NDB2V2
D16	GBB1/IO56PDB1V3	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO57NDB1V3	F9	GAC1/IO02PDB0V0	H1	IO209PSB7V2
D18	GBA1/IO57PDB1V3	F10	IO23NDB0V2	H2	NC
D19	GND	F11	IO23PDB0V2	H3	VCC
D20	NC	F12	IO35PDB1V0	H4	IO214NDB7V3
D21	IO69PDB2V1	F13	IO39NDB1V0	H5	IO217NDB7V3
D22	NC	F14	IO45PDB1V1	H6	IO219NDB7V3
E1	NC	F15	GBC0/IO55NDB1V3	H7	IO215PDB7V3
E2	IO218PPB7V3	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO220PDB7V3	F18	IO58NDB2V0	H10	VCCIB0
E5	GAA2/IO221PDB7V3	F19	IO63PDB2V0	H11	IO25NDB0V3
E6	GNDQ	F20	NC	H12	IO33NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO09NDB0V1	F22	NC	H14	VCCIB1
E9	IO13NDB0V1	G1	IO211NDB7V2	H15	VMV1
E10	IO21NDB0V2	G2	IO211PDB7V2	H16	GBC2/IO60PDB2V0
E11	IO31PDB0V3	G3	NC	H17	IO59NDB2V0
E12	IO35NDB1V0	G4	IO214PDB7V3	H18	IO67NDB2V1

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Package Pin Assignments

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AC21	IO164PDB4V1	AD27	GDA0/IO153NDB3V4	AF3	VCCIB6
AC22	IO162PPB4V1	AD28	GDC0/IO151NDB3V4	AF4	IO220NPB5V3
AC23	GND	AD29	GDC1/IO151PDB3V4	AF5	VCC
AC24	VCOMPLD	AD30	GND	AF6	IO228NDB5V4
AC25	IO150NDB3V4	AE1	IO242PPB6V1	AF7	VCCIB5
AC26	IO148NDB3V4	AE2	VCC	AF8	IO230PDB5V4
AC27	GDA1/IO153PDB3V4	AE3	IO239PDB6V0	AF9	IO229NDB5V4
AC28	IO145NDB3V3	AE4	IO239NDB6V0	AF10	IO229PDB5V4
AC29	IO143NDB3V3	AE5	VMV6	AF11	IO214PPB5V2
AC30	IO137NDB3V2	AE6	GND	AF12	IO208NDB5V1
AD1	GND	AE7	GNDQ	AF13	IO208PDB5V1
AD2	IO242NPB6V1	AE8	IO230NDB5V4	AF14	IO200PDB5V0
AD3	IO240NDB6V0	AE9	IO224NPB5V3	AF15	IO196NDB5V0
AD4	GEC0/IO236NDB6V0	AE10	IO214NPB5V2	AF16	IO186NDB4V4
AD5	VCCIB6	AE11	IO212NDB5V2	AF17	IO186PDB4V4
AD6	GNDQ	AE12	IO212PDB5V2	AF18	IO180NDB4V3
AD7	VCC	AE13	IO202NPB5V1	AF19	IO180PDB4V3
AD8	VMV5	AE14	IO200NDB5V0	AF20	IO168NDB4V1
AD9	VCCIB5	AE15	IO196PDB5V0	AF21	IO168PDB4V1
AD10	IO224PPB5V3	AE16	IO190NDB4V4	AF22	IO160NDB4V0
AD11	IO218NPB5V3	AE17	IO184PDB4V3	AF23	IO158NPB4V0
AD12	IO216PPB5V2	AE18	IO184NDB4V3	AF24	VCCIB4
AD13	IO210PPB5V2	AE19	IO172PDB4V2	AF25	IO154NPB4V0
AD14	IO202PPB5V1	AE20	IO172NDB4V2	AF26	VCC
AD15	IO194PDB5V0	AE21	IO166NDB4V1	AF27	TDO
AD16	IO190PDB4V4	AE22	IO160PDB4V0	AF28	VCCIB3
AD17	IO182NPB4V3	AE23	GNDQ	AF29	GNDQ
AD18	IO176NDB4V2	AE24	VMV4	AF30	GND
AD19	IO176PDB4V2	AE25	GND	AG1	IO238NPB6V0
AD20	IO170PPB4V2	AE26	GDB0/IO152NDB3V4	AG2	VCC
AD21	IO166PDB4V1	AE27	GDB1/IO152PDB3V4	AG3	IO232NPB5V4
AD22	VCCIB4	AE28	VMV3	AG4	GND
AD23	ТСК	AE29	VCC	AG5	IO220PPB5V3
AD24	VCC	AE30	IO149PDB3V4	AG6	IO228PDB5V4
AD25	TRST	AF1	GND	AG7	IO231NDB5V4
AD26	VCCIB3	AF2	IO238PPB6V0	AG8	GEC2/IO231PDB5V4

	FG896		FG896		FG896
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AG9	IO225NPB5V3	AH15	IO195NDB5V0	AJ21	IO173PDB4V2
AG10	IO223NPB5V3	AH16	IO185NDB4V3	AJ22	IO163NDB4V1
AG11	IO221PDB5V3	AH17	IO185PDB4V3	AJ23	IO163PDB4V1
AG12	IO221NDB5V3	AH18	IO181PDB4V3	AJ24	IO167NPB4V1
AG13	IO205NPB5V1	AH19	IO177NDB4V2	AJ25	VCC
AG14	IO199NDB5V0	AH20	IO171NPB4V2	AJ26	IO156NPB4V0
AG15	IO199PDB5V0	AH21	IO165PPB4V1	AJ27	VCC
AG16	IO187NDB4V4	AH22	IO161PPB4V0	AJ28	TMS
AG17	IO187PDB4V4	AH23	IO157NDB4V0	AJ29	GND
AG18	IO181NDB4V3	AH24	IO157PDB4V0	AJ30	GND
AG19	IO171PPB4V2	AH25	IO155NDB4V0	AK2	GND
AG20	IO165NPB4V1	AH26	VCCIB4	AK3	GND
AG21	IO161NPB4V0	AH27	TDI	AK4	IO217PPB5V2
AG22	IO159NDB4V0	AH28	VCC	AK5	GND
AG23	IO159PDB4V0	AH29	VPUMP	AK6	IO215PPB5V2
AG24	IO158PPB4V0	AH30	GND	AK7	GND
AG25	GDB2/IO155PDB4V0	AJ1	GND	AK8	IO207NDB5V1
AG26	GDA2/IO154PPB4V0	AJ2	GND	AK9	IO207PDB5V1
AG27	GND	AJ3	GEA2/IO233PPB5V4	AK10	IO201NDB5V0
AG28	VJTAG	AJ4	VCC	AK11	IO201PDB5V0
AG29	VCC	AJ5	IO217NPB5V2	AK12	IO193NDB4V4
AG30	IO149NDB3V4	AJ6	VCC	AK13	IO193PDB4V4
AH1	GND	AJ7	IO215NPB5V2	AK14	IO197PDB5V0
AH2	IO233NPB5V4	AJ8	IO213NDB5V2	AK15	IO191NDB4V4
AH3	VCC	AJ9	IO213PDB5V2	AK16	IO191PDB4V4
AH4	GEB2/IO232PPB5V4	AJ10	IO209NDB5V1	AK17	IO189NDB4V4
AH5	VCCIB5	AJ11	IO209PDB5V1	AK18	IO189PDB4V4
AH6	IO219NDB5V3	AJ12	IO203NDB5V1	AK19	IO179PPB4V3
AH7	IO219PDB5V3	AJ13	IO203PDB5V1	AK20	IO175NDB4V2
AH8	IO227NDB5V4	AJ14	IO197NDB5V0	AK21	IO175PDB4V2
AH9	IO227PDB5V4	AJ15	IO195PDB5V0	AK22	IO169NDB4V1
AH10	IO225PPB5V3	AJ16	IO183NDB4V3	AK23	IO169PDB4V1
AH11	IO223PPB5V3	AJ17	IO183PDB4V3	AK24	GND
AH12	IO211NDB5V2	AJ18	IO179NPB4V3	AK25	IO167PPB4V1
AH13	IO211PDB5V2	AJ19	IO177PDB4V2	AK26	GND
AH14	IO205PPB5V1	AJ20	IO173NDB4V2	AK27	GDC2/IO156PPB4V0

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51
	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	3-8
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.