

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	221
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1fg324

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3E Device Family Overview

General Description

ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs.

SRAM and FIFO

ProASIC3E devices have embedded SRAM blocks along their north and south sides. Each variableaspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3E devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3E family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

To maximize user I/Os, only the center east and west PLLs are available in devices using the PQ208 package. However, all six CCC blocks are still usable; the four corner CCCs allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time = 300 µs
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f_{OUT_CCC})

Global Clocking

ProASIC3E devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.

ProASIC3E DC and Switching Characteristics

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3PE600	A3PE1500	A3PE3000
Typical (25°C)	5 mA	12 mA	25 mA
Maximum (Commercial)	30 mA	70 mA	150 mA
Maximum (Industrial)	45 mA	105 mA	225 mA

Notes:

1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7.

2. -F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	_	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
3.3 V LVTTL/LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	-	7.16
1.8 V LVCMOS	1.8	-	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	-	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	2.00
3.3 V PCI	3.3	-	18.82
3.3 V PCI – Schmitt trigger	3.3	-	20.12
3.3 V PCI-X	3.3	-	18.82
3.3 V PCI-X – Schmitt trigger	3.3	-	20.12
Voltage-Referenced			
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
SSTL3 (I)	30	3.3	26.02	114.87
SSTL3 (II)	30	3.3	42.21	131.76
Differential				
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62
LVPECL	-	3.3	19.42	168.02
Notes:	••••••••••••••••••••••••••••••••••••••		•	

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Specific Dynamic Contributions (µW/MHz)			
Parameter	Definition	A3PE600	A3PE1500	A3PE3000	
PAC1	Clock contribution of a Global Rib	12.77	16.21	19.7	
PAC2	Clock contribution of a Global Spine	1.85	3.06	4.16	
PAC3	Clock contribution of a VersaTile row		0.88		
PAC4	Clock contribution of a VersaTile used as a sequential module		0.12		
PAC5	First contribution of a VersaTile used as a sequential module	0.07			
PAC6	Second contribution of a VersaTile used as a sequential module	0.29			
PAC7	Contribution of a VersaTile used as a combinatorial module	0.29			
PAC8	Average contribution of a routing net		0.70		
PAC9	Contribution of an I/O input pin (standard-dependent)	See T	able 2-8 on pag	je 2-6.	
PAC10	Contribution of an I/O output pin (standard-dependent)	See	Table 2-9 on pag	ge 2-7	
PAC11	Average contribution of a RAM block during a read operation	25.00			
PAC12	Average contribution of a RAM block during a write operation	30.00			
PAC13	Static PLL contribution	2.55 mW			
PAC14	Dynamic contribution for PLL		2.60		

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

static Microsemi.

ProASIC3E DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10

Table 2-41 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 35 pF
$$R = 1 k$$
Test Point
Enable Path \downarrow

$$R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$$

$$R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$$

$$35 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$$

Figure 2-10 • AC Loading

Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	eed Grade t _{DOUT} t _{DP}		t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

Eiguro	2 22 .	Autout	סחח	Timina	Diagram
Iguie	2-33 -	Output	אטט	rinning	Diagram

Timing Characteristics

Table 2-92 • Output DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	1404	1232	1048	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Global Resource Characteristics

A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Pin Descriptions and Packaging

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Pin Descriptions and Packaging

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User's Guides

ProASIC3E FPGA Fabric User's Guide

http://www.microsemi.com/document-portal/doc_download/130883-proasic3e-fpga-fabric-user-s-guide

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/document-portal/doc_download/131095-package-mechanical-drawings

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/products/fpga-soc/solutions.

	PQ208	PQ208		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
118	IO134NDB3V2	157	VMV1	
119	IO134PDB3V2	158	GNDQ	
120	IO132NDB3V2	159	GBA1/IO81PDB1V4	
121	IO132PDB3V2	160	GBA0/IO81NDB1V4	
122	GND	161	GBB1/IO80PDB1V4	
123	VCCIB3	162	GND	
124	GCC2/IO117PSB3V0	163	GBB0/IO80NDB1V4	
125	GCB2/IO116PSB3V0	164	GBC1/IO79PDB1V4	
126	NC	165	GBC0/IO79NDB1V4	
127	IO115NDB3V0	166	IO74PDB1V4	
128	GCA2/IO115PDB3V0	167	IO74NDB1V4	
129	GCA1/IO114PPB3V0	168	IO70PDB1V3	
130	GND	169	IO70NDB1V3	
131	VCCPLC	170	VCCIB1	
132	GCA0/IO114NPB3V0	171	VCC	
133	VCOMPLC	172	IO56PSB1V1	
134	GCB0/IO113NDB2V3	173	IO55PDB1V1	
135	GCB1/IO113PDB2V3	174	IO55NDB1V1	
136	GCC1/IO112PSB2V3	175	IO54PDB1V1	
137	IO110NDB2V3	176	IO54NDB1V1	
138	IO110PDB2V3	177	IO40PDB0V4	
139	IO106PSB2V3	178	GND	
140	VCCIB2	179	IO40NDB0V4	
141	GND	180	IO37PDB0V4	
142	VCC	181	IO37NDB0V4	
143	IO99NDB2V2	182	IO35PDB0V4	
144	IO99PDB2V2	183	IO35NDB0V4	
145	IO96NDB2V1	184	IO32PDB0V3	
146	IO96PDB2V1	185	IO32NDB0V3	
147	IO91NDB2V1	186	VCCIB0	
148	IO91PDB2V1	187	VCC	
149	IO88NDB2V0	188	IO28PDB0V3	
150	IO88PDB2V0	189	IO28NDB0V3	
151	GBC2/IO84PSB2V0	190	IO24PDB0V2	
152	GBA2/IO82PSB2V0	191	IO24NDB0V2	
153	GBB2/IO83PSB2V0	192	IO21PSB0V2	
154	VMV2	193	IO16PDB0V1	
155	GNDQ	194	IO16NDB0V1	
156	GND	195	GND	

PQ208				
Pin Number	A3PE3000 Function			
196	IO11PDB0V1			
197	IO11NDB0V1			
198	IO08PDB0V0			
199	IO08NDB0V0			
200	VCCIB0			
201	GAC1/IO02PDB0V0			
202	GAC0/IO02NDB0V0			
203	GAB1/IO01PDB0V0			
204	GAB0/IO01NDB0V0			
205	GAA1/IO00PDB0V0			
206	GAA0/IO00NDB0V0			
207	GNDQ			
208	VMV0			

Package Pin Assignments

	FG324		FG324		FG324
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
G1	GND	J1	IO267NDB6V4	L1	IO263NDB6V3
G2	IO287PDB7V1	J2	GFA0/IO273NDB6V4	L2	VCCIB6
G3	IO287NDB7V1	J3	VCOMPLF	L3	IO259PDB6V3
G4	IO283PPB7V1	J4	GFA2/IO272PDB6V4	L4	IO259NDB6V3
G5	VCCIB7	J5	GFB0/IO274NPB7V0	L5	GND
G6	IO279PDB7V0	J6	GFC0/IO275NDB7V0	L6	IO270NPB6V4
G7	IO291NPB7V2	J7	GFC1/IO275PDB7V0	L7	VCC
G8	VCC	J8	GND	L8	VCC
G9	IO26NDB0V3	J9	GND	L9	GND
G10	IO34NDB0V4	J10	GND	L10	GND
G11	VCC	J11	GND	L11	VCC
G12	IO94NPB2V1	J12	GCA2/IO115PDB3V0	L12	VCC
G13	IO98PDB2V2	J13	GCA1/IO114PDB3V0	L13	IO132PDB3V2
G14	VCCIB2	J14	GCA0/IO114NDB3V0	L14	GND
G15	GCC0/IO112NPB2V3	J15	GCB0/IO113NDB2V3	L15	IO117NDB3V0
G16	IO104PDB2V2	J16	VCOMPLC	L16	IO128NPB3V1
G17	IO104NDB2V2	J17	IO120NPB3V0	L17	VCCIB3
G18	GND	J18	IO108NDB2V3	L18	IO124PPB3V1
H1	IO267PDB6V4	K1	IO263PDB6V3	M1	GND
H2	VCCIB7	K2	GFA1/IO273PDB6V4	M2	IO255PDB6V2
H3	IO283NPB7V1	K3	VCCPLF	M3	IO255NDB6V2
H4	GFB1/IO274PPB7V0	K4	IO272NDB6V4	M4	IO251PPB6V2
H5	GND	K5	GFC2/IO270PPB6V4	M5	VCCIB6
H6	IO279NDB7V0	K6	GFB2/IO271PDB6V4	M6	GEB0/IO235NDB6V0
H7	VCC	K7	IO271NDB6V4	M7	GEB1/IO235PDB6V0
H8	VCC	K8	GND	M8	VCC
H9	GND	K9	GND	M9	IO192PPB4V4
H10	GND	K10	GND	M10	IO154NPB4V0
H11	VCC	K11	GND	M11	VCC
H12	VCC	K12	IO115NDB3V0	M12	GDA0/IO153NPB3V4
H13	IO98NDB2V2	K13	GCB2/IO116PDB3V0	M13	IO132NDB3V2
H14	GND	K14	IO116NDB3V0	M14	VCCIB3
H15	GCB1/IO113PDB2V3	K15	GCC2/IO117PDB3V0	M15	IO134NDB3V2
H16	GCC1/IO112PPB2V3	K16	VCCPLC	M16	IO134PDB3V2
H17	VCCIB2	K17	IO124NPB3V1	M17	IO128PPB3V1
H18	IO108PDB2V3	K18	IO120PPB3V0	M18	GND

	FG324		FG324	FG324	
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
N1	IO247NDB6V1	R1	IO245NDB6V1	U1	IO241NDB6V0
N2	IO247PDB6V1	R2	VCCIB6	U2	GEA2/IO233PPB5V4
N3	IO251NPB6V2	R3	GEA1/IO234PPB6V0	U3	GEC2/IO231PPB5V4
N4	GEC0/IO236NDB6V0	R4	IO232NDB5V4	U4	VCCIB5
N5	VCOMPLE	R5	GEB2/IO232PDB5V4	U5	GNDQ
N6	IO212NDB5V2	R6	IO214NDB5V2	U6	IO208PDB5V1
N7	IO212PDB5V2	R7	IO202PDB5V1	U7	IO198PPB5V0
N8	IO192NPB4V4	R8	IO194PDB5V0	U8	VCCIB5
N9	IO174PDB4V2	R9	IO186PDB4V4	U9	IO182NPB4V3
N10	IO170PDB4V2	R10	IO178PDB4V3	U10	IO180NPB4V3
N11	GDA2/IO154PPB4V0	R11	IO168NSB4V1	U11	VCCIB4
N12	GDB2/IO155PPB4V0	R12	IO164PDB4V1	U12	IO166PPB4V1
N13	GDA1/IO153PPB3V4	R13	GDC2/IO156PDB4V0	U13	IO162PDB4V1
N14	VCOMPLD	R14	ТСК	U14	GNDQ
N15	GDB0/IO152NDB3V4	R15	VPUMP	U15	VCCIB4
N16	GDB1/IO152PDB3V4	R16	TRST	U16	TMS
N17	IO138NDB3V3	R17	VCCIB3	U17	VMV3
N18	IO138PDB3V3	R18	IO142NDB3V3	U18	IO146NDB3V4
P1	IO245PDB6V1	T1	IO241PDB6V0	V1	GND
P2	GNDQ	T2	GEA0/IO234NPB6V0	V2	IO218NDB5V3
P3	VMV6	Т3	IO233NPB5V4	V3	IO218PDB5V3
P4	GEC1/IO236PDB6V0	T4	IO231NPB5V4	V4	IO206NDB5V1
P5	VCCPLE	Т5	VMV5	V5	IO206PDB5V1
P6	IO214PDB5V2	Т6	IO208NDB5V1	V6	IO198NPB5V0
P7	VCCIB5	T7	IO202NDB5V1	V7	GND
P8	GND	Т8	IO194NDB5V0	V8	IO190NDB4V4
P9	IO174NDB4V2	Т9	IO186NDB4V4	V9	IO190PDB4V4
P10	IO170NDB4V2	T10	IO178NDB4V3	V10	IO182PPB4V3
P11	GND	T11	IO166NPB4V1	V11	IO180PPB4V3
P12	VCCIB4	T12	IO164NDB4V1	V12	GND
P13	IO155NPB4V0	T13	IO156NDB4V0	V13	IO162NDB4V1
P14	VCCPLD	T14	VMV4	V14	IO160NDB4V0
P15	VJTAG	T15	TDI	V15	IO160PDB4V0
P16	GDC0/IO151NDB3V4	T16	GNDQ	V16	IO158NDB4V0
P17	GDC1/IO151PDB3V4	T17	TDO	V17	IO158PDB4V0
P18	IO142PDB3V3	T18	IO146PDB3V4	V18	GND

Package Pin Assignments

	FG484	FG484		FG484	
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
C21	NC	E13	IO24NDB1V0	G5	IO129PDB7V1
C22	VCCIB2	E14	IO24PDB1V0	G6	GAC2/IO132PDB7V1
D1	NC	E15	GBC1/IO33PDB1V1	G7	VCOMPLA
D2	NC	E16	GBB0/IO34NDB1V1	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO09NDB0V1
D4	GND	E18	GBA2/IO36PDB2V0	G10	IO09PDB0V1
D5	GAA0/IO00NDB0V0	E19	IO42NDB2V0	G11	IO13PDB0V2
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO21PDB1V0
D7	GAB0/IO01NDB0V0	E21	NC	G13	IO25PDB1V0
D8	IO05PDB0V0	E22	NC	G14	IO27NDB1V0
D9	IO10PDB0V1	F1	NC	G15	GNDQ
D10	IO12PDB0V2	F2	IO131NDB7V1	G16	VCOMPLB
D11	IO16NDB0V2	F3	IO131PDB7V1	G17	GBB2/IO37PDB2V0
D12	IO23NDB1V0	F4	IO133NDB7V1	G18	IO39PDB2V0
D13	IO23PDB1V0	F5	IO134NDB7V1	G19	IO39NDB2V0
D14	IO28NDB1V1	F6	VMV7	G20	IO43PDB2V0
D15	IO28PDB1V1	F7	VCCPLA	G21	IO43NDB2V0
D16	GBB1/IO34PDB1V1	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO35NDB1V1	F9	GAC1/IO02PDB0V0	H1	NC
D18	GBA1/IO35PDB1V1	F10	IO15NDB0V2	H2	NC
D19	GND	F11	IO15PDB0V2	H3	VCC
D20	NC	F12	IO20PDB1V0	H4	IO128NDB7V1
D21	NC	F13	IO25NDB1V0	H5	IO129NDB7V1
D22	NC	F14	IO27PDB1V0	H6	IO132NDB7V1
E1	NC	F15	GBC0/IO33NDB1V1	H7	IO130PDB7V1
E2	NC	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO133PDB7V1	F18	IO36NDB2V0	H10	VCCIB0
E5	GAA2/IO134PDB7V1	F19	IO42PDB2V0	H11	IO13NDB0V2
E6	GNDQ	F20	NC	H12	IO21NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO05NDB0V0	F22	NC	H14	VCCIB1
E9	IO10NDB0V1	G1	IO127NDB7V1	H15	VMV1
E10	IO12NDB0V2	G2	IO127PDB7V1	H16	GBC2/IO38PDB2V0
E11	IO16PDB0V2	G3	NC	H17	IO37NDB2V0
E12	IO20NDB1V0	G4	IO128PDB7V1	H18	IO41NDB2V0

	FG484	
Pin Number	A3PE3000 Function	Pin Numb
V15	IO155NDB4V0	¥7
V16	GDB2/IO155PDB4V0	Y8
V17	TDI	Y9
V18	GNDQ	Y10
V19	TDO	Y11
V20	GND	Y12
V21	IO146PDB3V4	Y13
V22	IO142NDB3V3	Y14
W1	IO239NDB6V0	Y15
W2	IO237PDB6V0	Y16
W3	IO230PSB5V4	Y17
W4	GND	Y18
W5	IO232NDB5V4	Y19
W6	GEB2/IO232PDB5V4	Y20
W7	IO231NDB5V4	Y21
W8	IO214NDB5V2	Y22
W9	IO214PDB5V2	
W10	IO200NDB5V0	
W11	IO192NDB4V4	
W12	IO184NDB4V3	
W13	IO184PDB4V3	
W14	IO156NDB4V0	
W15	GDC2/IO156PDB4V0	
W16	IO154NDB4V0	
W17	GDA2/IO154PDB4V0	
W18	TMS	
W19	GND	
W20	IO150NDB3V4	
W21	IO146NDB3V4	
W22	IO148PPB3V4	
Y1	VCCIB6	
Y2	IO237NDB6V0	
Y3	IO228NDB5V4	
Y4	IO224NDB5V3	
Y5	GND	
Y6	IO220NDB5V3	

FG484				
Pin Number	A3PE3000 Function			
Y7	IO220PDB5V3			
Y8	VCC			
Y9	VCC			
Y10	IO200PDB5V0			
Y11	IO192PDB4V4			
Y12	IO188NPB4V4			
Y13	IO187PSB4V4			
Y14	VCC			
Y15	VCC			
Y16	IO164NDB4V1			
Y17	IO164PDB4V1			
Y18	GND			
Y19	IO158PPB4V0			
Y20	IO150PDB3V4			
Y21	IO148NPB3V4			
Y22	VCCIB3			

Package Pin Assignments

	FG676	FG676		FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
R21	IO89NDB3V0	U5	IO182PDB6V1	V15	VCC
R22	GCB2/IO89PDB3V0	U6	IO178PDB6V1	V16	VCC
R23	IO90NDB3V0	U7	IO178NDB6V1	V17	VCC
R24	GCC2/IO90PDB3V0	U8	VCCIB6	V18	VCC
R25	IO91PDB3V0	U9	VCC	V19	VCCIB3
R26	IO91NDB3V0	U10	GND	V20	IO107PDB3V2
T1	IO186PDB6V2	U11	GND	V21	IO107NDB3V2
T2	IO185NDB6V2	U12	GND	V22	IO103NDB3V2
Т3	GNDQ	U13	GND	V23	IO103PDB3V2
T4	IO180PDB6V1	U14	GND	V24	VMV3
T5	IO180NDB6V1	U15	GND	V25	IO95NDB3V1
Т6	IO188NDB6V2	U16	GND	V26	IO94PDB3V0
T7	GFB2/IO188PDB6V2	U17	GND	W1	IO179NDB6V1
Т8	VCCIB6	U18	VCC	W2	IO179PDB6V1
Т9	VCC	U19	VCCIB3	W3	IO177NDB6V1
T10	GND	U20	NC	W4	IO177PDB6V1
T11	GND	U21	IO101NDB3V1	W5	IO172PDB6V0
T12	GND	U22	IO101PDB3V1	W6	IO172NDB6V0
T13	GND	U23	IO92NDB3V0	W7	VCC
T14	GND	U24	IO92PDB3V0	W8	VCC
T15	GND	U25	IO95PDB3V1	W9	VCCIB5
T16	GND	U26	IO93NPB3V0	W10	VCCIB5
T17	GND	V1	IO183PDB6V2	W11	VCCIB5
T18	VCC	V2	IO183NDB6V2	W12	VCCIB5
T19	VCCIB3	V3	VMV6	W13	VCCIB5
T20	IO99PDB3V1	V4	IO181PDB6V1	W14	VCCIB4
T21	IO99NDB3V1	V5	IO181NDB6V1	W15	VCCIB4
T22	IO97PDB3V1	V6	IO176PDB6V1	W16	VCCIB4
T23	IO97NDB3V1	V7	IO176NDB6V1	W17	VCCIB4
T24	GNDQ	V8	VCCIB6	W18	VCCIB4
T25	IO93PPB3V0	V9	VCC	W19	VCC
T26	NC	V10	VCC	W20	VCCIB3
U1	IO186NDB6V2	V11	VCC	W21	GDB0/IO109NDB3V2
U2	IO184NDB6V2	V12	VCC	W22	GDB1/IO109PDB3V2
U3	IO184PDB6V2	V13	VCC	W23	IO105NDB3V2
U4	IO182NDB6V1	V14	VCC	W24	IO105PDB3V2

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51
	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	3-8
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6