

Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                     |
|--------------------------------|----------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                          |
| Number of Logic Elements/Cells | -                                                                          |
| Total RAM Bits                 | 516096                                                                     |
| Number of I/O                  | 221                                                                        |
| Number of Gates                | 300000                                                                     |
| Voltage - Supply               | 1.425V ~ 1.575V                                                            |
| Mounting Type                  | Surface Mount                                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                         |
| Package / Case                 | 324-BGA                                                                    |
| Supplier Device Package        | 324-FBGA (19x19)                                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1fg324i |
|                                |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# static Microsemi.

ProASIC3E Flash Family FPGAs

# I/Os Per Package<sup>1</sup>

| ProASIC3E Devices              | A3P                           | E600                   | A3PE                          | 1500 <sup>3</sup>      | A3PE                          | 3000 <sup>3</sup>      |  |  |  |  |  |
|--------------------------------|-------------------------------|------------------------|-------------------------------|------------------------|-------------------------------|------------------------|--|--|--|--|--|
| Cortex-M1 Devices <sup>2</sup> |                               |                        | M1A3F                         | PE1500                 | M1A3F                         | PE3000                 |  |  |  |  |  |
|                                |                               |                        | I/O T                         | ypes                   |                               |                        |  |  |  |  |  |
| Package                        | Single-Ended I/O <sup>1</sup> | Differential I/O Pairs | Single-Ended I/O <sup>1</sup> | Differential I/O Pairs | Single-Ended I/O <sup>1</sup> | Differential I/O Pairs |  |  |  |  |  |
| PQ208                          | 147                           | 65                     | 147                           | 65                     | 147                           | 65                     |  |  |  |  |  |
| FG256                          | 165                           | 79                     | -                             | _                      | -                             | -                      |  |  |  |  |  |
| FG324                          | -                             | -                      | -                             | -                      | 221                           | 110                    |  |  |  |  |  |
| FG484                          | 270                           | 135                    | 280                           | 139                    | 341                           | 341 168                |  |  |  |  |  |
| FG676                          | _                             | _                      | 444                           | 222                    | _                             |                        |  |  |  |  |  |
| FG896                          | -                             | -                      | -                             | -                      | 620                           | 310                    |  |  |  |  |  |

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
  - SSTL3(I) and (II): up to 40 I/Os per north or south bank
  - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
  - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

| Package                         | PQ208   | FG256   | FG324   | FG484   | FG676   | FG896   |
|---------------------------------|---------|---------|---------|---------|---------|---------|
| Length × Width (mm\mm)          | 28 × 28 | 17 × 17 | 19 × 19 | 23 × 23 | 27 × 27 | 31 × 31 |
| Nominal Area (mm <sup>2</sup> ) | 784     | 289     | 361     | 529     | 729     | 961     |
| Pitch (mm)                      | 0.5     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     |
| Height (mm)                     | 3.40    | 1.60    | 1.63    | 2.23    | 2.23    | 2.23    |

#### Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

# **ProASIC3E** Device Status

| ProASIC3E Devices | Status     | M1 ProASIC3E Devices | Status     |
|-------------------|------------|----------------------|------------|
| A3PE600           | Production |                      |            |
| A3PE1500          | Production | M1A3PE1500           | Production |
| A3PE3000          | Production | M1A3PE3000           | Production |



# **Temperature Grade Offerings**

| Package           | A3PE600 | A3PE1500   | A3PE3000   |
|-------------------|---------|------------|------------|
| Cortex-M1 Devices |         | M1A3PE1500 | M1A3PE3000 |
| PQ208             | C, I    | C, I       | C, I       |
| FG256             | C, I    | -          | -          |
| FG324             | -       | _          | C, I       |
| FG484             | C, I    | C, I       | C, I       |
| FG676             | -       | C, I       | _          |
| FG896             | -       | -          | C, I       |

*Note:* C = Commercial temperature range: 0°C to 70°C ambient temperature<math>I = Industrial temperature range: -40°C to 85°C ambient temperature

# **Speed Grade and Temperature Grade Matrix**

| Temperature Grade | Std.         | -1           | -2           |
|-------------------|--------------|--------------|--------------|
| C <sup>1</sup>    | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 2                 | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Notes:

1. C = Commercial temperature range: 0°C to 70°C ambient temperature

2. I = Industrial temperature range: -40°C to 85°C ambient temperature

References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/index.php?option=com\_content&id=135&lang=en&view=article.

# **Table of Contents**

| General Description                        | 1-1 |
|--------------------------------------------|-----|
| ProASIC3E DC and Switching Characteristics |     |
| General Specifications                     |     |
| Calculating Power Dissipation              |     |
| User I/O Characteristics                   |     |
| VersaTile Characteristics                  |     |
| Global Resource Characteristics            |     |
| Clock Conditioning Circuits                |     |
| Embedded SRAM and FIFO Characteristics     |     |

## Pin Descriptions and Packaging

| Supply Pins              | 3-1 |
|--------------------------|-----|
| User-Defined Supply Pins | 3-2 |
| User Pins                | 3-2 |
| JTAG Pins                | 3-3 |
| Special Function Pins    | 3-4 |
| Packaging                | 3-4 |
| Related Documents        | 3-4 |

### Package Pin Assignments

| PQ208 |  | <br> |  |  | <br> | <br> | <br> |  |  | <br> |  |  | <br> | <br> |  |      |  | <br> |  | <br> |  | ••• | <br> |   | <br> |   | <br> |   | 4- | 1 |
|-------|--|------|--|--|------|------|------|--|--|------|--|--|------|------|--|------|--|------|--|------|--|-----|------|---|------|---|------|---|----|---|
| FG256 |  | <br> |  |  | <br> | <br> | <br> |  |  | <br> |  |  | <br> | <br> |  | <br> |  | <br> |  | <br> |  | • • | <br> |   | <br> |   | <br> |   | 4- | 8 |
| FG324 |  | <br> |  |  | <br> |      | <br> |  |  | <br> |  |  | <br> | <br> |  | <br> |  | <br> |  | <br> |  | ••• | <br> |   | <br> | • | <br> | 4 | -1 | 2 |
| FG484 |  | <br> |  |  | <br> |      | <br> |  |  | <br> |  |  | <br> | <br> |  |      |  | <br> |  | <br> |  | ••• | <br> | • | <br> |   | <br> | 4 | -1 | 6 |
| FG676 |  | <br> |  |  | <br> |      | <br> |  |  | <br> |  |  | <br> | <br> |  |      |  | <br> |  | <br> |  | ••• | <br> | • | <br> |   | <br> | 4 | -3 | 2 |
| FG896 |  | <br> |  |  | <br> |      | <br> |  |  | <br> |  |  | <br> | <br> |  |      |  | <br> |  | <br> |  | ••• | <br> |   | <br> | • | <br> | 4 | -4 | 0 |

### **Datasheet Information**

| List of Changes                                                         | 5-1  |
|-------------------------------------------------------------------------|------|
| Datasheet Categories                                                    | 5-12 |
| Safety Critical, Life Support, and High-Reliability Applications Policy | 5-12 |



| rom file Save to file |                       |            | Show BSR D              |
|-----------------------|-----------------------|------------|-------------------------|
| Port Name             | Macro Cell            | Pin Number | 1/O State (Output Only) |
| BIST                  | ADLIB:INBUF           | T2         | 1                       |
| BYPASS_IO             | ADLIB:INBUF           | K1         | 1                       |
| CLK                   | ADLIB:INBUF           | B1         | 1                       |
| ENOUT                 | ADLIB:INBUF           | J16        | 1                       |
| LED                   | ADLIB:OUTBUF          | M3         | 0                       |
| MONITOR[0]            | ADLIB:OUTBUF          | B5         | 0                       |
| MONITOR[1]            | ADLIB:OUTBUF          | C7         | Z                       |
| MONITOR[2]            | ADLIB:OUTBUF          | D9         | Z                       |
| MONITOR(3)            | ADLIB:OUTBUF          | D7         | Z                       |
| MONITOR[4]            | ADLIB:OUTBUF          | A11        | Z                       |
| OEa                   | ADLIB:INBUF           | E4         | Z                       |
| ОЕЬ                   | ADLIB:INBUF           | F1         | Z                       |
| OSC_EN                | ADLIB:INBUF           | К3         | Z                       |
| PAD[10]               | ADLIB:BIBUF_LVCMOS33U | M8         | Z                       |
| PAD[11]               | ADLIB:BIBUF_LVCMOS33D | R7         | Z                       |
| PAD[12]               | ADLIB:BIBUF_LVCMOS33U | D11        | Z                       |
| PAD[13]               | ADLIB:BIBUF_LVCMOS33D | C12        | Z                       |
| PAD[14]               | ADLIB:BIBUF_LVCMOS33U | R6         | Z                       |
|                       |                       |            | -                       |

#### *Figure 1-3* • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
  - I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation.

# **Thermal Characteristics**

### Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 $T_J$  = Junction Temperature =  $\Delta T + T_A$ 

where:

T<sub>A</sub> = Ambient Temperature

 $\Delta T$  = Temperature gradient between junction (silicon) and ambient  $\Delta T$  =  $\theta_{ia}$  \* P

 $\theta_{ja}$  = Junction-to-ambient of the package.  $\theta_{ja}$  numbers are located in Table 2-5.

P = Power dissipation

#### Package Thermal Characteristics

The device junction-to-case thermal resistivity is  $\theta_{jc}$  and the junction-to-ambient air thermal resistivity is  $\theta_{ja}$ . The thermal characteristics for  $\theta_{ja}$  are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed = 
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

| Package Type                                                             | Pin Count | $\theta_{jc}$ | Still Air | 200 ft./min. | 500 ft./min. | Units |
|--------------------------------------------------------------------------|-----------|---------------|-----------|--------------|--------------|-------|
| Plastic Quad Flat Package (PQFP)                                         | 208       | 8.0           | 26.1      | 22.5         | 20.8         | C/W   |
| Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000 | 208       | 3.8           | 16.2      | 13.3         | 11.9         | C/W   |
| Fine Pitch Ball Grid Array (FBGA)                                        | 256       | 3.8           | 26.9      | 22.8         | 21.5         | C/W   |
|                                                                          | 484       | 3.2           | 20.5      | 17.0         | 15.9         | C/W   |
|                                                                          | 676       | 3.2           | 16.4      | 13.0         | 12.0         | C/W   |
|                                                                          | 896       | 2.4           | 13.6      | 10.4         | 9.4          | C/W   |

#### Table 2-5 • Package Thermal Resistivities

### Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays<br/>(normalized to  $T_J = 70^{\circ}$ C, VCC = 1.425 V)

| Array Voltage | Junction Temperature (°C) |      |      |      |      |       |  |
|---------------|---------------------------|------|------|------|------|-------|--|
| VCC (V)       | –40°C                     | 0°C  | 25°C | 70°C | 85°C | 100°C |  |
| 1.425         | 0.87                      | 0.92 | 0.95 | 1.00 | 1.02 | 1.04  |  |
| 1.500         | 0.83                      | 0.88 | 0.90 | 0.95 | 0.97 | 0.98  |  |
| 1.575         | 0.80                      | 0.85 | 0.87 | 0.92 | 0.93 | 0.95  |  |

EQ 1

EQ 2

ProASIC3E DC and Switching Characteristics

# **Calculating Power Dissipation**

### **Quiescent Supply Current**

#### Table 2-7 • Quiescent Supply Current Characteristics

|                      | A3PE600 | A3PE1500 | A3PE3000 |
|----------------------|---------|----------|----------|
| Typical (25°C)       | 5 mA    | 12 mA    | 25 mA    |
| Maximum (Commercial) | 30 mA   | 70 mA    | 150 mA   |
| Maximum (Industrial) | 45 mA   | 105 mA   | 225 mA   |

Notes:

1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7.

2. -F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage.

### **Power per I/O Pin**

#### Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

|                                                              | VMV<br>(V) | Static Power<br>PDC2 (mW) <sup>1</sup> | Dynamic Power<br>PAC9 (µW/MHz) <sup>2</sup> |
|--------------------------------------------------------------|------------|----------------------------------------|---------------------------------------------|
| Single-Ended                                                 |            |                                        |                                             |
| 3.3 V LVTTL/LVCMOS                                           | 3.3        | _                                      | 17.39                                       |
| 3.3 V LVTTL/LVCMOS – Schmitt trigger                         | 3.3        | -                                      | 25.51                                       |
| 3.3 V LVTTL/LVCMOS Wide Range <sup>3</sup>                   | 3.3        | -                                      | 16.34                                       |
| 3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger <sup>3</sup> | 3.3        | -                                      | 24.49                                       |
| 2.5 V LVCMOS                                                 | 2.5        | -                                      | 5.76                                        |
| 2.5 V LVCMOS – Schmitt trigger                               | 2.5        | -                                      | 7.16                                        |
| 1.8 V LVCMOS                                                 | 1.8        | -                                      | 2.72                                        |
| 1.8 V LVCMOS – Schmitt trigger                               | 1.8        | -                                      | 2.80                                        |
| 1.5 V LVCMOS (JESD8-11)                                      | 1.5        | -                                      | 2.08                                        |
| 1.5 V LVCMOS (JESD8-11) – Schmitt trigger                    | 1.5        | -                                      | 2.00                                        |
| 3.3 V PCI                                                    | 3.3        | -                                      | 18.82                                       |
| 3.3 V PCI – Schmitt trigger                                  | 3.3        | -                                      | 20.12                                       |
| 3.3 V PCI-X                                                  | 3.3        | -                                      | 18.82                                       |
| 3.3 V PCI-X – Schmitt trigger                                | 3.3        | -                                      | 20.12                                       |
| Voltage-Referenced                                           |            |                                        |                                             |
| 3.3 V GTL                                                    | 3.3        | 2.90                                   | 8.23                                        |
| 2.5 V GTL                                                    | 2.5        | 2.13                                   | 4.78                                        |
| 3.3 V GTL+                                                   | 3.3        | 2.81                                   | 4.14                                        |
| 2.5 V GTL+                                                   | 2.5        | 2.57                                   | 3.71                                        |

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.



Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

| Table 2-19 • I/O Output Buffer Maximum Resistances <sup>1</sup> (c | continued) |
|--------------------------------------------------------------------|------------|
|--------------------------------------------------------------------|------------|

| Standard   | Drive Strength     | R <sub>PULL-DOWN</sub> (Ω) <sup>2</sup> | $R_{PULL-UP}$ (Ω) <sup>3</sup> |
|------------|--------------------|-----------------------------------------|--------------------------------|
| 3.3 V GTL+ | 35 mA              | 12                                      | -                              |
| 2.5 V GTL+ | 33 mA              | 15                                      | -                              |
| HSTL (I)   | 8 mA               | 50                                      | 50                             |
| HSTL (II)  | 15 mA <sup>4</sup> | 25                                      | 25                             |
| SSTL2 (I)  | 15 mA              | 27                                      | 31                             |
| SSTL2 (II) | 18 mA              | 13                                      | 15                             |
| SSTL3 (I)  | 14 mA              | 44                                      | 69                             |
| SSTL3 (II) | 21 mA              | 18                                      | 32                             |

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com\_content&id=1671&lang=en&view=article.

- 2. R<sub>(PULL-DOWN-MAX)</sub> = (VOLspec) / IOLspec
- 3. R<sub>(PULL-UP-MAX)</sub> = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

#### Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

|                            | R( <sub>(WEAK PULL-UP)</sub> 1<br>(Ω) |      | R <sub>(WEAK I</sub> | PULL-DOWN) $^{2}$ ( $\Omega$ ) |
|----------------------------|---------------------------------------|------|----------------------|--------------------------------|
| VCCI                       | Min.                                  | Max. | Min.                 | Max.                           |
| 3.3 V                      | 10 k                                  | 45 k | 10 k                 | 45 k                           |
| 3.3 V (Wide<br>Range I/Os) | 10 k                                  | 45 k | 10 k                 | 45 k                           |
| 2.5 V                      | 11 k                                  | 55 k | 12 k                 | 74 k                           |
| 1.8 V                      | 18 k                                  | 70 k | 17 k                 | 110 k                          |
| 1.5 V                      | 19 k                                  | 90 k | 19 k                 | 140 k                          |

Notes:

1. R<sub>(WEAK PULL-UP-MAX)</sub> = (VCCImax – VOHspec) / I<sub>(WEAK PULL-UP-MIN)</sub>

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

| Table 2-22 | <ul> <li>Duration o</li> </ul> | f Short Ci | cuit Event | Before | Failure | (continued) |
|------------|--------------------------------|------------|------------|--------|---------|-------------|
|------------|--------------------------------|------------|------------|--------|---------|-------------|

| Temperature | Time before Failure |
|-------------|---------------------|
| 85°C        | 2 years             |
| 100°C       | 6 months            |

### Table 2-23 • Schmitt Trigger Input Hysteresis

#### Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

| Input Buffer Configuration                          | Hysteresis Value (typ.) |
|-----------------------------------------------------|-------------------------|
| 3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) | 240 mV                  |
| 2.5 V LVCMOS (Schmitt trigger mode)                 | 140 mV                  |
| 1.8 V LVCMOS (Schmitt trigger mode)                 | 80 mV                   |
| 1.5 V LVCMOS (Schmitt trigger mode)                 | 60 mV                   |

#### Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability\*

| Input Buffer                               | Input Rise/Fall Time<br>(min.) | Input Rise/Fall Time (max.)                                                     | Reliability         |
|--------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|---------------------|
| LVTTL/LVCMOS<br>(Schmitt trigger disabled) | No requirement                 | 10 ns *                                                                         | 20 years<br>(110°C) |
| LVTTL/LVCMOS<br>(Schmitt trigger enabled)  | No requirement                 | No requirement, but input noise<br>voltage cannot exceed Schmitt<br>hysteresis. | 20 years<br>(110°C) |
| HSTL/SSTL/GTL                              | No requirement                 | 10 ns *                                                                         | 10 years<br>(100°C) |
| LVDS/B-LVDS/M-LVDS/<br>LVPECL              | No requirement                 | 10 ns *                                                                         | 10 years<br>(100°C) |

Note: \*For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User's Guide. The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

# 🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

### 2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-51 • Minimum and Maximum DC Input and Output Levels

| 2.5 GTL            |            | VIL         | VIH         |           | VOL       | VOH       | IOL | ЮН | IOSL                    | IOSH                    | IIL | IIH |
|--------------------|------------|-------------|-------------|-----------|-----------|-----------|-----|----|-------------------------|-------------------------|-----|-----|
| Drive<br>Strength  | Min.,<br>V | Max.<br>V   | Min.<br>V   | Max.<br>V | Max.<br>V | Min.<br>V | mA  | mA | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| 20 mA <sup>3</sup> | -0.3       | VREF – 0.05 | VREF + 0.05 | 3.6       | 0.4       | _         | 20  | 20 | 124                     | 169                     | 10  | 10  |

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.



#### Figure 2-13 • AC Loading

#### Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring<br>Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------|-----------------|----------------|------------------------|
| VREF – 0.05   | VREF + 0.05    | 0.8                     | 0.8             | 1.2            | 10                     |

Note: \*Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

#### **Timing Characteristics**

Table 2-53 • 2.5 V GTL

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.60              | 2.13            | 0.04             | 2.46            | 0.43              | 2.16            | 2.13            |                 |                 | 4.40             | 4.36             | ns    |
| -1             | 0.51              | 1.81            | 0.04             | 2.09            | 0.36              | 1.84            | 1.81            |                 |                 | 3.74             | 3.71             | ns    |
| -2             | 0.45              | 1.59            | 0.03             | 1.83            | 0.32              | 1.61            | 1.59            |                 |                 | 3.28             | 3.26             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

### SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

| Table 2-66 • Minimum and Maximum | DC Input and Output Levels |
|----------------------------------|----------------------------|
|----------------------------------|----------------------------|

| SSTL2 Class I     |           | VIL        | VIH        |           | VOL       | VOH         | IOL | IOH | IOSL                    | IOSH                    | IIL | IIH |
|-------------------|-----------|------------|------------|-----------|-----------|-------------|-----|-----|-------------------------|-------------------------|-----|-----|
| Drive<br>Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V   | mA  | mA  | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| 15 mA             | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.54      | VCCI – 0.62 | 15  | 15  | 87                      | 83                      | 10  | 10  |

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.



#### Figure 2-18 • AC Loading

| Input Low (V) | Input High (V) | Measuring<br>Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.25                    | 1.25            | 1.25           | 30                     |

Note: \*Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

#### **Timing Characteristics**

Table 2-68 • SSTL 2 Class I

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>zLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.13            | 0.04             | 1.33            | 0.43              | 2.17            | 1.85            |                 |                 | 4.40             | 4.08             | ns    |
| –1             | 0.56              | 1.81            | 0.04             | 1.14            | 0.36              | 1.84            | 1.57            |                 |                 | 3.74             | 3.47             | ns    |
| -2             | 0.49              | 1.59            | 0.03             | 1.00            | 0.32              | 1.62            | 1.38            |                 |                 | 3.29             | 3.05             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.





Figure 2-39 • Peak-to-Peak Jitter Definition



Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

# static Microsemi.

ProASIC3E DC and Switching Characteristics

# **Timing Characteristics**

#### Table 2-101 • FIFO

Commercial-Case Conditions:  $T_J = 70^{\circ}C$ , VCC = 1.425 V

| Parameter            | Description                                       | -2   | -1   | Std. | Units |
|----------------------|---------------------------------------------------|------|------|------|-------|
| t <sub>ENS</sub>     | REN, WEN Setup Time                               | 1.38 | 1.57 | 1.84 | ns    |
| t <sub>ENH</sub>     | REN, WEN Hold Time                                | 0.02 | 0.02 | 0.02 | ns    |
| t <sub>BKS</sub>     | BLK Setup Time                                    | 0.19 | 0.22 | 0.26 | ns    |
| t <sub>BKH</sub>     | BLK Hold Time                                     | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>DS</sub>      | Input Data (WD) Setup Time                        | 0.18 | 0.21 | 0.25 | ns    |
| t <sub>DH</sub>      | Input Data (WD) Hold Time                         | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>CKQ1</sub>    | Clock High to New Data Valid on RD (pass-through) | 2.36 | 2.68 | 3.15 | ns    |
| t <sub>CKQ2</sub>    | Clock High to New Data Valid on RD (pipelined)    | 0.89 | 1.02 | 1.20 | ns    |
| t <sub>RCKEF</sub>   | RCLK High to Empty Flag Valid                     | 1.72 | 1.96 | 2.30 | ns    |
| t <sub>WCKFF</sub>   | WCLK High to Full Flag Valid                      | 1.63 | 1.86 | 2.18 | ns    |
| t <sub>CKAF</sub>    | Clock High to Almost Empty/Full Flag Valid        | 6.19 | 7.05 | 8.29 | ns    |
| t <sub>RSTFG</sub>   | RESET Low to Empty/Full Flag Valid                | 1.69 | 1.93 | 2.27 | ns    |
| t <sub>RSTAF</sub>   | RESET Low to Almost Empty/Full Flag Valid         | 6.13 | 6.98 | 8.20 | ns    |
| t <sub>RSTBQ</sub>   | RESET Low to Data Out Low on RD (pass-through)    | 0.92 | 1.05 | 1.23 | ns    |
|                      | RESET Low to Data Out Low on RD (pipelined)       | 0.92 | 1.05 | 1.23 | ns    |
| t <sub>REMRSTB</sub> | RESET Removal                                     | 0.29 | 0.33 | 0.38 | ns    |
| t <sub>RECRSTB</sub> | RESET Recovery                                    | 1.50 | 1.71 | 2.01 | ns    |
| t <sub>MPWRSTB</sub> | RESET Minimum Pulse Width                         | 0.21 | 0.24 | 0.29 | ns    |
| t <sub>CYC</sub>     | Clock Cycle Time                                  | 3.23 | 3.68 | 4.32 | ns    |
| F <sub>MAX</sub>     | Maximum Frequency                                 | 310  | 272  | 231  | MHz   |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Refer to the I/O Structure section of the *ProASIC3E FPGA Fabric User's Guide* for an explanation of the naming of global pins.

# **JTAG Pins**

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

#### TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 W to 1 k $\Omega$  will satisfy the requirements. Refer to Table 3-1 for more information.

| VJTAG          | Tie-Off Resistance |
|----------------|--------------------|
| VJTAG at 3.3 V | 200 Ω to 1 kΩ      |
| VJTAG at 2.5 V | 200 Ω to 1 kΩ      |
| VJTAG at 1.8 V | 500 Ω to 1 kΩ      |
| VJTAG at 1.5 V | 500 Ω to 1 kΩ      |

#### Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

#### TDI

TMS

#### Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

#### TDO

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

#### Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

#### TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  $\Omega$  to 1 k $\Omega$  will satisfy the requirements.



# 4 – Package Pin Assignments

# **PQ208**



Note: This is the top view of the package.

### Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

# **Microsemi**

Package Pin Assignments

| FG676      |                   |            | FG676             | FG676      |                   |  |  |
|------------|-------------------|------------|-------------------|------------|-------------------|--|--|
| Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function | Pin Number | A3PE1500 Function |  |  |
| G13        | IO21NDB0V2        | H23        | IO69PDB2V1        | K7         | IO217NDB7V3       |  |  |
| G14        | IO27PDB0V3        | H24        | IO76PDB2V2        | K8         | VCCIB7            |  |  |
| G15        | IO35NDB1V0        | H25        | IO76NDB2V2        | K9         | VCC               |  |  |
| G16        | IO39PDB1V0        | H26        | IO78NDB2V2        | K10        | GND               |  |  |
| G17        | IO51NDB1V2        | J1         | IO197NDB7V0       | K11        | GND               |  |  |
| G18        | IO53NDB1V2        | J2         | IO197PDB7V0       | K12        | GND               |  |  |
| G19        | VCCIB1            | J3         | VMV7              | K13        | GND               |  |  |
| G20        | GBA2/IO58PPB2V0   | J4         | IO215NDB7V3       | K14        | GND               |  |  |
| G21        | GNDQ              | J5         | IO215PDB7V3       | K15        | GND               |  |  |
| G22        | IO64NDB2V1        | J6         | IO214PDB7V3       | K16        | GND               |  |  |
| G23        | IO64PDB2V1        | J7         | IO214NDB7V3       | K17        | GND               |  |  |
| G24        | IO72PDB2V2        | J8         | VCCIB7            | K18        | VCC               |  |  |
| G25        | IO72NDB2V2        | J9         | VCC               | K19        | VCCIB2            |  |  |
| G26        | IO78PDB2V2        | J10        | VCC               | K20        | IO65PDB2V1        |  |  |
| H1         | IO208NDB7V2       | J11        | VCC               | K21        | IO65NDB2V1        |  |  |
| H2         | IO208PDB7V2       | J12        | VCC               | K22        | IO74PDB2V2        |  |  |
| H3         | IO209NDB7V2       | J13        | VCC               | K23        | IO74NDB2V2        |  |  |
| H4         | IO209PDB7V2       | J14        | VCC               | K24        | IO75PDB2V2        |  |  |
| H5         | IO219NDB7V3       | J15        | VCC               | K25        | IO75NDB2V2        |  |  |
| H6         | GAC2/IO219PDB7V3  | J16        | VCC               | K26        | IO84PDB2V3        |  |  |
| H7         | VCCIB7            | J17        | VCC               | L1         | IO195NDB7V0       |  |  |
| H8         | VCC               | J18        | VCC               | L2         | IO198PPB7V0       |  |  |
| H9         | VCCIB0            | J19        | VCCIB2            | L3         | GNDQ              |  |  |
| H10        | VCCIB0            | J20        | IO62PDB2V0        | L4         | IO201PDB7V1       |  |  |
| H11        | VCCIB0            | J21        | IO62NDB2V0        | L5         | IO201NDB7V1       |  |  |
| H12        | VCCIB0            | J22        | IO70NDB2V1        | L6         | IO210NDB7V2       |  |  |
| H13        | VCCIB0            | J23        | IO69NDB2V1        | L7         | IO210PDB7V2       |  |  |
| H14        | VCCIB1            | J24        | VMV2              | L8         | VCCIB7            |  |  |
| H15        | VCCIB1            | J25        | IO80PDB2V3        | L9         | VCC               |  |  |
| H16        | VCCIB1            | J26        | IO80NDB2V3        | L10        | GND               |  |  |
| H17        | VCCIB1            | K1         | IO195PDB7V0       | L11        | GND               |  |  |
| H18        | VCCIB1            | K2         | IO199NDB7V1       | L12        | GND               |  |  |
| H19        | VCC               | K3         | IO199PDB7V1       | L13        | GND               |  |  |
| H20        | VCC               | K4         | IO205NDB7V1       | L14        | GND               |  |  |
| H21        | IO58NPB2V0        | K5         | IO205PDB7V1       | L15        | GND               |  |  |
| H22        | IO70PDB2V1        | K6         | IO217PDB7V3       | L16        | GND               |  |  |



| Revision                                    |                                                                                                                                                               | Changes                                                                                                                                                                                 | Page |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| Revision 9 (Aug 2009)                       | All references to speed grade                                                                                                                                 | -F have been removed from this document.                                                                                                                                                | N/A  |  |  |  |  |
| Product Brief v1.2                          |                                                                                                                                                               |                                                                                                                                                                                         |      |  |  |  |  |
|                                             | The "Pro I/Os with Advanced I/O Standards" section was revised to add definitions of hot-swap and cold-sparing.                                               |                                                                                                                                                                                         |      |  |  |  |  |
| DC and Switching<br>Characteristics v1.3    | $3.3~\rm V$ LVCMOS and 1.2 V LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data. |                                                                                                                                                                                         |      |  |  |  |  |
|                                             | IIL and IIH input leakage cur<br>Maximum DC Input and Outpu                                                                                                   | rrent information was added to all "Minimum and<br>it Levels" tables.                                                                                                                   | N/A  |  |  |  |  |
|                                             | –F was removed from the data                                                                                                                                  | asheet. The speed grade is no longer supported.                                                                                                                                         | N/A  |  |  |  |  |
|                                             | In the Table 2-2 • Recomme voltage" and note 4 are new.                                                                                                       | nded Operating Conditions <sup>1</sup> "3.0 V DC supply                                                                                                                                 | 2-2  |  |  |  |  |
|                                             | The Table 2-4 • Overshoot and                                                                                                                                 | d Undershoot Limits <sup>1</sup> table was updated.                                                                                                                                     | 2-3  |  |  |  |  |
|                                             | The Table 2-6 • Temperature table was updated.                                                                                                                | and Voltage Derating Factors for Timing Delays                                                                                                                                          | 2-5  |  |  |  |  |
|                                             | There are new parameters an table.                                                                                                                            | nd data was updated in the Table 2-99 • RAM4K9                                                                                                                                          | 2-76 |  |  |  |  |
|                                             | There are new parameters and data was updated in the Table 2-100 • RAM512X18 table.                                                                           |                                                                                                                                                                                         |      |  |  |  |  |
| Revision 8 (Feb 2008)                       | Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.                                                                                                  |                                                                                                                                                                                         |      |  |  |  |  |
| Product Brief v1.1                          |                                                                                                                                                               |                                                                                                                                                                                         |      |  |  |  |  |
| Revision 7 (Jun 2008)                       | The title of Table 2-4 • Over remove "as measured on que                                                                                                      | shoot and Undershoot Limits <sup>1</sup> was modified to uiet I/Os." Table note 2 was revised to remove                                                                                 | 2-3  |  |  |  |  |
| Characteristics v1.2                        | "estimated SSO density over o                                                                                                                                 | cycles." Table note 3 was deleted.                                                                                                                                                      |      |  |  |  |  |
|                                             | Table 2-78 • LVDS Minimum updated.                                                                                                                            | and Maximum DC Input and Output Levels was                                                                                                                                              | 2-50 |  |  |  |  |
| Revision 6 (Jun 2008)                       | The A3PE600 "FG484" table added to the table.                                                                                                                 | was missing G22. The pin and its function were                                                                                                                                          | 4-27 |  |  |  |  |
| Revision 5 (Jun 2008)<br>Packaging v1 4     | The naming conventions char<br>A3PE600:                                                                                                                       | nged for the following pins in the "FG484" for the                                                                                                                                      | 4-22 |  |  |  |  |
|                                             | Pin Number                                                                                                                                                    | New Function Name                                                                                                                                                                       |      |  |  |  |  |
|                                             | J19                                                                                                                                                           | IO45PPB2V1                                                                                                                                                                              |      |  |  |  |  |
|                                             | K20                                                                                                                                                           | IO45NPB2V1                                                                                                                                                                              |      |  |  |  |  |
|                                             | M2                                                                                                                                                            | IO114NPB6V1                                                                                                                                                                             |      |  |  |  |  |
|                                             | N1                                                                                                                                                            | IO114PPB6V1                                                                                                                                                                             |      |  |  |  |  |
|                                             | N4                                                                                                                                                            | GFC2/IO115PPB6V1                                                                                                                                                                        |      |  |  |  |  |
|                                             | P3                                                                                                                                                            | IO115NPB6V1                                                                                                                                                                             |      |  |  |  |  |
| Revision 4 (Apr 2008)<br>Product Brief v1.0 | The product brief portion of the a version number, starting at features, benefits, ordering offerings. The second section                                     | e datasheet was divided into two sections and given<br>v1.0. The first section of the document includes<br>information, and temperature and speed grade<br>is a device family overview. | N/A  |  |  |  |  |
| Packaging v1.3                              | The "FG324" package diagram                                                                                                                                   | n was replaced.                                                                                                                                                                         | 4-12 |  |  |  |  |



Datasheet Information

| Revision                                                                 | Changes                                                                                                                                                                                                                        | Page      |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Revision 3 (Apr 2008)</b><br>Packaging v1.2                           | The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:                                                                                                                             | 4-2       |
| 5 5                                                                      | 36, 62, 171                                                                                                                                                                                                                    |           |
|                                                                          | Note: There were no pin function changes in this update.                                                                                                                                                                       |           |
|                                                                          | The following pins had duplicates and the extra pins were deleted from the "FG324" table:                                                                                                                                      | 4-12      |
|                                                                          | E2, E3, E16, E17, P2, P3, T16, U17                                                                                                                                                                                             |           |
|                                                                          | Note: There were no pin function changes in this update.                                                                                                                                                                       |           |
|                                                                          | The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.                                                                                 | 4-9       |
|                                                                          | The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.                                                                                           | 4-22      |
|                                                                          | The following pins had duplicates and the extra pins were deleted from the "FG896" table:                                                                                                                                      | 4-41      |
|                                                                          | AD6, AE5, AE28, AF29, F5, F26, G6, G25                                                                                                                                                                                         |           |
|                                                                          | Note: There were no pin function changes in this update.                                                                                                                                                                       |           |
| Revision 2 (Mar 2008)<br>Product Brief rev. 1                            | The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.                                                                  | I, II, IV |
| <b>Revision 1 (Feb 2008)</b><br>DC and Switching<br>Characteristics v1.1 | In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.                    | 2         |
|                                                                          | The "PLL Behavior at Brownout Condition" section is new.                                                                                                                                                                       | 2-4       |
|                                                                          | In the "PLL Contribution—PPLL" section, the following was deleted:<br>FCLKIN is the input clock frequency.                                                                                                                     | 2-10      |
|                                                                          | In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said $T_J$ and it was corrected and changed to $T_A$ .                                                                   | 2-17      |
|                                                                          | In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.                                                                                                                                        | 2-70      |
|                                                                          | Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.                                                                                                          | 2-83      |
| Revision 1 (cont'd)                                                      | The "PQ208" pin table for A3PE3000 was updated.                                                                                                                                                                                | 4-2       |
| Packaging v1.1                                                           | The "FG324" pin table for A3PE3000 is new.                                                                                                                                                                                     | 4-13      |
|                                                                          | The "FG484" pin table for A3PE3000 is new.                                                                                                                                                                                     | 4-17      |
|                                                                          | The "FG896" pin table for A3PE3000 is new.                                                                                                                                                                                     | 4-41      |
| Revision 0 (Jan 2008)                                                    | This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.                                               | N/A       |
| v2.1<br>(July 2007)                                                      | CoreMP7 information was removed from the "Features and Benefits" section.                                                                                                                                                      | 1-1       |
|                                                                          | The M1 device part numbers have been updated in ProASIC3E Product Family,<br>"Packaging Tables", "Temperature Grade Offerings", "Speed Grade and<br>Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix". | 1-1       |



# **Datasheet Categories**

#### Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

#### **Product Brief**

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

#### Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

#### Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

#### Production

This version contains information that is considered to be final.

### **Export Administration Regulations (EAR)**

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

# Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.