

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	516096
Number of I/O	221
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1fgg324i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE	3000 ³			
Cortex-M1 Devices ²			M1A3F	PE1500	M1A3PE3000				
	I/O Types								
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs			
PQ208	147	65	147	65	147	65			
FG256	165	79	-	-	-	-			
FG324	-	-	-	-	221	110			
FG484	270	135	280	139	341	168			
FG676	-	-	444	222	_	-			
FG896	-	-	-	-	620	310			

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

ProASIC3E Device Family Overview

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3E devices also have low dynamic power consumption to further maximize power savings.

Advanced Flash Technology

The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

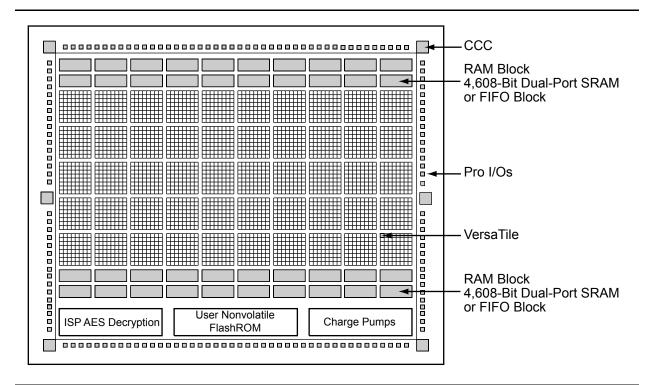


Figure 1-1 • ProASIC3E Device Architecture Overview

Com	mercial ¹	Indu	strial ²
$\begin{tabular}{ c c c c c } \hline Commercial^1 & \hline IIL^3 & IIH^4 & \hline DC I/O Standards & $$\mu A$ & μA & $$\mu A$ & $$\mu A$ & $$\mu A$ & $$\mu A$ & $$13.3 V LVTTL / 3.3 V LVCMOS & 10 & 10 & $$10$ & 10 & $$10$ & 10 & $$10$ & 10 & $$10$ & 10 & $$10$ & 10 & $10$$	IIL ³	IIH ⁴	
μA	μΑ	μΑ	μA
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
	IIL ³ μA 10	IIL ³ IIH ⁴ μ A μ A 10 10	IIL ³ IIH ⁴ IIL ³ μA μA μA 10 10 15 10 10

Table 2-14 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings -2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

					-	-											
I/O Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option) ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{PYS} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)
3.3 V LVTTL / 3.3 V LVCMOS	12	12	High	35	-	0.49				1.17						4.46	3.81
3.3 V LVCMOS Wide Range ²	100 µA	12	High	35	-	0.49	4.24	0.03	1.36	1.78	0.32	4.24	3.25	3.78	4.17	6.77	5.79
2.5 V LVCMOS	12	12	High	35	-	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28
1.8 V LVCMOS	12	12	High	35	-	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98
1.5 V LVCMOS	12	12	High	35	-	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37
3.3 V PCI	Per PCI spec	-	High	10	25 ³	0.49	2.09	0.03	0.78	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ³	0.49	2.09	0.03	0.78	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16
3.3 V GTL	20 ⁴	-	High	10	25	0.45	1.55	0.03	2.19	-	0.32	1.52	1.55	-	-	3.19	3.22
2.5 V GTL	20 ⁴	_	High	10	25	0.45	1.59	0.03	1.83	-	0.32	1.61	1.59	-	-	3.28	3.26
3.3 V GTL+	35	_	High	10	25	0.45	1.53	0.03	1.19	-	0.32	1.56	1.53	-	-	3.23	3.20
2.5 V GTL+	33	-	High	10	25	0.45	1.65	0.03	1.13	-	0.32	1.68	1.57	-	-	3.35	3.24
HSTL (I)	8	_	High	20	50	0.49	2.37	0.03	1.59	-	0.32	2.42	2.35	-	-	4.09	4.02
HSTL (II)	15 ⁴	-	High	20	25	0.49	2.26	0.03	1.59	-	0.32	2.30	2.03	-	-	3.97	3.70
SSTL2 (I)	15	-	High	30	50	0.49	1.59	0.03	1.00	-	0.32	1.62	1.38	-	-	3.29	3.05
SSTL2 (II)	18	-	High	30	25	0.49	1.62	0.03	1.00	-	0.32	1.65	1.32	-	-	3.32	2.99
SSTL3 (I)	14	_	High	30	50	0.49	1.72	0.03	0.93	-	0.32	1.75	1.37	-	-	3.42	3.04
SSTL3 (II)	21	-	High	30	25	0.49	1.54	0.03	0.93	-	0.32	1.57	1.25	-	-	3.24	2.92
LVDS/B-LVDS/ M-LVDS	24	-	High	Ι	Ι	0.49	1.40	0.03	1.36	-	I	-	-	-	-	-	—
LVPECL	24	-	High	_	_	0.49	1.36	0.03	1.22	-	_	_	_	-	-	-	-

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8b specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-38 for connectivity. This resistor is not required during normal operation.

4. Output drive strength is below JEDEC specification.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5.

Kicrosemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Timing Characteristics

Table 2-35 • 2.5 V LVCMOS High Slew

	Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V													
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.82	0.04	1.51	1.66	0.43	8.13	8.82	2.72	2.29	10.37	11.05	ns
	-1	0.56	7.50	0.04	1.29	1.41	0.36	6.92	7.50	2.31	1.95	8.82	9.40	ns
	-2	0.49	6.58	0.03	1.13	1.24	0.32	6.07	6.58	2.03	1.71	7.74	8.25	ns
8 mA	Std.	0.66	5.27	0.04	1.51	1.66	0.43	5.27	5.27	3.10	3.03	7.50	7.51	ns
	–1	0.56	4.48	0.04	1.29	1.41	0.36	4.48	4.48	2.64	2.58	6.38	6.38	ns
	-2	0.49	3.94	0.03	1.13	1.24	0.32	3.93	3.94	2.32	2.26	5.60	5.61	ns
12 mA	Std.	0.66	3.74	0.04	1.51	1.66	0.43	3.81	3.49	3.37	3.49	6.05	5.73	ns
	-1	0.56	3.18	0.04	1.29	1.41	0.36	3.24	2.97	2.86	2.97	5.15	4.87	ns
	-2	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
16 mA	Std.	0.66	3.53	0.04	1.51	1.66	0.43	3.59	3.12	3.42	3.62	5.83	5.35	ns
	–1	0.56	3.00	0.04	1.29	1.41	0.36	3.06	2.65	2.91	3.08	4.96	4.55	ns
	-2	0.49	2.63	0.03	1.13	1.24	0.32	2.68	2.33	2.56	2.71	4.35	4.00	ns
24 mA	Std.	0.66	3.26	0.04	1.51	1.66	0.43	3.32	2.48	3.49	4.11	5.56	4.72	ns
	-1	0.56	2.77	0.04	1.29	1.41	0.36	2.83	2.11	2.97	3.49	4.73	4.01	ns
	-2	0.49	2.44	0.03	1.13	1.24	0.32	2.48	1.85	2.61	3.07	4.15	3.52	ns

Co mercial-Case Conditions: $T_1 = 70^{\circ}$ C Worst-Case VCC = 1.425 V Worst-Case VCC = 2.3 V

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-37 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

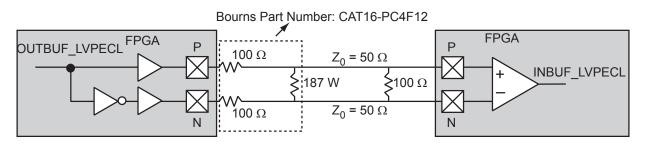
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.



ProASIC3E DC and Switching Characteristics

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.	.0	3.	3	3.	6	V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-81 • Minimum and Maximum DC Input and Output Levels

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-83 • LVPECL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.63	ns
-1	0.56	1.55	0.04	1.39	ns
-2	0.49	1.36	0.03	1.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

DDR Module Specifications

Input DDR Module

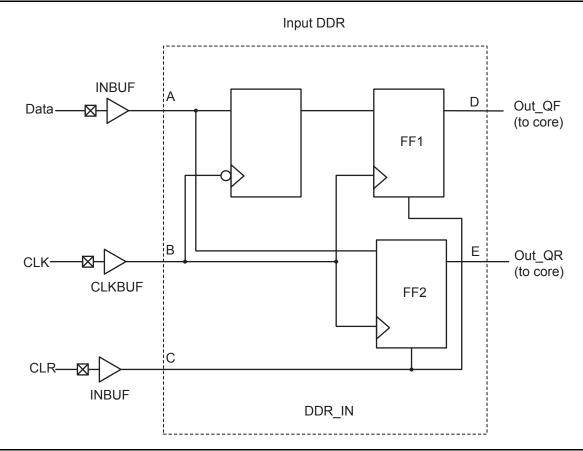


Figure 2-30 • Input DDR Timing Model

Table	2-89 •	Parameter	Definitions
-------	--------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ

Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx

I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F

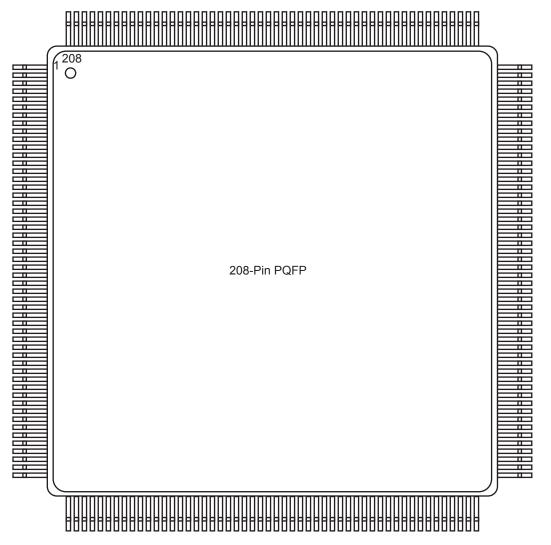
PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There are six VCCPLX pins on ProASIC3E devices.

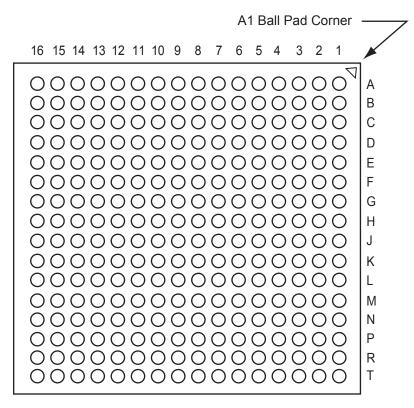
VCOMPLA/B/C/D/E/F PLL Ground


Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on ProASIC3E devices.

4 – Package Pin Assignments

PQ208


Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG324		FG324		FG324
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
A1	GND	C1	IO305NDB7V3	E1	IO303NDB7V3
A2	IO08NDB0V0	C2	IO308NDB7V4	E2	GNDQ
A3	IO08PDB0V0	C3	GAA2/IO309PPB7V4	E3	VMV7
A4	IO10NDB0V1	C4	GAA1/IO00PPB0V0	E4	IO307NPB7V4
A5	IO10PDB0V1	C5	VMV0	E5	VCCPLA
A6	IO12PDB0V1	C6	IO14NDB0V1	E6	GAB0/IO01NPB0V0
A7	GND	C7	IO18PDB0V2	E7	VCCIB0
A8	IO32NDB0V3	C8	IO40NDB0V4	E8	GND
A9	IO32PDB0V3	C9	IO40PDB0V4	E9	IO28NDB0V3
A10	IO42PPB1V0	C10	IO44PDB1V0	E10	IO48PDB1V0
A11	IO52NPB1V1	C11	IO56NDB1V1	E11	GND
A12	GND	C12	IO64NDB1V2	E12	VCCIB1
A13	IO66NDB1V3	C13	IO64PDB1V2	E13	IO60NPB1V2
A14	IO72NDB1V3	C14	VMV1	E14	VCCPLB
A15	IO72PDB1V3	C15	GBC0/IO79NDB1V4	E15	IO82NDB2V0
A16	IO74NDB1V4	C16	GBC1/IO79PDB1V4	E16	VMV2
A17	IO74PDB1V4	C17	GBB2/IO83PPB2V0	E17	GNDQ
A18	GND	C18	IO88NDB2V0	E18	IO90NDB2V1
B1	IO305PDB7V3	D1	IO303PDB7V3	F1	IO299NDB7V3
B2	GAB2/IO308PDB7V4	D2	VCCIB7	F2	IO299PDB7V3
B3	GAA0/IO00NPB0V0	D3	GAC2/IO307PPB7V4	F3	IO295PDB7V2
B4	VCCIB0	D4	IO309NPB7V4	F4	IO295NDB7V2
B5	GNDQ	D5	GAB1/IO01PPB0V0	F5	VCOMPLA
B6	IO12NDB0V1	D6	IO14PDB0V1	F6	IO291PPB7V2
B7	IO18NDB0V2	D7	IO24NDB0V2	F7	GAC0/IO02NDB0V0
B8	VCCIB0	D8	IO24PDB0V2	F8	GAC1/IO02PDB0V0
B9	IO42NPB1V0	D9	IO28PDB0V3	F9	IO26PDB0V3
B10	IO44NDB1V0	D10	IO48NDB1V0	F10	IO34PDB0V4
B11	VCCIB1	D11	IO56PDB1V1	F11	IO58NDB1V2
B12	IO52PPB1V1	D12	IO60PPB1V2	F12	IO58PDB1V2
B13	IO66PDB1V3	D13	GBB0/IO80NDB1V4	F13	IO94PPB2V1
B14	GNDQ	D14	GBB1/IO80PDB1V4	F14	VCOMPLB
B15	VCCIB1	D15	GBA2/IO82PDB2V0	F15	GBC2/IO84PDB2V0
B16	GBA0/IO81NDB1V4	D16	IO83NPB2V0	F16	IO84NDB2V0
B17	GBA1/IO81PDB1V4	D17	VCCIB2	F17	IO92NDB2V1
B18	IO88PDB2V0	D18	IO90PDB2V1	F18	IO92PDB2V1

	FG484		FG484		FG484
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4
J3	VMV7	K17	IO108NDB2V3	M9	VCC
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2
J19	IO106PPB2V3	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0

	FG484	
Pin Number	A3PE3000 Function	Pin Numb
V15	IO155NDB4V0	¥7
V16	GDB2/IO155PDB4V0	Y8
V17	TDI	Y9
V18	GNDQ	Y10
V19	TDO	Y11
V20	GND	Y12
V21	IO146PDB3V4	Y13
V22	IO142NDB3V3	Y14
W1	IO239NDB6V0	Y15
W2	IO237PDB6V0	Y16
W3	IO230PSB5V4	Y17
W4	GND	Y18
W5	IO232NDB5V4	Y19
W6	GEB2/IO232PDB5V4	Y20
W7	IO231NDB5V4	Y21
W8	IO214NDB5V2	Y22
W9	IO214PDB5V2	
W10	IO200NDB5V0	
W11	IO192NDB4V4	
W12	IO184NDB4V3	
W13	IO184PDB4V3	
W14	IO156NDB4V0	
W15	GDC2/IO156PDB4V0	
W16	IO154NDB4V0	
W17	GDA2/IO154PDB4V0	
W18	TMS	
W19	GND	
W20	IO150NDB3V4	
W21	IO146NDB3V4	
W22	IO148PPB3V4	
Y1	VCCIB6	
Y2	IO237NDB6V0	
Y3	IO228NDB5V4	
Y4	IO224NDB5V3	
Y5	GND	
Y6	IO220NDB5V3	

	FG484				
Pin Number	A3PE3000 Function				
¥7	IO220PDB5V3				
Y8	VCC				
Y9	VCC				
Y10	IO200PDB5V0				
Y11	IO192PDB4V4				
Y12	IO188NPB4V4				
Y13	IO187PSB4V4				
Y14	VCC				
Y15	VCC				
Y16	IO164NDB4V1				
Y17	IO164PDB4V1				
Y18	GND				
Y19	IO158PPB4V0				
Y20	IO150PDB3V4				
Y21	IO148NPB3V4				
Y22	VCCIB3				

	FG676		FG676	FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
C9	IO10PDB0V1	D19	IO45PDB1V1	F3	IO213NDB7V2
C10	IO16PDB0V2	D20	IO46PPB1V1	F4	IO213PDB7V2
C11	IO20PDB0V2	D21	IO48PPB1V2	F5	GND
C12	IO24PDB0V3	D22	GBA0/IO57NPB1V3	F6	VCCPLA
C13	IO23PDB0V2	D23	GNDQ	F7	GAB0/IO01NDB0V0
C14	IO28PDB0V3	D24	GBB1/IO56PPB1V3	F8	GNDQ
C15	IO31PDB0V3	D25	GBB2/IO59PDB2V0	F9	IO03PDB0V0
C16	IO32NDB1V0	D26	IO59NDB2V0	F10	IO13PDB0V1
C17	IO36NDB1V0	E1	IO212PDB7V2	F11	IO15PDB0V1
C18	IO37NDB1V0	E2	IO211NDB7V2	F12	IO19PDB0V2
C19	IO45NDB1V1	E3	IO211PDB7V2	F13	IO21PDB0V2
C20	IO42PPB1V1	E4	IO220NPB7V3	F14	IO27NDB0V3
C21	IO46NPB1V1	E5	GNDQ	F15	IO35PDB1V0
C22	IO48NPB1V2	E6	GAB2/IO220PPB7V3	F16	IO39NDB1V0
C23	GBB0/IO56NPB1V3	E7	GAB1/IO01PDB0V0	F17	IO51PDB1V2
C24	VMV1	E8	IO05PDB0V0	F18	IO53PDB1V2
C25	GBC2/IO60PDB2V0	E9	IO08NDB0V1	F19	IO54PDB1V3
C26	IO60NDB2V0	E10	IO12PDB0V1	F20	VMV2
D1	IO218NDB7V3	E11	IO18PDB0V2	F21	VCOMPLB
D2	IO218PDB7V3	E12	IO17PDB0V2	F22	IO61PDB2V0
D3	GND	E13	IO25PDB0V3	F23	IO61NDB2V0
D4	VMV7	E14	IO29PDB0V3	F24	IO66PDB2V1
D5	IO221NDB7V3	E15	IO33PDB1V0	F25	IO66NDB2V1
D6	GAC0/IO02NDB0V0	E16	IO40NDB1V1	F26	IO68NDB2V1
D7	GAC1/IO02PDB0V0	E17	IO43PDB1V1	G1	IO203NPB7V1
D8	IO05NDB0V0	E18	IO47NDB1V1	G2	IO207NDB7V2
D9	IO08PDB0V1	E19	IO54NDB1V3	G3	IO207PDB7V2
D10	IO12NDB0V1	E20	IO52NDB1V2	G4	IO216NDB7V3
D11	IO18NDB0V2	E21	IO52PDB1V2	G5	IO216PDB7V3
D12	IO17NDB0V2	E22	VCCPLB	G6	VCOMPLA
D13	IO25NDB0V3	E23	GBA1/IO57PPB1V3	G7	VMV0
D14	IO29NDB0V3	E24	IO63PDB2V0	G8	VCC
D15	IO33NDB1V0	E25	IO63NDB2V0	G9	IO03NDB0V0
D16	IO40PDB1V1	E26	IO68PDB2V1	G10	IO13NDB0V1
D17	IO43NDB1V1	F1	IO212NDB7V2	G11	IO15NDB0V1
D18	IO47PDB1V1	F2	IO203PPB7V1	G12	IO19NDB0V2

	FG676		FG676		FG676
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
L17	GND	N1	GFB0/IO191NPB7V0	P11	GND
L18	VCC	N2	VCOMPLF	P12	GND
L19	VCCIB2	N3	GFB1/IO191PPB7V0	P13	GND
L20	IO67PDB2V1	N4	IO196PDB7V0	P14	GND
L21	IO67NDB2V1	N5	GFA0/IO190NDB6V2	P15	GND
L22	IO71PDB2V2	N6	IO200PDB7V1	P16	GND
L23	IO71NDB2V2	N7	IO200NDB7V1	P17	GND
L24	GNDQ	N8	VCCIB7	P18	VCC
L25	IO82PDB2V3	N9	VCC	P19	VCCIB3
L26	IO84NDB2V3	N10	GND	P20	GCC0/IO85NDB2V3
M1	IO198NPB7V0	N11	GND	P21	GCC1/IO85PDB2V3
M2	IO202PDB7V1	N12	GND	P22	GCB1/IO86PPB2V3
M3	IO202NDB7V1	N13	GND	P23	IO88NPB3V0
M4	IO206NDB7V1	N14	GND	P24	GCA1/IO87PDB3V0
M5	IO206PDB7V1	N15	GND	P25	VCCPLC
M6	IO204NDB7V1	N16	GND	P26	VCOMPLC
M7	IO204PDB7V1	N17	GND	R1	IO189NDB6V2
M8	VCCIB7	N18	VCC	R2	IO185PDB6V2
M9	VCC	N19	VCCIB2	R3	IO187NPB6V2
M10	GND	N20	IO79PDB2V3	R4	IO193NPB7V0
M11	GND	N21	IO79NDB2V3	R5	GFC2/IO187PPB6V2
M12	GND	N22	GCA2/IO88PPB3V0	R6	GFC1/IO192PDB7V0
M13	GND	N23	IO81NPB2V3	R7	GFC0/IO192NDB7V0
M14	GND	N24	GCA0/IO87NDB3V0	R8	VCCIB6
M15	GND	N25	GCB0/IO86NPB2V3	R9	VCC
M16	GND	N26	IO83NDB2V3	R10	GND
M17	GND	P1	GFA2/IO189PDB6V2	R11	GND
M18	VCC	P2	VCCPLF	R12	GND
M19	VCCIB2	P3	IO193PPB7V0	R13	GND
M20	IO73NDB2V2	P4	IO196NDB7V0	R14	GND
M21	IO73PDB2V2	P5	GFA1/IO190PDB6V2	R15	GND
M22	IO81PPB2V3	P6	IO194PDB7V0	R16	GND
M23	IO77PDB2V2	P7	IO194NDB7V0	R17	GND
M24	IO77NDB2V2	P8	VCCIB6	R18	VCC
M25	IO82NDB2V3	P9	VCC	R19	VCCIB3
M26	IO83PDB2V3	P10	GND	R20	NC

Datasheet Information

Revision	Changes	Page		
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2		
	36, 62, 171			
	Note: There were no pin function changes in this update.			
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12		
	E2, E3, E16, E17, P2, P3, T16, U17			
	Note: There were no pin function changes in this update.			
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9		
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22		
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41		
	AD6, AE5, AE28, AF29, F5, F26, G6, G25			
	Note: There were no pin function changes in this update.			
Revision 2 (Mar 2008) Product Brief rev. 1	The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.			
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2		
	The "PLL Behavior at Brownout Condition" section is new.	2-4		
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10		
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17		
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70		
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83		
Revision 1 (cont'd)	The "PQ208" pin table for A3PE3000 was updated.	4-2		
Packaging v1.1	The "FG324" pin table for A3PE3000 is new.	4-13		
	The "FG484" pin table for A3PE3000 is new.	4-17		
	The "FG896" pin table for A3PE3000 is new.	4-41		
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	N/A		
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-I		
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1		

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51
	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	3-8
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6