

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1fgg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE3000 ³		
Cortex-M1 Devices ²			M1A3F	PE1500	M1A3PE3000		
			I/O T	ypes			
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	
PQ208	147	65	147	65	147	65	
FG256	165	79	-	_	-	-	
FG324	-	-	-	-	221	110	
FG484	270	135	280	139	341	168	
FG676	_	_	444	222	_	_	
FG896	-	-	-	-	620	310	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

ProASIC3E Device Family Overview

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3E devices also have low dynamic power consumption to further maximize power savings.

Advanced Flash Technology

The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

2 – ProASIC3E DC and Switching Characteristics

General Specifications

DC and switching characteristics for -F speed grade targets are based only on simulation.

The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI ²	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV ²	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	 -0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 	V
T _{STG} ³	Storage temperature	–65 to +150	°C
T _J ³	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2.

 VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

	Equivalent			VIL	VIH		VOL	VOH	IOL ³	IOH ³	
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per PC	CI Specificatio	n				
3.3 V PCI-X					Per PCI	-X Specificati	on				
3.3 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ²	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

 Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels

 Applicable to Commercial and Industrial Conditions

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Output drive strength is below JEDEC specification.

3. Currents are measured at 85°C junction temperature.

4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-48 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-12 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

Timing Characteristics

Table 2-50 • 3.3 V GTL

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.51	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.45	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage		3.0		3.3		3.6	
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-81 • Minimum and Maximum DC Input and Output Levels

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V) VREF (typ.) (V)		
1.64	1.94	Cross point	_		

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-83 • LVPECL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.63	ns
-1	0.56	1.55	0.04	1.39	ns
-2	0.49	1.36	0.03	1.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

Figure 2-39 • Peak-to-Peak Jitter Definition

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Pin Descriptions and Packaging

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

	FG484	FG484		FG484	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
H19	IO67PDB2V1	K11	GND	M3	IO189NDB6V2
H20	VCC	K12	GND	M4	GFA2/IO189PDB6V2
H21	VMV2	K13	GND	M5	GFA1/IO190PDB6V2
H22	IO74PSB2V2	K14	VCC	M6	VCCPLF
J1	IO212NDB7V2	K15	VCCIB2	M7	IO188NDB6V2
J2	IO212PDB7V2	K16	GCC1/IO85PPB2V3	M8	GFB2/IO188PDB6V2
J3	VMV7	K17	IO73NDB2V2	M9	VCC
J4	IO206PDB7V1	K18	IO73PDB2V2	M10	GND
J5	IO204PDB7V1	K19	IO81NPB2V3	M11	GND
J6	IO210PDB7V2	K20	IO75NPB2V2	M12	GND
J7	IO215NDB7V3	K21	IO77NDB2V2	M13	GND
J8	VCCIB7	K22	IO79NDB2V3	M14	VCC
J9	GND	L1	NC	M15	GCB2/IO89PPB3V0
J10	VCC	L2	IO196PDB7V0	M16	GCA1/IO87PPB3V0
J11	VCC	L3	IO196NDB7V0	M17	GCC2/IO90PPB3V0
J12	VCC	L4	GFB0/IO191NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO190NDB6V2	M19	GCA2/IO88PDB3V0
J14	GND	L6	GFB1/IO191PPB7V0	M20	IO88NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO93PDB3V0
J16	IO60NDB2V0	L8	GFC0/IO192NPB7V0	M22	NC
J17	IO65NDB2V1	L9	VCC	N1	IO185PPB6V2
J18	IO65PDB2V1	L10	GND	N2	IO183NDB6V2
J19	IO75PPB2V2	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO187PPB6V2
J21	IO77PDB2V2	L13	GND	N5	IO184PPB6V2
J22	IO79PDB2V3	L14	VCC	N6	IO186PDB6V2
K1	IO200NDB7V1	L15	GCC0/IO85NPB2V3	N7	IO186NDB6V2
K2	IO200PDB7V1	L16	GCB1/IO86PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO87NPB3V0	N9	VCC
K4	IO206NDB7V1	L18	VCOMPLC	N10	GND
K5	IO204NDB7V1	L19	GCB0/IO86NPB2V3	N11	GND
K6	IO210NDB7V2	L20	IO81PPB2V3	N12	GND
K7	GFC1/IO192PPB7V0	L21	IO83NDB2V3	N13	GND
K8	VCCIB7	L22	IO83PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO185NPB6V2	N16	IO89NPB3V0

	FG484	FG484		FG484	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
N17	IO132NPB3V2	R9	VCCIB5	U1	IO240PPB6V0
N18	IO117NPB3V0	R10	VCCIB5	U2	IO238PDB6V0
N19	IO132PPB3V2	R11	IO196NDB5V0	U3	IO238NDB6V0
N20	GNDQ	R12	IO196PDB5V0	U4	GEB1/IO235PDB6V0
N21	IO126NDB3V1	R13	VCCIB4	U5	GEB0/IO235NDB6V0
N22	IO128PDB3V1	R14	VCCIB4	U6	VMV6
P1	IO247PDB6V1	R15	VMV3	U7	VCCPLE
P2	IO253PDB6V2	R16	VCCPLD	U8	IO233NPB5V4
P3	IO270NPB6V4	R17	GDB1/IO152PPB3V4	U9	IO222PPB5V3
P4	IO261NPB6V3	R18	GDC1/IO151PDB3V4	U10	IO206PDB5V1
P5	IO249PPB6V1	R19	IO138NDB3V3	U11	IO202PDB5V1
P6	IO259PDB6V3	R20	VCC	U12	IO194PDB5V0
P7	IO259NDB6V3	R21	IO130NDB3V2	U13	IO176NDB4V2
P8	VCCIB6	R22	IO134PDB3V2	U14	IO176PDB4V2
P9	GND	T1	IO243PPB6V1	U15	VMV4
P10	VCC	T2	IO245NDB6V1	U16	TCK
P11	VCC	Т3	IO243NPB6V1	U17	VPUMP
P12	VCC	T4	IO241PDB6V0	U18	TRST
P13	VCC	T5	IO241NDB6V0	U19	GDA0/IO153NDB3V4
P14	GND	Т6	GEC1/IO236PPB6V0	U20	IO144NDB3V3
P15	VCCIB3	T7	VCOMPLE	U21	IO140NDB3V3
P16	GDB0/IO152NPB3V4	Т8	GNDQ	U22	IO142PDB3V3
P17	IO136NDB3V2	Т9	GEA2/IO233PPB5V4	V1	IO239PDB6V0
P18	IO136PDB3V2	T10	IO206NDB5V1	V2	IO240NPB6V0
P19	IO138PDB3V3	T11	IO202NDB5V1	V3	GND
P20	VMV3	T12	IO194NDB5V0	V4	GEA1/IO234PDB6V0
P21	IO130PDB3V2	T13	IO186NDB4V4	V5	GEA0/IO234NDB6V0
P22	IO128NDB3V1	T14	IO186PDB4V4	V6	GNDQ
R1	IO247NDB6V1	T15	GNDQ	V7	GEC2/IO231PDB5V4
R2	IO245PDB6V1	T16	VCOMPLD	V8	IO222NPB5V3
R3	VCC	T17	VJTAG	V9	IO204NDB5V1
R4	IO249NPB6V1	T18	GDC0/IO151NDB3V4	V10	IO204PDB5V1
R5	IO251NDB6V2	T19	GDA1/IO153PDB3V4	V11	IO195NDB5V0
R6	IO251PDB6V2	T20	IO144PDB3V3	V12	IO195PDB5V0
R7	GEC0/IO236NPB6V0	T21	IO140PDB3V3	V13	IO178NDB4V3
R8	VMV5	T22	IO134NDB3V2	V14	IO178PDB4V3

	FG896		FG896		FG896
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
A2	GND	AA9	GEB1/IO235PPB6V0	AB15	IO198PDB5V0
A3	GND	AA10	VCC	AB16	IO192NDB4V4
A4	IO14NPB0V1	AA11	IO226PPB5V4	AB17	IO192PDB4V4
A5	GND	AA12	VCCIB5	AB18	IO178NDB4V3
A6	IO07NPB0V0	AA13	VCCIB5	AB19	IO178PDB4V3
A7	GND	AA14	VCCIB5	AB20	IO174NDB4V2
A8	IO09NDB0V1	AA15	VCCIB5	AB21	IO162NPB4V1
A9	IO17NDB0V2	AA16	VCCIB4	AB22	VCC
A10	IO17PDB0V2	AA17	VCCIB4	AB23	VCCPLD
A11	IO21NDB0V2	AA18	VCCIB4	AB24	VCCIB3
A12	IO21PDB0V2	AA19	VCCIB4	AB25	IO150PDB3V4
A13	IO33NDB0V4	AA20	IO174PDB4V2	AB26	IO148PDB3V4
A14	IO33PDB0V4	AA21	VCC	AB27	IO147NDB3V4
A15	IO35NDB0V4	AA22	IO142NPB3V3	AB28	IO145PDB3V3
A16	IO35PDB0V4	AA23	IO144NDB3V3	AB29	IO143PDB3V3
A17	IO41NDB1V0	AA24	IO144PDB3V3	AB30	IO137PDB3V2
A18	IO43NDB1V0	AA25	IO146NDB3V4	AC1	IO254PDB6V2
A19	IO43PDB1V0	AA26	IO146PDB3V4	AC2	IO254NDB6V2
A20	IO45NDB1V0	AA27	IO147PDB3V4	AC3	IO240PDB6V0
A21	IO45PDB1V0	AA28	IO139NDB3V3	AC4	GEC1/IO236PDB6V0
A22	IO57NDB1V2	AA29	IO139PDB3V3	AC5	IO237PDB6V0
A23	IO57PDB1V2	AA30	IO133NDB3V2	AC6	IO237NDB6V0
A24	GND	AB1	IO256NDB6V2	AC7	VCOMPLE
A25	IO69PPB1V3	AB2	IO244PDB6V1	AC8	GND
A26	GND	AB3	IO244NDB6V1	AC9	IO226NPB5V4
A27	GBC1/IO79PPB1V4	AB4	IO241PDB6V0	AC10	IO222NDB5V3
A28	GND	AB5	IO241NDB6V0	AC11	IO216NPB5V2
A29	GND	AB6	IO243NPB6V1	AC12	IO210NPB5V2
AA1	IO256PDB6V2	AB7	VCCIB6	AC13	IO204NDB5V1
AA2	IO248PDB6V1	AB8	VCCPLE	AC14	IO204PDB5V1
AA3	IO248NDB6V1	AB9	VCC	AC15	IO194NDB5V0
AA4	IO246NDB6V1	AB10	IO222PDB5V3	AC16	IO188NDB4V4
AA5	GEA1/IO234PDB6V0	AB11	IO218PPB5V3	AC17	IO188PDB4V4
AA6	GEA0/IO234NDB6V0	AB12	IO206NDB5V1	AC18	IO182PPB4V3
AA7	IO243PPB6V1	AB13	IO206PDB5V1	AC19	IO170NPB4V2
AA8	IO245NDB6V1	AB14	IO198NDB5V0	AC20	IO164NDB4V1

	FG896	FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AK28	GND	C5	VCCIB0	D11	IO11PDB0V1
AK29	GND	C6	IO03PDB0V0	D12	IO23NDB0V2
B1	GND	C7	IO03NDB0V0	D13	IO23PDB0V2
B2	GND	C8	GAB1/IO01PDB0V0	D14	IO27PDB0V3
B3	GAA2/IO309PPB7V4	C9	IO05PDB0V0	D15	IO40PDB0V4
B4	VCC	C10	IO15NPB0V1	D16	IO47NDB1V0
B5	IO14PPB0V1	C11	IO25NDB0V3	D17	IO47PDB1V0
B6	VCC	C12	IO25PDB0V3	D18	IO55NPB1V1
B7	IO07PPB0V0	C13	IO31NPB0V3	D19	IO65NDB1V3
B8	IO09PDB0V1	C14	IO27NDB0V3	D20	IO65PDB1V3
B9	IO15PPB0V1	C15	IO39NDB0V4	D21	IO71NDB1V3
B10	IO19NDB0V2	C16	IO39PDB0V4	D22	IO71PDB1V3
B11	IO19PDB0V2	C17	IO55PPB1V1	D23	IO73NDB1V4
B12	IO29NDB0V3	C18	IO51PDB1V1	D24	IO73PDB1V4
B13	IO29PDB0V3	C19	IO59NDB1V2	D25	IO74NDB1V4
B14	IO31PPB0V3	C20	IO63NDB1V2	D26	GBB0/IO80NPB1V4
B15	IO37NDB0V4	C21	IO63PDB1V2	D27	GND
B16	IO37PDB0V4	C22	IO67NDB1V3	D28	GBA0/IO81NPB1V4
B17	IO41PDB1V0	C23	IO67PDB1V3	D29	VCC
B18	IO51NDB1V1	C24	IO75NDB1V4	D30	GBA2/IO82PPB2V0
B19	IO59PDB1V2	C25	IO75PDB1V4	E1	GND
B20	IO53PDB1V1	C26	VCCIB1	E2	IO303NPB7V3
B21	IO53NDB1V1	C27	IO64PPB1V2	E3	VCCIB7
B22	IO61NDB1V2	C28	VCC	E4	IO305PPB7V3
B23	IO61PDB1V2	C29	GBA1/IO81PPB1V4	E5	VCC
B24	IO69NPB1V3	C30	GND	E6	GAC0/IO02NDB0V0
B25	VCC	D1	IO303PPB7V3	E7	VCCIB0
B26	GBC0/IO79NPB1V4	D2	VCC	E8	IO06PPB0V0
B27	VCC	D3	IO305NPB7V3	E9	IO24NDB0V2
B28	IO64NPB1V2	D4	GND	E10	IO24PDB0V2
B29	GND	D5	GAA1/IO00PPB0V0	E11	IO13NDB0V1
B30	GND	D6	GAC1/IO02PDB0V0	E12	IO13PDB0V1
C1	GND	D7	IO06NPB0V0	E13	IO34NDB0V4
C2	IO309NPB7V4	D8	GAB0/IO01NDB0V0	E14	IO34PDB0V4
C3	VCC	D9	IO05NDB0V0	E15	IO40NDB0V4
C4	GAA0/IO00NPB0V0	D10	IO11NDB0V1	E16	IO49NDB1V1

	FG896	FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
J5	IO295NDB7V2	K11	IO04PPB0V0	L17	VCC
J6	IO299NDB7V3	K12	VCCIB0	L18	VCC
J7	VCCIB7	K13	VCCIB0	L19	VCC
J8	VCCPLA	K14	VCCIB0	L20	VCC
J9	VCC	K15	VCCIB0	L21	IO78NPB1V4
J10	IO04NPB0V0	K16	VCCIB1	L22	IO104NPB2V2
J11	IO18NDB0V2	K17	VCCIB1	L23	IO98NDB2V2
J12	IO20NDB0V2	K18	VCCIB1	L24	IO98PDB2V2
J13	IO20PDB0V2	K19	VCCIB1	L25	IO87PDB2V0
J14	IO32NDB0V3	K20	IO76PPB1V4	L26	IO87NDB2V0
J15	IO32PDB0V3	K21	VCC	L27	IO97PDB2V1
J16	IO42PDB1V0	K22	IO78PPB1V4	L28	IO101PDB2V2
J17	IO44NDB1V0	K23	IO88NDB2V0	L29	IO103PDB2V2
J18	IO44PDB1V0	K24	IO88PDB2V0	L30	IO119NDB3V0
J19	IO54NDB1V1	K25	IO94PDB2V1	M1	IO282NDB7V1
J20	IO54PDB1V1	K26	IO94NDB2V1	M2	IO282PDB7V1
J21	IO76NPB1V4	K27	IO85PDB2V0	M3	IO292NDB7V2
J22	VCC	K28	IO85NDB2V0	M4	IO292PDB7V2
J23	VCCPLB	K29	IO93PDB2V1	M5	IO283NDB7V1
J24	VCCIB2	K30	IO93NDB2V1	M6	IO285PDB7V1
J25	IO90PDB2V1	L1	IO286NDB7V1	M7	IO287PDB7V1
J26	IO90NDB2V1	L2	IO286PDB7V1	M8	IO289PDB7V1
J27	GBB2/IO83PDB2V0	L3	IO298NDB7V3	M9	IO289NDB7V1
J28	IO83NDB2V0	L4	IO298PDB7V3	M10	VCCIB7
J29	IO91PDB2V1	L5	IO283PDB7V1	M11	VCC
J30	IO91NDB2V1	L6	IO291NDB7V2	M12	GND
K1	IO288NDB7V1	L7	IO291PDB7V2	M13	GND
K2	IO288PDB7V1	L8	IO293PDB7V2	M14	GND
K3	IO304NDB7V3	L9	IO293NDB7V2	M15	GND
K4	IO304PDB7V3	L10	IO307NPB7V4	M16	GND
K5	GAB2/IO308PDB7V4	L11	VCC	M17	GND
K6	IO308NDB7V4	L12	VCC	M18	GND
K7	IO301PDB7V3	L13	VCC	M19	GND
K8	IO301NDB7V3	L14	VCC	M20	VCC
K9	GAC2/IO307PPB7V4	L15	VCC	M21	VCCIB2
K10	VCC	L16	VCC	M22	NC

	FG896	FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
M23	IO104PPB2V2	N29	IO107PDB2V3	R5	GFB0/IO274NPB7V0
M24	IO102PDB2V2	N30	IO107NDB2V3	R6	IO271NDB6V4
M25	IO102NDB2V2	P1	IO276NDB7V0	R7	GFB2/IO271PDB6V4
M26	IO95PDB2V1	P2	IO278NDB7V0	R8	IO269PDB6V4
M27	IO97NDB2V1	P3	IO280NDB7V0	R9	IO269NDB6V4
M28	IO101NDB2V2	P4	IO284NDB7V1	R10	VCCIB7
M29	IO103NDB2V2	P5	IO279NDB7V0	R11	VCC
M30	IO119PDB3V0	P6	GFC1/IO275PDB7V0	R12	GND
N1	IO276PDB7V0	P7	GFC0/IO275NDB7V0	R13	GND
N2	IO278PDB7V0	P8	IO277PDB7V0	R14	GND
N3	IO280PDB7V0	P9	IO277NDB7V0	R15	GND
N4	IO284PDB7V1	P10	VCCIB7	R16	GND
N5	IO279PDB7V0	P11	VCC	R17	GND
N6	IO285NDB7V1	P12	GND	R18	GND
N7	IO287NDB7V1	P13	GND	R19	GND
N8	IO281NDB7V0	P14	GND	R20	VCC
N9	IO281PDB7V0	P15	GND	R21	VCCIB2
N10	VCCIB7	P16	GND	R22	GCC0/IO112NDB2V3
N11	VCC	P17	GND	R23	GCB2/IO116PDB3V0
N12	GND	P18	GND	R24	IO118PDB3V0
N13	GND	P19	GND	R25	IO111PPB2V3
N14	GND	P20	VCC	R26	IO122PPB3V1
N15	GND	P21	VCCIB2	R27	GCA0/IO114NPB3V0
N16	GND	P22	GCC1/IO112PDB2V3	R28	VCOMPLC
N17	GND	P23	IO110PDB2V3	R29	GCB1/IO113PPB2V3
N18	GND	P24	IO110NDB2V3	R30	IO115NPB3V0
N19	GND	P25	IO109PPB2V3	T1	IO270NDB6V4
N20	VCC	P26	IO111NPB2V3	T2	VCCPLF
N21	VCCIB2	P27	IO105PDB2V2	Т3	GFA2/IO272PPB6V4
N22	IO106NDB2V3	P28	IO105NDB2V2	T4	GFA1/IO273PDB6V4
N23	IO106PDB2V3	P29	GCC2/IO117PDB3V0	T5	IO272NPB6V4
N24	IO108PDB2V3	P30	IO117NDB3V0	Т6	IO267NDB6V4
N25	IO108NDB2V3	R1	GFC2/IO270PDB6V4	T7	IO267PDB6V4
N26	IO95NDB2V1	R2	GFB1/IO274PPB7V0	Т8	IO265PDB6V3
N27	IO99NDB2V2	R3	VCOMPLF	Т9	IO263PDB6V3
N28	IO99PDB2V2	R4	GFA0/IO273NDB6V4	T10	VCCIB6

Revision		Changes	Page		
Revision 9 (Aug 2009)	All references to speed grade	-F have been removed from this document.	N/A		
Product Brief v1.2					
	The "Pro I/Os with Advance definitions of hot-swap and co	ed I/O Standards" section was revised to add Id-sparing.	1-6		
DC and Switching Characteristics v1.3	3.3 V LVCMOS and 1.2 V L datasheet. This affects all ta LVCMOS data.	VCMOS Wide Range support was added to the ables that contained 3.3 V LVCMOS and 1.2 V	N/A		
	IIL and IIH input leakage cur Maximum DC Input and Outpu	rrent information was added to all "Minimum and it Levels" tables.	N/A		
	–F was removed from the data	asheet. The speed grade is no longer supported.	N/A		
	In the Table 2-2 • Recomme voltage" and note 4 are new.	nded Operating Conditions ¹ "3.0 V DC supply	2-2		
	The Table 2-4 • Overshoot and	The Table 2-4 • Overshoot and Undershoot Limits ¹ table was updated.			
	The Table 2-6 • Temperature table was updated.	and Voltage Derating Factors for Timing Delays	2-5		
	here are new parameters and data was updated in the Table 2-99 • RAM4K9 able.				
	here are new parameters and data was updated in the Table 2-100 RAM512X18 table.				
Revision 8 (Feb 2008)	Table 1-2 • ProASIC3E FPGAs	s Package Sizes Dimensions is new.	1-II		
Product Brief v1.1					
Revision 7 (Jun 2008) DC and Switching	The title of Table 2-4 • Over remove "as measured on qu	shoot and Undershoot Limits ¹ was modified to uiet I/Os." Table note 2 was revised to remove	2-3		
Characteristics v1.2	"estimated SSO density over o	cycles." Table note 3 was deleted.			
	Table 2-78 • LVDS Minimum updated.	and Maximum DC Input and Output Levels was	2-50		
Revision 6 (Jun 2008)	The A3PE600 "FG484" table added to the table.	was missing G22. The pin and its function were	4-27		
Revision 5 (Jun 2008) Packaging v1.4	The naming conventions char A3PE600:	nged for the following pins in the "FG484" for the	4-22		
	Pin Number	New Function Name			
	J19	IO45PPB2V1			
	K20	IO45NPB2V1			
	M2	IO114NPB6V1			
	N1	IO114PPB6V1			
	N4	GFC2/IO115PPB6V1			
	P3	IO115NPB6V1			
Revision 4 (Apr 2008) Product Brief v1.0	The product brief portion of the a version number, starting at features, benefits, ordering offerings. The second section	e datasheet was divided into two sections and given v1.0. The first section of the document includes information, and temperature and speed grade is a device family overview.	N/A		
Packaging v1.3	The "FG324" package diagram	n was replaced.	4-12		

Revision	Changes	Page
Advance v0.5 (continued)	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Introduction" section was updated.	2-28
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.