E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	147
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Package	A3PE600	A3PE1500	A3PE3000
Cortex-M1 Devices		M1A3PE1500	M1A3PE3000
PQ208	C, I	C, I	C, I
FG256	C, I	-	-
FG324	-	_	C, I
FG484	C, I	C, I	C, I
FG676	-	C, I	_
FG896	-	-	C, I

Note: C = Commercial temperature range: 0°C to 70°C ambient temperature<math>I = Industrial temperature range: -40°C to 85°C ambient temperature

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std.	-1	-2
C ¹	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark

Notes:

1. C = Commercial temperature range: 0°C to 70°C ambient temperature

2. I = Industrial temperature range: -40°C to 85°C ambient temperature

References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/index.php?option=com_content&id=135&lang=en&view=article.

1 – ProASIC3E Device Family Overview

General Description

ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs.

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State - I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Paran	neter	Commercial	Industrial	Units
T _A	Ambient temperature		0 to +70	-40 to +85	°C
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵	2.7 to 3.6	2.7 to 3.6	V	
	LVDS/B-LVDS/M-LVDS diff	/B-LVDS/M-LVDS differential I/O		2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

User I/O Characteristics

Timing Model

Figure 2-2 • Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)
--	------------

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}$ (Ω) ³
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	-
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA ⁴	25	25
SSTL2 (I)	15 mA	27	31
SSTL2 (II)	18 mA	13	15
SSTL3 (I)	14 mA	44	69
SSTL3 (II)	21 mA	18	32

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R(_{(WEAK}	Ω) Ω	R _{(WEAK} PULL-DOWN) ² (Ω)				
VCCI	Min.	Max.	Min.	Max.			
3.3 V	10 k	45 k	10 k	45 k			
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k			
2.5 V	11 k	55 k	12 k	74 k			
1.8 V	18 k	70 k	17 k	110 k			
1.5 V	19 k	90 k	19 k	140 k			

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Timing Characteristics

Table 2-43 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	8.53	0.04	1.70	2.14	0.43	7.26	8.53	3.39	2.79	9.50	10.77	ns
	-1	0.56	7.26	0.04	1.44	1.82	0.36	6.18	7.26	2.89	2.37	8.08	9.16	ns
	-2	0.49	6.37	0.03	1.27	1.60	0.32	5.42	6.37	2.53	2.08	7.09	8.04	ns
4 mA	Std.	0.66	5.41	0.04	1.70	2.14	0.43	5.22	5.41	3.75	3.48	7.45	7.65	ns
	-1	0.56	4.60	0.04	1.44	1.82	0.36	4.44	4.60	3.19	2.96	6.34	6.50	ns
	-2	0.49	4.04	0.03	1.27	1.60	0.32	3.89	4.04	2.80	2.60	5.56	5.71	ns
6 mA	Std.	0.66	4.80	0.04	1.70	2.14	0.43	4.89	4.75	3.83	3.67	7.13	6.98	ns
	-1	0.56	4.09	0.04	1.44	1.82	0.36	4.16	4.04	3.26	3.12	6.06	5.94	ns
	-2	0.49	3.59	0.03	1.27	1.60	0.32	3.65	3.54	2.86	2.74	5.32	5.21	ns
8 mA	Std.	0.66	4.42	0.04	1.70	2.14	0.43	4.50	3.62	3.96	4.37	6.74	5.86	ns
	-1	0.56	3.76	0.04	1.44	1.82	0.36	3.83	3.08	3.37	3.72	5.73	4.98	ns
	-2	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns
12 mA	Std.	0.66	4.42	0.04	1.70	2.14	0.43	4.50	3.62	3.96	4.37	6.74	5.86	ns
	-1	0.56	3.76	0.04	1.44	1.82	0.36	3.83	3.08	3.37	3.72	5.73	4.98	ns
	-2	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	14.11	0.04	1.70	2.14	0.43	14.37	13.14	3.40	2.68	16.61	15.37	ns
	-1	0.56	12.00	0.04	1.44	1.82	0.36	12.22	11.17	2.90	2.28	14.13	13.08	ns
	-2	0.49	10.54	0.03	1.27	1.60	0.32	10.73	9.81	2.54	2.00	12.40	11.48	ns
4 mA	Std.	0.66	11.23	0.04	1.70	2.14	0.43	11.44	9.87	3.77	3.36	13.68	12.10	ns
	-1	0.56	9.55	0.04	1.44	1.82	0.36	9.73	8.39	3.21	2.86	11.63	10.29	ns
	-2	0.49	8.39	0.03	1.27	1.60	0.32	8.54	7.37	2.81	2.51	10.21	9.04	ns
6 mA	Std.	0.66	10.45	0.04	1.70	2.14	0.43	10.65	9.24	3.84	3.55	12.88	11.48	ns
	-1	0.56	8.89	0.04	1.44	1.82	0.36	9.06	7.86	3.27	3.02	10.96	9.76	ns
	-2	0.49	7.81	0.03	1.27	1.60	0.32	7.95	6.90	2.87	2.65	9.62	8.57	ns
8 mA	Std.	0.66	10.02	0.04	1.70	2.14	0.43	10.20	9.23	3.97	4.22	12.44	11.47	ns
	-1	0.56	8.52	0.04	1.44	1.82	0.36	8.68	7.85	3.38	3.59	10.58	9.75	ns
	-2	0.49	7.48	0.03	1.27	1.60	0.32	7.62	6.89	2.97	3.15	9.29	8.56	ns
12 mA	Std.	0.66	10.02	0.04	1.70	2.14	0.43	10.20	9.23	3.97	4.22	12.44	11.47	ns
	-1	0.56	8.52	0.04	1.44	1.82	0.36	8.68	7.85	3.38	3.59	10.58	9.75	ns
	-2	0.49	7.48	0.03	1.27	1.60	0.32	7.62	6.89	2.97	3.15	9.29	8.56	ns

Table 2-44 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-69 •	Minimum a	and Maximum	DC Input and	Output Levels
--------------	-----------	-------------	---------------------	----------------------

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-71 • SSTL 2 Class II

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	0.66	2.17	0.04	1.33	0.43	2.21	1.77			4.44	ns
-1	0.56	0.56	1.84	0.04	1.14	0.36	1.88	1.51			3.78	ns
-2	0.49	0.49	1.62	0.03	1.00	0.32	1.65	1.32			3.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

ProASIC3E DC and Switching Characteristics

DDR Module Specifications

Input DDR Module

Figure 2-30 • Input DDR Timing Model

Table 2-89 • Pa	rameter Definitions
-----------------	---------------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD} Data Setup Time of DDR input		A, B
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR} Clear Removal		С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

Figure 2-39 • Peak-to-Peak Jitter Definition

Figure 2-50 • FIFO EMPTY Flag and AEMPTY Flag Assertion

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ

Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx

I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F

PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There are six VCCPLX pins on ProASIC3E devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on ProASIC3E devices.

🌜 Microsemi.

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
C21	NC	E13	IO24NDB1V0	G5	IO129PDB7V1	
C22	VCCIB2	E14	IO24PDB1V0	G6	GAC2/IO132PDB7V1	
D1	NC	E15	GBC1/IO33PDB1V1	G7	VCOMPLA	
D2	NC	E16	GBB0/IO34NDB1V1	G8	GNDQ	
D3	NC	E17	GNDQ	G9	IO09NDB0V1	
D4	GND	E18	GBA2/IO36PDB2V0	G10	IO09PDB0V1	
D5	GAA0/IO00NDB0V0	E19	IO42NDB2V0	G11	IO13PDB0V2	
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO21PDB1V0	
D7	GAB0/IO01NDB0V0	E21	NC	G13	IO25PDB1V0	
D8	IO05PDB0V0	E22	NC	G14	IO27NDB1V0	
D9	IO10PDB0V1	F1	NC	G15	GNDQ	
D10	IO12PDB0V2	F2	IO131NDB7V1	G16	VCOMPLB	
D11	IO16NDB0V2	F3	IO131PDB7V1	G17	GBB2/IO37PDB2V0	
D12	IO23NDB1V0	F4	IO133NDB7V1	G18	IO39PDB2V0	
D13	IO23PDB1V0	F5	IO134NDB7V1	G19	IO39NDB2V0	
D14	IO28NDB1V1	F6	VMV7	G20	IO43PDB2V0	
D15	IO28PDB1V1	F7	VCCPLA	G21	IO43NDB2V0	
D16	GBB1/IO34PDB1V1	F8	GAC0/IO02NDB0V0	G22	NC	
D17	GBA0/IO35NDB1V1	F9	GAC1/IO02PDB0V0	H1	NC	
D18	GBA1/IO35PDB1V1	F10	IO15NDB0V2	H2	NC	
D19	GND	F11	IO15PDB0V2	H3	VCC	
D20	NC	F12	IO20PDB1V0	H4	IO128NDB7V1	
D21	NC	F13	IO25NDB1V0	H5	IO129NDB7V1	
D22	NC	F14	IO27PDB1V0	H6	IO132NDB7V1	
E1	NC	F15	GBC0/IO33NDB1V1	H7	IO130PDB7V1	
E2	NC	F16	VCCPLB	H8	VMV0	
E3	GND	F17	VMV2	H9	VCCIB0	
E4	GAB2/IO133PDB7V1	F18	IO36NDB2V0	H10	VCCIB0	
E5	GAA2/IO134PDB7V1	F19	IO42PDB2V0	H11	IO13NDB0V2	
E6	GNDQ	F20	NC	H12	IO21NDB1V0	
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1	
E8	IO05NDB0V0	F22	NC	H14	VCCIB1	
E9	IO10NDB0V1	G1	IO127NDB7V1	H15	VMV1	
E10	IO12NDB0V2	G2	IO127PDB7V1	H16	GBC2/IO38PDB2V0	
E11	IO16PDB0V2	G3	NC	H17	IO37NDB2V0	
E12	IO20NDB1V0	G4	IO128PDB7V1	H18	IO41NDB2V0	

	FG484	FG484			
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function		
N17	IO91NPB3V0	R9	VCCIB5		
N18	IO90NPB3V0	R10	VCCIB5		
N19	IO91PPB3V0	R11	IO135NDB5V0		
N20	GNDQ	R12	IO135PDB5V0		
N21	IO93NDB3V0	R13	VCCIB4		
N22	IO95PDB3V1	R14	VCCIB4		
P1	NC	R15	VMV3		
P2	IO183PDB6V2	R16	VCCPLD		
P3	IO187NPB6V2	R17	GDB1/IO109PPB3V2		
P4	IO184NPB6V2	R18	GDC1/IO108PDB3V2		
P5	IO176PPB6V1	R19	IO99NDB3V1		
P6	IO182PDB6V1	R20	VCC		
P7	IO182NDB6V1	R21	IO98NDB3V1		
P8	VCCIB6	R22	IO101PDB3V1		
P9	GND	T1	NC		
P10	VCC	T2	IO177NDB6V1		
P11	VCC	Т3	NC		
P12	VCC	T4	IO171PDB6V0		
P13	VCC	T5	IO171NDB6V0		
P14	GND	Т6	GEC1/IO169PPB6V0		
P15	VCCIB3	T7	VCOMPLE		
P16	GDB0/IO109NPB3V2	Т8	GNDQ		
P17	IO97NDB3V1	Т9	GEA2/IO166PPB5V3		
P18	IO97PDB3V1	T10	IO145NDB5V1		
P19	IO99PDB3V1	T11	IO141NDB5V0		
P20	VMV3	T12	IO139NDB5V0		
P21	IO98PDB3V1	T13	IO119NDB4V1		
P22	IO95NDB3V1	T14	IO119PDB4V1		
R1	NC	T15	GNDQ		
R2	IO177PDB6V1	T16	VCOMPLD		
R3	VCC	T17	VJTAG		
R4	IO176NPB6V1	T18	GDC0/IO108NDB3V2		
R5	IO174NDB6V0	T19	GDA1/IO110PDB3V2		
R6	IO174PDB6V0	T20	NC		
R7	GEC0/IO169NPB6V0	T21	IO103PDB3V2		
R8	VMV5	T22	IO101NDB3V1		

FG484					
Pin Number	A3PE1500 Function				
U1	IO175PPB6V1				
U2	IO173PDB6V0				
U3	IO173NDB6V0				
U4	GEB1/IO168PDB6V0				
U5	GEB0/IO168NDB6V0				
U6	VMV6				
U7	VCCPLE				
U8	IO166NPB5V3				
U9	IO157PPB5V2				
U10	IO145PDB5V1				
U11	IO141PDB5V0				
U12	IO139PDB5V0				
U13	IO121NDB4V1				
U14	IO121PDB4V1				
U15	VMV4				
U16	ТСК				
U17	VPUMP				
U18	TRST				
U19	GDA0/IO110NDB3V2				
U20	NC				
U21	IO103NDB3V2				
U22	IO105PDB3V2				
V1	NC				
V2	IO175NPB6V1				
V3	GND				
V4	GEA1/IO167PDB6V0				
V5	GEA0/IO167NDB6V0				
V6	GNDQ				
V7	GEC2/IO164PDB5V3				
V8	IO157NPB5V2				
V9	IO151NDB5V2				
V10	IO151PDB5V2				
V11	IO137NDB5V0				
V12	IO137PDB5V0				
V13	IO123NDB4V1				
V14	IO123PDB4V1				

Package Pin Assignments

FG676			FG676	FG676		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
R21	IO89NDB3V0	U5	IO182PDB6V1	V15	VCC	
R22	GCB2/IO89PDB3V0	U6	IO178PDB6V1	V16	VCC	
R23	IO90NDB3V0	U7	IO178NDB6V1	V17	VCC	
R24	GCC2/IO90PDB3V0	U8	VCCIB6	V18	VCC	
R25	IO91PDB3V0	U9	VCC	V19	VCCIB3	
R26	IO91NDB3V0	U10	GND	V20	IO107PDB3V2	
T1	IO186PDB6V2	U11	GND	V21	IO107NDB3V2	
T2	IO185NDB6V2	U12	GND	V22	IO103NDB3V2	
Т3	GNDQ	U13	GND	V23	IO103PDB3V2	
T4	IO180PDB6V1	U14	GND	V24	VMV3	
T5	IO180NDB6V1	U15	GND	V25	IO95NDB3V1	
Т6	IO188NDB6V2	U16	GND	V26	IO94PDB3V0	
T7	GFB2/IO188PDB6V2	U17	GND	W1	IO179NDB6V1	
Т8	VCCIB6	U18	VCC	W2	IO179PDB6V1	
Т9	VCC	U19	VCCIB3	W3	IO177NDB6V1	
T10	GND	U20	NC	W4	IO177PDB6V1	
T11	GND	U21	IO101NDB3V1	W5	IO172PDB6V0	
T12	GND	U22	IO101PDB3V1	W6	IO172NDB6V0	
T13	GND	U23	IO92NDB3V0	W7	VCC	
T14	GND	U24	IO92PDB3V0	W8	VCC	
T15	GND	U25	IO95PDB3V1	W9	VCCIB5	
T16	GND	U26	IO93NPB3V0	W10	VCCIB5	
T17	GND	V1	IO183PDB6V2	W11	VCCIB5	
T18	VCC	V2	IO183NDB6V2	W12	VCCIB5	
T19	VCCIB3	V3	VMV6	W13	VCCIB5	
T20	IO99PDB3V1	V4	IO181PDB6V1	W14	VCCIB4	
T21	IO99NDB3V1	V5	IO181NDB6V1	W15	VCCIB4	
T22	IO97PDB3V1	V6	IO176PDB6V1	W16	VCCIB4	
T23	IO97NDB3V1	V7	IO176NDB6V1	W17	VCCIB4	
T24	GNDQ	V8	VCCIB6	W18	VCCIB4	
T25	IO93PPB3V0	V9	VCC	W19	VCC	
T26	NC	V10	VCC	W20	VCCIB3	
U1	IO186NDB6V2	V11	VCC	W21	GDB0/IO109NDB3V2	
U2	IO184NDB6V2	V12	VCC	W22	GDB1/IO109PDB3V2	
U3	IO184PDB6V2	V13	VCC	W23	IO105NDB3V2	
U4	IO182NDB6V1	V14	VCC	W24	IO105PDB3V2	

FG896		FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
E17	IO49PDB1V1	F23	IO72PDB1V3	G29	IO100PPB2V2
E18	IO50PDB1V1	F24	GNDQ	G30	GND
E19	IO58PDB1V2	F25	GND	H1	IO294PDB7V2
E20	IO60NDB1V2	F26	VMV2	H2	IO294NDB7V2
E21	IO77PDB1V4	F27	IO86PDB2V0	H3	IO300NDB7V3
E22	IO68NDB1V3	F28	IO92PDB2V1	H4	IO300PDB7V3
E23	IO68PDB1V3	F29	VCC	H5	IO295PDB7V2
E24	VCCIB1	F30	IO100NPB2V2	H6	IO299PDB7V3
E25	IO74PDB1V4	G1	GND	H7	VCOMPLA
E26	VCC	G2	IO296NPB7V2	H8	GND
E27	GBB1/IO80PPB1V4	G3	IO306NDB7V4	H9	IO08NDB0V0
E28	VCCIB2	G4	IO297NDB7V2	H10	IO08PDB0V0
E29	IO82NPB2V0	G5	VCCIB7	H11	IO18PDB0V2
E30	GND	G6	GNDQ	H12	IO26NPB0V3
F1	IO296PPB7V2	G7	VCC	H13	IO28NDB0V3
F2	VCC	G8	VMV0	H14	IO28PDB0V3
F3	IO306PDB7V4	G9	VCCIB0	H15	IO38PPB0V4
F4	IO297PDB7V2	G10	IO10NDB0V1	H16	IO42NDB1V0
F5	VMV7	G11	IO16NDB0V1	H17	IO52NDB1V1
F6	GND	G12	IO22PDB0V2	H18	IO52PDB1V1
F7	GNDQ	G13	IO26PPB0V3	H19	IO62NDB1V2
F8	IO12NDB0V1	G14	IO38NPB0V4	H20	IO62PDB1V2
F9	IO12PDB0V1	G15	IO36NDB0V4	H21	IO70NDB1V3
F10	IO10PDB0V1	G16	IO46NDB1V0	H22	IO70PDB1V3
F11	IO16PDB0V1	G17	IO46PDB1V0	H23	GND
F12	IO22NDB0V2	G18	IO56NDB1V1	H24	VCOMPLB
F13	IO30NDB0V3	G19	IO56PDB1V1	H25	GBC2/IO84PDB2V0
F14	IO30PDB0V3	G20	IO66NDB1V3	H26	IO84NDB2V0
F15	IO36PDB0V4	G21	IO66PDB1V3	H27	IO96PDB2V1
F16	IO48NDB1V0	G22	VCCIB1	H28	IO96NDB2V1
F17	IO48PDB1V0	G23	VMV1	H29	IO89PDB2V0
F18	IO50NDB1V1	G24	VCC	H30	IO89NDB2V0
F19	IO58NDB1V2	G25	GNDQ	J1	IO290NDB7V2
F20	IO60PDB1V2	G26	VCCIB2	J2	IO290PDB7V2
F21	IO77NDB1V4	G27	IO86NDB2V0	J3	IO302NDB7V3
F22	IO72NDB1V3	G28	IO92NDB2V1	J4	IO302PDB7V3

Datasheet Information

Revision	Changes	Page		
Revision 11 (August 2012)	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions ¹ (SAR 38322).	2-1 3-1 2-1		
	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924):			
	"Summary of Maximum and Minimum DC Input and Output Levels" table	2-16		
	"Summary of I/O Timing Characteristics—Software Default Settings" table	2-19		
	"I/O Output Buffer Maximum Resistances ¹ " table	2-20		
	"Minimum and Maximum DC Input and Output Levels" table)			
	"Minimum and Maximum DC Input and Output Levels" table	2-40		
	Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19.			
	Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714).			
	"Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934).	2-22		
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796):	2-30		
	"It uses a 5 V–tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error.			
Revision 11 (continued)	Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-38		
	In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222).			
	Figure 2-47and Figure 2-48 are new (SAR 34848).	2-79		
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1		

Revision	Changes	Page
Advance v0.3	The "Methodology" section was updated.	
(continuea)	The A3PE3000 "208-Pin PQFP" pin table was updated.	4-6