E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	516096
Number of I/O	147
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-1pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew	
Commercial-Case Conditions: T _J = 70°C,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed	toour	too	tow	tav	tava	trout	t-ı	t	t	tu-	truo	truo	Units
	4 mΔ	Std	0.66	17 02		1.83	2 38	0.43	•2L	• 2 н 13 74	•LZ 4 16	•н <u>г</u> 3.78	-2LS	•2H5 17 14	ne
100 μΛ		Old.	0.00	17.02	0.04	1.00	2.00	0.40	17.02	10.74	4.10	0.70	20.72	17.14	113
		-1	0.56	14.48	0.04	1.55	2.02	0.36	14.48	11.69	3.54	3.21	17.37	14.58	ns
		-2	0.49	12.71	0.03	1.36	1.78	0.32	12.71	10.26	3.11	2.82	15.25	12.80	ns
100 µA	8 mA	Std.	0.66	12.16	0.04	1.83	2.38	0.43	12.16	9.78	4.70	4.74	15.55	13.17	ns
		-1	0.56	10.34	0.04	1.55	2.02	0.36	10.34	8.32	4.00	4.03	13.23	11.20	ns
		-2	0.49	9.08	0.03	1.36	1.78	0.32	9.08	7.30	3.51	3.54	11.61	9.84	ns
100µA	12 mA	Std.	0.66	9.32	0.04	1.83	2.38	0.43	9.32	7.62	5.06	5.36	12.71	11.02	ns
		-1	0.56	7.93	0.04	1.55	2.02	0.36	7.93	6.48	4.31	4.56	10.81	9.37	ns
		-2	0.49	6.96	0.03	1.36	1.78	0.32	6.96	5.69	3.78	4.00	9.49	8.23	ns
100 µA	16 mA	Std.	0.66	8.69	0.04	1.83	2.38	0.43	8.69	7.17	5.14	5.53	12.08	10.57	ns
		-1	0.56	7.39	0.04	1.55	2.02	0.36	7.39	6.10	4.37	4.71	10.28	8.99	ns
		-2	0.49	6.49	0.03	1.36	1.78	0.32	6.49	5.36	3.83	4.13	9.02	7.89	ns
100 µA	24 mA	Std.	0.66	8.11	0.04	1.83	2.38	0.43	8.11	7.13	5.23	6.13	11.50	10.52	ns
		-1	0.56	6.90	0.04	1.55	2.02	0.36	6.90	6.06	4.45	5.21	9.78	8.95	ns
		-2	0.49	6.05	0.03	1.36	1.78	0.32	6.05	5.32	3.91	4.57	8.59	7.86	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default extension birblighted in grave

2. Software default selection highlighted in gray.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	–1	0.56	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.49	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.66	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	–1	0.56	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.49	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	–1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	–1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Table 2-36 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

|--|

HSTL Class I	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8	39	32	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-16 • AC Loading

Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

Timing Characteristics

Table 2-62 • HSTL Class I

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = .4 V, VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	3.18	0.04	2.12	0.43	3.24	3.14			5.47	5.38	ns
-1	0.56	2.70	0.04	1.81	0.36	2.75	2.67			4.66	4.58	ns
-2	0.49	2.37	0.03	1.59	0.32	2.42	2.35			4.09	4.02	ns

SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-72 • Minimum and Maximum	DC Input and Output Levels
----------------------------------	----------------------------

SSTL3 Class I	I VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	54	51	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-74 • SSTL3 Class I

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	1.25	0.43	2.35	1.84			4.59	4.07	ns
-1	0.56	1.96	0.04	1.06	0.36	2.00	1.56			3.90	3.46	ns
-2	0.49	1.72	0.03	0.93	0.32	1.75	1.37			3.42	3.04	ns

ProASIC3E DC and Switching Characteristics

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-75 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	109	103	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-21 • AC Loading

Table 2-76 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-77 • SSTL3 Class II

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.07	0.04	1.25	0.43	2.10	1.67			4.34	3.91	ns
-1	0.56	1.76	0.04	1.06	0.36	1.79	1.42			3.69	3.32	ns
-2	0.49	1.54	0.03	0.93	0.32	1.57	1.25			3.24	2.92	ns

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-29 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-88 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Figure 2-35 • Timing Model and Waveforms

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

Figure 2-36 • Sample of Sequential Cells

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter	Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		160 ³		ps
Serial Clock (SCLK) for Dynamic PLL ⁴			125	MHz
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Ma	x Peak-to-Pe	ak Period Jitter	
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	0.50%		0.70%	
24 MHz to 100 MHz	1.00%		1.20%	
100 MHz to 250 MHz	1.75%		2.00%	
250 MHz to 350 MHz	2.50%		5.60%	
Acquisition Time LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁵ LockControl = 0			1.6	ns
LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	0.6		5.56	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.025		5.56	ns
Delay Range in Block: Fixed Delay ^{1,4}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings

2. $T_J = 25^{\circ}C$, VCC = 1.5 V.

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

static Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-101 • FIFO

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.38	1.57	1.84	ns
t _{ENH}	REN, WEN Hold Time	0.02	0.02	0.02	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (pass-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (pass-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency	310	272	231	MHz

Refer to the I/O Structure section of the *ProASIC3E FPGA Fabric User's Guide* for an explanation of the naming of global pins.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 W to 1 k Ω will satisfy the requirements. Refer to Table 3-1 for more information.

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI

TMS

Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

	PQ208		PQ208
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
118	IO134NDB3V2	157	VMV1
119	IO134PDB3V2	158	GNDQ
120	IO132NDB3V2	159	GBA1/IO81PDB1V4
121	IO132PDB3V2	160	GBA0/IO81NDB1V4
122	GND	161	GBB1/IO80PDB1V4
123	VCCIB3	162	GND
124	GCC2/IO117PSB3V0	163	GBB0/IO80NDB1V4
125	GCB2/IO116PSB3V0	164	GBC1/IO79PDB1V4
126	NC	165	GBC0/IO79NDB1V4
127	IO115NDB3V0	166	IO74PDB1V4
128	GCA2/IO115PDB3V0	167	IO74NDB1V4
129	GCA1/IO114PPB3V0	168	IO70PDB1V3
130	GND	169	IO70NDB1V3
131	VCCPLC	170	VCCIB1
132	GCA0/IO114NPB3V0	171	VCC
133	VCOMPLC	172	IO56PSB1V1
134	GCB0/IO113NDB2V3	173	IO55PDB1V1
135	GCB1/IO113PDB2V3	174	IO55NDB1V1
136	GCC1/IO112PSB2V3	175	IO54PDB1V1
137	IO110NDB2V3	176	IO54NDB1V1
138	IO110PDB2V3	177	IO40PDB0V4
139	IO106PSB2V3	178	GND
140	VCCIB2	179	IO40NDB0V4
141	GND	180	IO37PDB0V4
142	VCC	181	IO37NDB0V4
143	IO99NDB2V2	182	IO35PDB0V4
144	IO99PDB2V2	183	IO35NDB0V4
145	IO96NDB2V1	184	IO32PDB0V3
146	IO96PDB2V1	185	IO32NDB0V3
147	IO91NDB2V1	186	VCCIB0
148	IO91PDB2V1	187	VCC
149	IO88NDB2V0	188	IO28PDB0V3
150	IO88PDB2V0	189	IO28NDB0V3
151	GBC2/IO84PSB2V0	190	IO24PDB0V2
152	GBA2/IO82PSB2V0	191	IO24NDB0V2
153	GBB2/IO83PSB2V0	192	IO21PSB0V2
154	VMV2	193	IO16PDB0V1
155	GNDQ	194	IO16NDB0V1
156	GND	195	GND

	PQ208
Pin Number	A3PE3000 Function
196	IO11PDB0V1
197	IO11NDB0V1
198	IO08PDB0V0
199	IO08NDB0V0
200	VCCIB0
201	GAC1/IO02PDB0V0
202	GAC0/IO02NDB0V0
203	GAB1/IO01PDB0V0
204	GAB0/IO01NDB0V0
205	GAA1/IO00PDB0V0
206	GAA0/IO00NDB0V0
207	GNDQ
208	VMV0

	FG256
Pin Number	A3PE600 Function
P9	IO82PDB5V0
P10	IO76NDB4V1
P11	IO76PDB4V1
P12	VMV4
P13	TCK
P14	VPUMP
P15	TRST
P16	GDA0/IO67NDB3V1
R1	GEA1/IO102PDB6V0
R2	GEA0/IO102NDB6V0
R3	GNDQ
R4	GEC2/IO99PDB5V2
R5	IO95NPB5V1
R6	IO91NDB5V1
R7	IO91PDB5V1
R8	IO83NDB5V0
R9	IO83PDB5V0
R10	IO77NDB4V1
R11	IO77PDB4V1
R12	IO69NDB4V0
R13	GDB2/IO69PDB4V0
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO100NDB5V2
Т3	GEB2/IO100PDB5V2
T4	IO99NDB5V2
T5	IO88NDB5V0
T6	IO88PDB5V0
T7	IO89NSB5V0
T8	IO80NSB4V1
Т9	IO81NDB4V1
T10	IO81PDB4V1
T11	IO70NDB4V0
T12	GDC2/IO70PDB4V0

	FG256	
	Pin Number	A3PE600 Function
ſ	T13	IO68NDB4V0
	T14	GDA2/IO68PDB4V0
I	T15	TMS
	T16	GND

Package Pin Assignments

	FG484	FG484		FG484	
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
N17	IO57NPB3V0	R9	VCCIB5	U1	NC
N18	IO55NPB3V0	R10	VCCIB5	U2	IO107PDB6V0
N19	IO57PPB3V0	R11	IO84NDB5V0	U3	IO107NDB6V0
N20	NC	R12	IO84PDB5V0	U4	GEB1/IO103PDB6V0
N21	IO56NDB3V0	R13	VCCIB4	U5	GEB0/IO103NDB6V0
N22	IO58PDB3V0	R14	VCCIB4	U6	VMV6
P1	NC	R15	VMV3	U7	VCCPLE
P2	IO111PDB6V1	R16	VCCPLD	U8	IO101NPB5V2
P3	IO115NPB6V1	R17	GDB1/IO66PPB3V1	U9	IO95PPB5V1
P4	IO113NPB6V1	R18	GDC1/IO65PDB3V1	U10	IO92PDB5V1
P5	IO109PPB6V0	R19	IO61NDB3V1	U11	IO90PDB5V1
P6	IO108PDB6V0	R20	VCC	U12	IO82PDB5V0
P7	IO108NDB6V0	R21	IO59NDB3V0	U13	IO76NDB4V1
P8	VCCIB6	R22	IO62PDB3V1	U14	IO76PDB4V1
P9	GND	T1	NC	U15	VMV4
P10	VCC	T2	IO110NDB6V0	U16	ТСК
P11	VCC	Т3	NC	U17	VPUMP
P12	VCC	T4	IO105PDB6V0	U18	TRST
P13	VCC	Т5	IO105NDB6V0	U19	GDA0/IO67NDB3V1
P14	GND	Т6	GEC1/IO104PPB6V0	U20	NC
P15	VCCIB3	Τ7	VCOMPLE	U21	IO64NDB3V1
P16	GDB0/IO66NPB3V1	Т8	GNDQ	U22	IO63PDB3V1
P17	IO60NDB3V1	Т9	GEA2/IO101PPB5V2	V1	NC
P18	IO60PDB3V1	T10	IO92NDB5V1	V2	NC
P19	IO61PDB3V1	T11	IO90NDB5V1	V3	GND
P20	NC	T12	IO82NDB5V0	V4	GEA1/IO102PDB6V0
P21	IO59PDB3V0	T13	IO74NDB4V1	V5	GEA0/IO102NDB6V0
P22	IO58NDB3V0	T14	IO74PDB4V1	V6	GNDQ
R1	NC	T15	GNDQ	V7	GEC2/IO99PDB5V2
R2	IO110PDB6V0	T16	VCOMPLD	V8	IO95NPB5V1
R3	VCC	T17	VJTAG	V9	IO91NDB5V1
R4	IO109NPB6V0	T18	GDC0/IO65NDB3V1	V10	IO91PDB5V1
R5	IO106NDB6V0	T19	GDA1/IO67PDB3V1	V11	IO83NDB5V0
R6	IO106PDB6V0	T20	NC	V12	IO83PDB5V0
R7	GEC0/IO104NPB6V0	T21	IO64PDB3V1	V13	IO77NDB4V1
R8	VMV5	T22	IO62NDB3V1	V14	IO77PDB4V1

Pin Number	A3PE1500 Function	Pin N
A1	GND	AA
A2	GND	AA
A3	GAA0/IO00NDB0V0	AA
A4	GAA1/IO00PDB0V0	AA
A5	IO06NDB0V0	AA
A6	IO09NDB0V1	AA
A7	IO09PDB0V1	AA
A8	IO14NDB0V1	AA
A9	IO14PDB0V1	AA
A10	IO22NDB0V2	AA
A11	IO22PDB0V2	AA
A12	IO26NDB0V3	AA
A13	IO26PDB0V3	AA
A14	IO30NDB0V3	AA
A15	IO30PDB0V3	AA
A16	IO34NDB1V0	AA
A17	IO34PDB1V0	A
A18	IO38NDB1V0	A
A19	IO38PDB1V0	A
A20	IO41PDB1V1	A
A21	IO44PDB1V1	A
A22	IO49PDB1V2	A
A23	IO50PDB1V2	A
A24	GBC1/IO55PDB1V3	A
A25	GND	A
A26	GND	AE
AA1	IO174PDB6V0	A
AA2	IO171PDB6V0	AE
AA3	GEA1/IO167PPB6V0	AE
AA4	GEC0/IO169NPB6V0	AE
AA5	VCOMPLE	AE
AA6	GND	AE
AA7	IO165NDB5V3	AE
AA8	GEB2/IO165PDB5V3	AE
AA9	IO163PDB5V3	AE
AA10	IO159NDB5V3	AE

FG676				
Pin Number	A3PE1500 Function			
AA11	IO153NDB5V2			
AA12	IO147NDB5V1			
AA13	IO139NDB5V0			
AA14	IO137NDB5V0			
AA15	IO123NDB4V1			
AA16	IO123PDB4V1			
AA17	IO117NDB4V0			
AA18	IO117PDB4V0			
AA19	GDB2/IO112PDB4V0			
AA20	GNDQ			
AA21	TDO			
AA22	GND			
AA23	GND			
AA24	IO102NDB3V1			
AA25	IO102PDB3V1			
AA26	IO98NDB3V1			
AB1	IO174NDB6V0			
AB2	IO171NDB6V0			
AB3	GEB1/IO168PPB6V0			
AB4	GEA0/IO167NPB6V0			
AB5	VCCPLE			
AB6	GND			
AB7	GND			
AB8	IO156NDB5V2			
AB9	IO156PDB5V2			
AB10	IO150PDB5V1			
AB11	IO155PDB5V2			
AB12	IO142PDB5V0			
AB13	IO135NDB5V0			
AB14	IO135PDB5V0			
AB15	IO132PDB4V2			
AB16	IO129PDB4V2			
AB17	IO121PDB4V1			
AB18	IO119NDB4V1			
AB19	IO112NDB4V0			
AB20	VMV4			

FG676			
Pin Number	A3PE1500 Function		
AB21	TCK		
AB22	TRST		
AB23	GDC0/IO108NDB3V2		
AB24	GDC1/IO108PDB3V2		
AB25	IO104NDB3V2		
AB26	IO104PDB3V2		
AC1	IO170PDB6V0		
AC2	GEB0/IO168NPB6V0		
AC3	IO166NPB5V3		
AC4	GNDQ		
AC5	GND		
AC6	IO160PDB5V3		
AC7	IO161PDB5V3		
AC8	IO154PDB5V2		
AC9	GND		
AC10	IO150NDB5V1		
AC11	IO155NDB5V2		
AC12	IO142NDB5V0		
AC13	IO138NDB5V0		
AC14	IO138PDB5V0		
AC15	IO132NDB4V2		
AC16	IO129NDB4V2		
AC17	IO121NDB4V1		
AC18	IO119PDB4V1		
AC19	IO118NDB4V0		
AC20	IO118PDB4V0		
AC21	IO114PPB4V0		
AC22	TMS		
AC23	VJTAG		
AC24	VMV3		
AC25	IO106NDB3V2		
AC26	IO106PDB3V2		
AD1	IO170NDB6V0		
AD2	GEA2/IO166PPB5V3		
AD3	VMV5		
AD4	GEC2/IO164PDB5V3		

FG896		FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
M23	IO104PPB2V2	N29	IO107PDB2V3	R5	GFB0/IO274NPB7V0
M24	IO102PDB2V2	N30	IO107NDB2V3	R6	IO271NDB6V4
M25	IO102NDB2V2	P1	IO276NDB7V0	R7	GFB2/IO271PDB6V4
M26	IO95PDB2V1	P2	IO278NDB7V0	R8	IO269PDB6V4
M27	IO97NDB2V1	P3	IO280NDB7V0	R9	IO269NDB6V4
M28	IO101NDB2V2	P4	IO284NDB7V1	R10	VCCIB7
M29	IO103NDB2V2	P5	IO279NDB7V0	R11	VCC
M30	IO119PDB3V0	P6	GFC1/IO275PDB7V0	R12	GND
N1	IO276PDB7V0	P7	GFC0/IO275NDB7V0	R13	GND
N2	IO278PDB7V0	P8	IO277PDB7V0	R14	GND
N3	IO280PDB7V0	P9	IO277NDB7V0	R15	GND
N4	IO284PDB7V1	P10	VCCIB7	R16	GND
N5	IO279PDB7V0	P11	VCC	R17	GND
N6	IO285NDB7V1	P12	GND	R18	GND
N7	IO287NDB7V1	P13	GND	R19	GND
N8	IO281NDB7V0	P14	GND	R20	VCC
N9	IO281PDB7V0	P15	GND	R21	VCCIB2
N10	VCCIB7	P16	GND	R22	GCC0/IO112NDB2V3
N11	VCC	P17	GND	R23	GCB2/IO116PDB3V0
N12	GND	P18	GND	R24	IO118PDB3V0
N13	GND	P19	GND	R25	IO111PPB2V3
N14	GND	P20	VCC	R26	IO122PPB3V1
N15	GND	P21	VCCIB2	R27	GCA0/IO114NPB3V0
N16	GND	P22	GCC1/IO112PDB2V3	R28	VCOMPLC
N17	GND	P23	IO110PDB2V3	R29	GCB1/IO113PPB2V3
N18	GND	P24	IO110NDB2V3	R30	IO115NPB3V0
N19	GND	P25	IO109PPB2V3	T1	IO270NDB6V4
N20	VCC	P26	IO111NPB2V3	T2	VCCPLF
N21	VCCIB2	P27	IO105PDB2V2	Т3	GFA2/IO272PPB6V4
N22	IO106NDB2V3	P28	IO105NDB2V2	T4	GFA1/IO273PDB6V4
N23	IO106PDB2V3	P29	GCC2/IO117PDB3V0	T5	IO272NPB6V4
N24	IO108PDB2V3	P30	IO117NDB3V0	Т6	IO267NDB6V4
N25	IO108NDB2V3	R1	GFC2/IO270PDB6V4	T7	IO267PDB6V4
N26	IO95NDB2V1	R2	GFB1/IO274PPB7V0	Т8	IO265PDB6V3
N27	IO99NDB2V2	R3	VCOMPLF	Т9	IO263PDB6V3
N28	IO99PDB2V2	R4	GFA0/IO273NDB6V4	T10	VCCIB6

Revision	Changes	Page
Revision 10 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34669).	
	The Y security option and Licensed DPA Logo were added to the "ProASIC3E Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34727).	III
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34689).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 34699).	1-6
	VCCPLL in Table 2-2 • Recommended Operating Conditions ¹ was corrected from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).	2-2
	The T _J symbol was added to the table and notes regarding T _A and T _J were removed. The second of two parameters in the VCCI and VMV row, called "3.3 V DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).	
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3E FPGA Fabric User's Guide</i> (SAR 34735).	2-9
	t_{DOUT} was corrected to t_{DIN} in Figure 2-3 \bullet Input Buffer Timing Model and Delays (example) (SAR 37109).	2-13
	The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings was corrected (SAR 37227).	2-19
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section and tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34763).	2-18, 2-27