

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-2fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State - I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Paran	neter	Commercial	Industrial	Units
T _A	Ambient temperature	0 to +70	-40 to +85	°C	
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage	1.4 to 3.6	1.4 to 3.6	V	
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage	2.3 to 2.7	2.3 to 2.7	V	
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵		2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS differential I/O			2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = PDC1 + N_{INPUTS} * PDC2 + N_{OUTPUTS} * PDC3

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 P_{S-CELL} = N_{S-CELL} * (PAC5 + α_1 / 2 * PAC6) * F_{CLK}

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	–1	0.56	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.49	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.66	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	–1	0.56	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.49	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	–1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	–1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Table 2-36 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Input Register

Timing Characteristics

Table 2-86 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

Output DDR Module

Figure 2-32 • Output DDR Timing Model

Table 2-91 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1} Data Hold Data_F		А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Figure 2-35 • Timing Model and Waveforms

Figure 2-39 • Peak-to-Peak Jitter Definition

Timing Waveforms

Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Wicrosemi. ProASIC3E DC and Switching Characteristics

Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.

Table 2-100 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.18	0.20	0.24	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Pin Descriptions and Packaging

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

🌜 Microsemi.

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
N17	IO57NPB3V0	R9	VCCIB5	U1	NC	
N18	IO55NPB3V0	R10	VCCIB5	U2	IO107PDB6V0	
N19	IO57PPB3V0	R11	IO84NDB5V0	U3	IO107NDB6V0	
N20	NC	R12	IO84PDB5V0	U4	GEB1/IO103PDB6V0	
N21	IO56NDB3V0	R13	VCCIB4	U5	GEB0/IO103NDB6V0	
N22	IO58PDB3V0	R14	VCCIB4	U6	VMV6	
P1	NC	R15	VMV3	U7	VCCPLE	
P2	IO111PDB6V1	R16	VCCPLD	U8	IO101NPB5V2	
P3	IO115NPB6V1	R17	GDB1/IO66PPB3V1	U9	IO95PPB5V1	
P4	IO113NPB6V1	R18	GDC1/IO65PDB3V1	U10	IO92PDB5V1	
P5	IO109PPB6V0	R19	IO61NDB3V1	U11	IO90PDB5V1	
P6	IO108PDB6V0	R20	VCC	U12	IO82PDB5V0	
P7	IO108NDB6V0	R21	IO59NDB3V0	U13	IO76NDB4V1	
P8	VCCIB6	R22	IO62PDB3V1	U14	IO76PDB4V1	
P9	GND	T1	NC	U15	VMV4	
P10	VCC	T2	IO110NDB6V0	U16	ТСК	
P11	VCC	Т3	NC	U17	VPUMP	
P12	VCC	T4	IO105PDB6V0	U18	TRST	
P13	VCC	Т5	IO105NDB6V0	U19	GDA0/IO67NDB3V1	
P14	GND	Т6	GEC1/IO104PPB6V0	U20	NC	
P15	VCCIB3	Τ7	VCOMPLE	U21	IO64NDB3V1	
P16	GDB0/IO66NPB3V1	Т8	GNDQ	U22	IO63PDB3V1	
P17	IO60NDB3V1	Т9	GEA2/IO101PPB5V2	V1	NC	
P18	IO60PDB3V1	T10	IO92NDB5V1	V2	NC	
P19	IO61PDB3V1	T11	IO90NDB5V1	V3	GND	
P20	NC	T12	IO82NDB5V0	V4	GEA1/IO102PDB6V0	
P21	IO59PDB3V0	T13	IO74NDB4V1	V5	GEA0/IO102NDB6V0	
P22	IO58NDB3V0	T14	IO74PDB4V1	V6	GNDQ	
R1	NC	T15	GNDQ	V7	GEC2/IO99PDB5V2	
R2	IO110PDB6V0	T16	VCOMPLD	V8	IO95NPB5V1	
R3	VCC	T17	VJTAG	V9	IO91NDB5V1	
R4	IO109NPB6V0	T18	GDC0/IO65NDB3V1	V10	IO91PDB5V1	
R5	IO106NDB6V0	T19	GDA1/IO67PDB3V1	V11	IO83NDB5V0	
R6	IO106PDB6V0	T20	NC	V12	IO83PDB5V0	
R7	GEC0/IO104NPB6V0	T21	IO64PDB3V1	V13	IO77NDB4V1	
R8	VMV5	T22	IO62NDB3V1	V14	IO77PDB4V1	

FG484			FG484	FG484		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
C21	NC	E13	IO41NDB1V1	G5	IO217PDB7V3	
C22	VCCIB2	E14	IO41PDB1V1	G6	GAC2/IO219PDB7V3	
D1	NC	E15	GBC1/IO55PDB1V3	G7	VCOMPLA	
D2	NC	E16	GBB0/IO56NDB1V3	G8	GNDQ	
D3	NC	E17	GNDQ	G9	IO19NDB0V2	
D4	GND	E18	GBA2/IO58PDB2V0	G10	IO19PDB0V2	
D5	GAA0/IO00NDB0V0	E19	IO63NDB2V0	G11	IO25PDB0V3	
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO33PDB1V0	
D7	GAB0/IO01NDB0V0	E21	IO69NDB2V1	G13	IO39PDB1V0	
D8	IO09PDB0V1	E22	NC	G14	IO45NDB1V1	
D9	IO13PDB0V1	F1	IO218NPB7V3	G15	GNDQ	
D10	IO21PDB0V2	F2	IO216NDB7V3	G16	VCOMPLB	
D11	IO31NDB0V3	F3	IO216PDB7V3	G17	GBB2/IO59PDB2V0	
D12	IO37NDB1V0	F4	IO220NDB7V3	G18	IO62PDB2V0	
D13	IO37PDB1V0	F5	IO221NDB7V3	G19	IO62NDB2V0	
D14	IO49NDB1V2	F6	VMV7	G20	IO71PDB2V2	
D15	IO49PDB1V2	F7	VCCPLA	G21	IO71NDB2V2	
D16	GBB1/IO56PDB1V3	F8	GAC0/IO02NDB0V0	G22	NC	
D17	GBA0/IO57NDB1V3	F9	GAC1/IO02PDB0V0	H1	IO209PSB7V2	
D18	GBA1/IO57PDB1V3	F10	IO23NDB0V2	H2	NC	
D19	GND	F11	IO23PDB0V2	H3	VCC	
D20	NC	F12	IO35PDB1V0	H4	IO214NDB7V3	
D21	IO69PDB2V1	F13	IO39NDB1V0	H5	IO217NDB7V3	
D22	NC	F14	IO45PDB1V1	H6	IO219NDB7V3	
E1	NC	F15	GBC0/IO55NDB1V3	H7	IO215PDB7V3	
E2	IO218PPB7V3	F16	VCCPLB	H8	VMV0	
E3	GND	F17	VMV2	H9	VCCIB0	
E4	GAB2/IO220PDB7V3	F18	IO58NDB2V0	H10	VCCIB0	
E5	GAA2/IO221PDB7V3	F19	IO63PDB2V0	H11	IO25NDB0V3	
E6	GNDQ	F20	NC	H12	IO33NDB1V0	
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1	
E8	IO09NDB0V1	F22	NC	H14	VCCIB1	
E9	IO13NDB0V1	G1	IO211NDB7V2	H15	VMV1	
E10	IO21NDB0V2	G2	IO211PDB7V2	H16	GBC2/IO60PDB2V0	
E11	IO31PDB0V3	G3	NC	H17	IO59NDB2V0	
E12	IO35NDB1V0	G4	IO214PDB7V3	H18	IO67NDB2V1	

Microsemi

Package Pin Assignments

FG484						
Pin Number	A3PE1500 Function					
V15	IO112NDB4V0					
V16	GDB2/IO112PDB4V0					
V17	TDI					
V18	GNDQ					
V19	TDO					
V20	GND					
V21	NC					
V22	IO105NDB3V2					
W1	NC					
W2	NC					
W3	NC					
W4	GND					
W5	IO165NDB5V3					
W6	GEB2/IO165PDB5V3					
W7	IO164NDB5V3					
W8	IO153NDB5V2					
W9	IO153PDB5V2					
W10	IO147NDB5V1					
W11	IO133NDB4V2					
W12	IO130NDB4V2					
W13	IO130PDB4V2					
W14	IO113NDB4V0					
W15	GDC2/IO113PDB4V0					
W16	IO111NDB4V0					
W17	GDA2/IO111PDB4V0					
W18	TMS					
W19	GND					
W20	NC					
W21	NC					
W22	NC					
Y1	VCCIB6					
Y2	NC					
Y3	NC					
Y4	IO161NDB5V3					
Y5	GND					
Y6	IO163NDB5V3					

FG484					
Pin Number	A3PE1500 Function				
Y7	IO163PDB5V3				
Y8	VCC				
Y9	VCC				
Y10	IO147PDB5V1				
Y11	IO133PDB4V2				
Y12 IO131NPB4V2					
Y13	NC				
Y14	VCC				
Y15	VCC				
Y16	NC				
Y17	NC				
Y18	GND				
Y19	NC				
Y20	NC				
Y21	NC				
Y22	VCCIB3				

	FG484		FG484	FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4	
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4	
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4	
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF	
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4	
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4	
J3	VMV7	K17	IO108NDB2V3	M9	VCC	
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND	
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND	
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND	
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND	
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC	
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0	
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0	
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0	
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC	
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0	
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0	
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1	
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1	
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2	
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2	
J19	IO106PPB2V3	L11	GND	N3	VMV6	
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4	
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3	
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3	
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3	
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6	
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC	
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND	
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND	
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND	
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND	
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC	
K9	VCC	M1	GNDQ	N15	VCCIB3	
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0	

	FG676		FG676	FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
L17	GND	N1	GFB0/IO191NPB7V0	P11	GND
L18	VCC	N2	VCOMPLF	P12	GND
L19	VCCIB2	N3	GFB1/IO191PPB7V0	P13	GND
L20	IO67PDB2V1	N4	IO196PDB7V0	P14	GND
L21	IO67NDB2V1	N5	GFA0/IO190NDB6V2	P15	GND
L22	IO71PDB2V2	N6	IO200PDB7V1	P16	GND
L23	IO71NDB2V2	N7	IO200NDB7V1	P17	GND
L24	GNDQ	N8	VCCIB7	P18	VCC
L25	IO82PDB2V3	N9	VCC	P19	VCCIB3
L26	IO84NDB2V3	N10	GND	P20	GCC0/IO85NDB2V3
M1	IO198NPB7V0	N11	GND	P21	GCC1/IO85PDB2V3
M2	IO202PDB7V1	N12	GND	P22	GCB1/IO86PPB2V3
M3	IO202NDB7V1	N13	GND	P23	IO88NPB3V0
M4	IO206NDB7V1	N14	GND	P24	GCA1/IO87PDB3V0
M5	IO206PDB7V1	N15	GND	P25	VCCPLC
M6	IO204NDB7V1	N16	GND	P26	VCOMPLC
M7	IO204PDB7V1	N17	GND	R1	IO189NDB6V2
M8	VCCIB7	N18	VCC	R2	IO185PDB6V2
M9	VCC	N19	VCCIB2	R3	IO187NPB6V2
M10	GND	N20	IO79PDB2V3	R4	IO193NPB7V0
M11	GND	N21	IO79NDB2V3	R5	GFC2/IO187PPB6V2
M12	GND	N22	GCA2/IO88PPB3V0	R6	GFC1/IO192PDB7V0
M13	GND	N23	IO81NPB2V3	R7	GFC0/IO192NDB7V0
M14	GND	N24	GCA0/IO87NDB3V0	R8	VCCIB6
M15	GND	N25	GCB0/IO86NPB2V3	R9	VCC
M16	GND	N26	IO83NDB2V3	R10	GND
M17	GND	P1	GFA2/IO189PDB6V2	R11	GND
M18	VCC	P2	VCCPLF	R12	GND
M19	VCCIB2	P3	IO193PPB7V0	R13	GND
M20	IO73NDB2V2	P4	IO196NDB7V0	R14	GND
M21	IO73PDB2V2	P5	GFA1/IO190PDB6V2	R15	GND
M22	IO81PPB2V3	P6	IO194PDB7V0	R16	GND
M23	IO77PDB2V2	P7	IO194NDB7V0	R17	GND
M24	IO77NDB2V2	P8	VCCIB6	R18	VCC
M25	IO82NDB2V3	P9	VCC	R19	VCCIB3
M26	IO83PDB2V3	P10	GND	R20	NC

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	
	The "Programming" section was updated to include information concerning serialization.	
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6

Revision	Changes	Page
Advance v0.3	The "Methodology" section was updated.	
(continuea)	The A3PE3000 "208-Pin PQFP" pin table was updated.	4-6

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.