

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-2fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Figure 1-1 • ProASIC3E Device Architecture Overview

rom file Save to file			Show BSR D
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR(3)	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z
			-

Figure 1-3 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
 - I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation.

ProASIC3E DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3E FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

Package Type	Pin Count	$\theta_{\mathbf{jc}}$	Still Air	200 ft./min.	500 ft./min.	Units
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W
	676	3.2	16.4	13.0	12.0	C/W
	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)							
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C		
1.425	0.87	0.92	0.95	1.00	1.02	1.04		
1.500	0.83	0.88	0.90	0.95	0.97	0.98		
1.575	0.80	0.85	0.87	0.92	0.93	0.95		

EQ 1

EQ 2

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential			-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended			•	•
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = PDC1 + N_{INPUTS} * PDC2 + N_{OUTPUTS} * PDC3

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 P_{S-CELL} = N_{S-CELL} * (PAC5 + α_1 / 2 * PAC6) * F_{CLK}

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	_	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	-	0.75 V
3.3 V PCI	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))
3.3 V PCI-X	_	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	-	-	Cross point
LVPECL	_	_	Cross point

Table 2-15 • Summary of AC Measuring Points

Table 2-16 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Detailed I/O DC Characteristics

Table 2-18 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-19 • I/O Output Buffer Maximum Resistances¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	100	300
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	4 mA	100	200
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75
3.3 V GTL	20 mA ⁴	11	-
2.5 V GTL	20 mA ⁴	14	_

Notes:

- These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.
- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive	v	IL	v	Ŧ	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	109	103	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	127	132	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	181	268	10	10

Table 2-29 • Minimum and Maximum DC Input and Output Levels

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	_	35

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max., V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10

Table 2-33 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\xrightarrow{1}{1}$$
 35 pF
 $R = 1 k$
Test Point
Enable Path $\xrightarrow{1}{1}$ R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $35 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $35 pF$ for $t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.84	0.04	1.45	1.91	0.43	15.65	15.84	2.78	1.58	17.89	18.07	ns
	-1	0.56	13.47	0.04	1.23	1.62	0.36	13.31	13.47	2.37	1.35	15.22	15.37	ns
	-2	0.49	11.83	0.03	1.08	1.42	0.32	11.69	11.83	2.08	1.18	13.36	13.50	ns
4 mA	Std.	0.66	11.39	0.04	1.45	1.91	0.43	11.60	10.76	3.26	2.77	13.84	12.99	ns
	-1	0.56	9.69	0.04	1.23	1.62	0.36	9.87	9.15	2.77	2.36	11.77	11.05	ns
	-2	0.49	8.51	0.03	1.08	1.42	0.32	8.66	8.03	2.43	2.07	10.33	9.70	ns
6 mA	Std.	0.66	8.97	0.04	1.45	1.91	0.43	9.14	8.10	3.57	3.36	11.37	10.33	ns
	-1	0.56	7.63	0.04	1.23	1.62	0.36	7.77	6.89	3.04	2.86	9.67	8.79	ns
	-2	0.49	6.70	0.03	1.08	1.42	0.32	6.82	6.05	2.66	2.51	8.49	7.72	ns
8 mA	Std.	0.66	8.35	0.04	1.45	1.91	0.43	8.50	7.59	3.64	3.52	10.74	9.82	ns
	-1	0.56	7.10	0.04	1.23	1.62	0.36	7.23	6.45	3.10	3.00	9.14	8.35	ns
	-2	0.49	6.24	0.03	1.08	1.42	0.32	6.35	5.66	2.72	2.63	8.02	7.33	ns
12 mA	Std.	0.66	7.94	0.04	1.45	1.91	0.43	8.09	7.56	3.74	4.11	10.32	9.80	ns
	-1	0.56	6.75	0.04	1.23	1.62	0.36	6.88	6.43	3.18	3.49	8.78	8.33	ns
	-2	0.49	5.93	0.03	1.08	1.42	0.32	6.04	5.65	2.79	3.07	7.71	7.32	ns
16 mA	Std.	0.66	7.94	0.04	1.45	1.91	0.43	8.09	7.56	3.74	4.11	10.32	9.80	ns
	-1	0.56	6.75	0.04	1.23	1.62	0.36	6.88	6.43	3.18	3.49	8.78	8.33	ns
	-2	0.49	5.93	0.03	1.08	1.42	0.32	6.04	5.65	2.79	3.07	7.71	7.32	ns

Table 2-40 • 1.8 V LVCMOS Low SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

ProASIC3E DC and Switching Characteristics

DDR Module Specifications

Input DDR Module

Figure 2-30 • Input DDR Timing Model

Table	2-89 •	Parameter	Definitions
-------	--------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	А, В
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

ProASIC3E DC and Switching Characteristics

Output DDR Module

Figure 2-32 • Output DDR Timing Model

Table 2-91 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Timing Characteristics

Table 2-94 • Register Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Microsemi

Package Pin Assignments

PQ208			PQ208	PQ208		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
1	GND	37	IO112PDB6V1	72	VCCIB5	
2	GNDQ	38	IO112NDB6V1	73	IO85NPB5V0	
3	VMV7	39	IO108PSB6V0	74	IO84NPB5V0	
4	GAB2/IO133PSB7V1	40	VCCIB6	75	IO85PPB5V0	
5	GAA2/IO134PDB7V1	41	GND	76	IO84PPB5V0	
6	IO134NDB7V1	42	IO106PDB6V0	77	IO83NPB5V0	
7	GAC2/IO132PDB7V1	43	IO106NDB6V0	78	IO82NPB5V0	
8	IO132NDB7V1	44	GEC1/IO104PDB6V0	79	IO83PPB5V0	
9	IO130PDB7V1	45	GEC0/IO104NDB6V	80	IO82PPB5V0	
10	IO130NDB7V1	10		81	GND	
11	IO127PDB7V1	46	GEB1/IO103PPB6V0	82	IO80NDB4V1	
12	IO127NDB7V1	47	GEA1/IO102PPB6V0	83	IO80PDB4V1	
13	IO126PDB7V0	48	GEB0/IO103NPB6V0	84	IO79NPB4V1	
14	IO126NDB7V0	49	GEA0/IO102NPB6V0	85	IO78NPB4V1	
15	IO124PSB7V0	50	VMV6	86	IO79PPB4V1	
16	VCC	51	GNDQ	87	IO78PPB4V1	
17	GND	52	GND	88	VCC	
18	VCCIB7	53	VMV5	89	VCCIB4	
19	IO122PPB7V0	54	GNDQ	90	IO76NDB4V1	
20	IO121PSB7V0	55	IO101NDB5V2	91	IO76PDB4V1	
21	IO122NPB7V0	56	GEA2/IO101PDB5V2	92	IO72NDB4V0	
22	GFC1/IO120PSB7V0	57	IO100NDB5V2	93	IO72PDB4V0	
23	GFB1/IO119PDB7V0	58	GEB2/IO100PDB5V2	94	IO70NDB4V0	
24	GFB0/IO119NDB7V0	59	IO99NDB5V2	95	GDC2/IO70PDB4V0	
25	VCOMPLF	60	GEC2/IO99PDB5V2	96	IO68NDB4V0	
26	GFA0/IO118NPB6V1	61	IO98PSB5V2	97	GND	
27	VCCPLF	62	VCCIB5	98	GDA2/IO68PDB4V0	
28	GFA1/IO118PPB6V1	63	IO96PSB5V2	99	GDB2/IO69PSB4V0	
29	GND	64	IO94NDB5V1	100	GNDQ	
30	GFA2/IO117PDB6V1	65	GND	101	TCK	
31	IO117NDB6V1	66	IO94PDB5V1	102	TDI	
32	GFB2/IO116PPB6V1	67	IO92NDB5V1	103	TMS	
33	GFC2/IO115PPB6V1	68	IO92PDB5V1	104	VMV4	
34	IO116NPB6V1	69	IO88NDB5V0	105	GND	
35	IO115NPB6V1	70	IO88PDB5V0	106	VPUMP	
36	VCC	71	VCC	107	GNDQ	

FG256					
Pin Number	A3PE600 Function				
P9	IO82PDB5V0				
P10	IO76NDB4V1				
P11	IO76PDB4V1				
P12	VMV4				
P13	TCK				
P14	VPUMP				
P15	TRST				
P16	GDA0/IO67NDB3V1				
R1	GEA1/IO102PDB6V0				
R2	GEA0/IO102NDB6V0				
R3	GNDQ				
R4	GEC2/IO99PDB5V2				
R5	IO95NPB5V1				
R6	IO91NDB5V1				
R7	IO91PDB5V1				
R8	IO83NDB5V0				
R9	IO83PDB5V0				
R10	IO77NDB4V1				
R11	IO77PDB4V1				
R12	IO69NDB4V0				
R13	GDB2/IO69PDB4V0				
R14	TDI				
R15	GNDQ				
R16	TDO				
T1	GND				
T2	IO100NDB5V2				
Т3	GEB2/IO100PDB5V2				
T4	IO99NDB5V2				
T5	IO88NDB5V0				
T6	IO88PDB5V0				
T7	IO89NSB5V0				
T8	IO80NSB4V1				
Т9	IO81NDB4V1				
T10	IO81PDB4V1				
T11	IO70NDB4V0				
T12	GDC2/IO70PDB4V0				

	FG256					
	Pin Number	A3PE600 Function				
ſ	T13	IO68NDB4V0				
	T14	GDA2/IO68PDB4V0				
I	T15	TMS				
	T16	GND				

FG324

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
A2	GND	AA9	GEB1/IO235PPB6V0	AB15	IO198PDB5V0	
A3	GND	AA10	VCC	AB16	IO192NDB4V4	
A4	IO14NPB0V1	AA11	IO226PPB5V4	AB17	IO192PDB4V4	
A5	GND	AA12	VCCIB5	AB18	IO178NDB4V3	
A6	IO07NPB0V0	AA13	VCCIB5	AB19	IO178PDB4V3	
A7	GND	AA14	VCCIB5	AB20	IO174NDB4V2	
A8	IO09NDB0V1	AA15	VCCIB5	AB21	IO162NPB4V1	
A9	IO17NDB0V2	AA16	VCCIB4	AB22	VCC	
A10	IO17PDB0V2	AA17	VCCIB4	AB23	VCCPLD	
A11	IO21NDB0V2	AA18	VCCIB4	AB24	VCCIB3	
A12	IO21PDB0V2	AA19	VCCIB4	AB25	IO150PDB3V4	
A13	IO33NDB0V4	AA20	IO174PDB4V2	AB26	IO148PDB3V4	
A14	IO33PDB0V4	AA21	VCC	AB27	IO147NDB3V4	
A15	IO35NDB0V4	AA22	IO142NPB3V3	AB28	IO145PDB3V3	
A16	IO35PDB0V4	AA23	IO144NDB3V3	AB29	IO143PDB3V3	
A17	IO41NDB1V0	AA24	IO144PDB3V3	AB30	IO137PDB3V2	
A18	IO43NDB1V0	AA25	IO146NDB3V4	AC1	IO254PDB6V2	
A19	IO43PDB1V0	AA26	IO146PDB3V4	AC2	IO254NDB6V2	
A20	IO45NDB1V0	AA27	IO147PDB3V4	AC3	IO240PDB6V0	
A21	IO45PDB1V0	AA28	IO139NDB3V3	AC4	GEC1/IO236PDB6V0	
A22	IO57NDB1V2	AA29	IO139PDB3V3	AC5	IO237PDB6V0	
A23	IO57PDB1V2	AA30	IO133NDB3V2	AC6	IO237NDB6V0	
A24	GND	AB1	IO256NDB6V2	AC7	VCOMPLE	
A25	IO69PPB1V3	AB2	IO244PDB6V1	AC8	GND	
A26	GND	AB3	IO244NDB6V1	AC9	IO226NPB5V4	
A27	GBC1/IO79PPB1V4	AB4	IO241PDB6V0	AC10	IO222NDB5V3	
A28	GND	AB5	IO241NDB6V0	AC11	IO216NPB5V2	
A29	GND	AB6	IO243NPB6V1	AC12	IO210NPB5V2	
AA1	IO256PDB6V2	AB7	VCCIB6	AC13	IO204NDB5V1	
AA2	IO248PDB6V1	AB8	VCCPLE	AC14	IO204PDB5V1	
AA3	IO248NDB6V1	AB9	VCC	AC15	IO194NDB5V0	
AA4	IO246NDB6V1	AB10	IO222PDB5V3	AC16	IO188NDB4V4	
AA5	GEA1/IO234PDB6V0	AB11	IO218PPB5V3	AC17	IO188PDB4V4	
AA6	GEA0/IO234NDB6V0	AB12	IO206NDB5V1	AC18	IO182PPB4V3	
AA7	IO243PPB6V1	AB13	IO206PDB5V1	AC19	IO170NPB4V2	
AA8	IO245NDB6V1	AB14	IO198NDB5V0	AC20	IO164NDB4V1	

Datasheet Information

Revision	Changes	Page			
v2.0 (continued)	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-5			
	Table 3-5 • Package Thermal Resistivities was updated.				
	Table 3-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices was updated.				
	$t_{\rm WRO}$ and $t_{\rm CCKH}$ were added to Table 3-94 \bullet RAM4K9 and Table 3-95 \bullet RAM512X18.	3-74 to 3-74			
	The note in Table 3-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated.	3-23			
	Figure 3-43 • Write Access After Write onto Same Address, Figure 3-44 • Read Access After Write onto Same Address, and Figure 3-45 • Write Access After Read onto Same Address are new.	3-71 to 3- 73			
	Figure 3-53 • Timing Diagram was updated.	3-80			
	Notes were added to the package diagrams identifying if they were top or bottom view.	N/A			
	The A3PE1500 "208-Pin PQFP" table is new.	4-4			
	The A3PE1500 "484-Pin FBGA" table is new.	4-18			
	The A3PE1500 "A3PE1500 Function" table is new.	4-24			
Advance v0.6 (January 2007)	In the "Packaging Tables" table, the number of I/Os for the A3PE1500 was changed for the FG484 and FG676 packages.	ii			
Advance v0.5 (April 2006)	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A			
	The term flow-through was changed to pass-through.	N/A			
	Figure 2-8 • Very-Long-Line Resources was updated.	2-8			
	The footnotes in Figure 2-27 • CCC/PLL Macro were updated.	2-28			
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24			
	The "SRAM and FIFO" section was updated.	2-21			
	The "RESET" section was updated.	2-25			
	The "WCLK and RCLK" section was updated.	2-25			
	The "RESET" section was updated.	2-25			
	The "RESET" section was updated.	2-27			
	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A			
	The term flow-through was changed to pass-through.	N/A			
	Figure 2-8 • Very-Long-Line Resources was updated.	2-8			
	The footnotes in Figure 2-27 • CCC/PLL Macro were updated.	2-28			
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24			
	The "SRAM and FIFO" section was updated.	2-21			
	The "RESET" section was updated.	2-25			
	The "WCLK and RCLK" section was updated.	2-25			